JPH0432137B2 - - Google Patents

Info

Publication number
JPH0432137B2
JPH0432137B2 JP63174948A JP17494888A JPH0432137B2 JP H0432137 B2 JPH0432137 B2 JP H0432137B2 JP 63174948 A JP63174948 A JP 63174948A JP 17494888 A JP17494888 A JP 17494888A JP H0432137 B2 JPH0432137 B2 JP H0432137B2
Authority
JP
Japan
Prior art keywords
alloy
forging
temperature
amount
exceeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63174948A
Other languages
Japanese (ja)
Other versions
JPH0225537A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17494888A priority Critical patent/JPH0225537A/en
Publication of JPH0225537A publication Critical patent/JPH0225537A/en
Publication of JPH0432137B2 publication Critical patent/JPH0432137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、超塑性耐熱Ni基合金鍛造物とそ
の製造方法に関するものである。さらにくわしく
は、この発明は、粉末冶金的な方法で製造するこ
とのできる超塑性耐熱Ni基合金鍛造物とその製
造方法に関するものである。 (従来の技術との課題) 従来より、粉末冶金的な方法で製造される耐熱
合金としては、IN100(インターナシヨナルニツ
ケル社製)(組成後記)が知られている。 しかしながら、このIN100合金は、高温強度が
充分でないという問題があり、超塑性で、しかも
高温強度等の性能に優れた材料の実現が望まれて
いた。 この発明は、以上の通りの事情に鑑みてなされ
たものであり、従来の超塑性耐熱Ni基合金の欠
点を解消し、超塑性特性に優れ、しかも高温強度
および延性に優れた耐熱Ni基合金鍛造物とその
製造方法を提供することを目的としている。 (課題を解決するための手段) この発明は、上記の課題を解決するものとし
て、重量%で、C0.01〜0.02%,Co12〜17%,
Cr8〜10%,W10〜14%、Al2〜3%,Ti4〜6
%,B0.005〜0.018%,Zr0.01〜0.15%を含み、残
部は実質的にNiよりなる粉末を1025〜1250℃,
800〜2000気圧下で30〜200分で高温高圧処理して
固化させた合金を、1025〜1100℃で鍛造し、次い
で1100〜1275℃で30分〜90分の溶体化処理と700
〜800℃で12〜24時間の時効処理を行うことを特
徴とする超塑性耐熱Ni基合金鍛造物の製造方法
を提供する。 また、この発明は、上記の方法により製造され
る超塑性耐熱Ni基合金鍛造物をも提供するもの
である。 この発明のNi基合金の組成元素の作用および
その含有量の限定理由は次の通りである。 Cには、粒界を強化する作用があり、鍛造時の
粒界での割れを抑制する。この作用効果を得るた
めには、C量が0.01重量%(以下単に%と記載す
る)以上必要である。しかし、その量が0.02%を
越えると合金全体が脆化し、製造時に割れが発生
し易くなるので、C量は0.01〜0.02%とする。 Coには、合金の延性を増加させ、鍛造時の割
れを抑制する作用がある。この作用効果を得るた
めには含有量として12%以上必要である。しか
し、その量が17%を越えると有害析出物を生じて
鍛造時に割れが発生し易くなるので、Co量は12
〜17%とする。 Crには、合金を軟化させ、鍛造を容易にする
作用がある。その量が8%より少ないとこの作用
効果が充分ではなく、10%を越えると合金中にシ
グマ相等の有害相が生じ、鍛造時に割れが発生す
る原因となる。したがつて、Cr量は8〜10%と
する。 Wには、ガンマ相およびガンマプライム相中に
固溶し、これらの相を著しく強化する作用があ
る。その量が10%より少ないとこの作用効果が充
分ではなく、14%を越えるとアルフアW相やミユ
ー相などの有害相が生成し、鍛造時に割れが生じ
易くなる。したがつて、W量は10〜14%とする。 Alは、ガンマプライム相を生成するために必
要な元素で、ガンマプライム相を析出させ合金を
強化させる作用がある。そのためには、2%以上
のAl量が必要である。しかし、3%を越えると
ガンマプライム相の量が過剰となつて鍛造に必要
な圧力が高くなりすぎるので、Al量は2〜3%
とする。 Tiは、Alとともにガンマプライム相を形成し、
ガンマプライム相を強化させる作用がある。その
量が4%より少ないと充分な作用効果が得られな
い。一方、6%を越えるとイータ相を生成して鍛
造時に割れが生じ易くなる。このため、Ti量は
4〜6%とする。 Bには、Cと同様に鍛造時の粒界での割れを抑
制する作用がある。その量が0.005%より少ない
とこの作用効果が充分ではなく、0.018%を越え
ると合金の融点が低下し、鍛造時に部分溶融が生
じて割れが発生する。このため、B量は0.005〜
0.018%とする。 Zrは、CおよびBと同様に、粒界強化元素と
して作用し、鍛造時の割れを防止する。その量が
0.01%より少ないとこの作用効果が充分ではな
く、0.15%を越えると有害相が生じ、鍛造時の割
れを助長するので、Zr量は0.01〜0.15%とする。 この発明において、超組塑性熱Ni基合金鍛造
物を製造する場合には、まず、以上のような組成
割合からなる合金粉末を1025〜1250℃,800〜
2000気圧下で30〜200分高温高圧処理して固化さ
せる。この時の処理温度が1025℃より低いと充分
に焼結せず、1250℃を越えると合金が一部溶融
し、有害組織が生成して製品の強度を低下させ
る。また、その時の処理圧力が800気圧未満では、
粉末が焼結固化せず、2000気圧を越えると圧力形
成のための高圧装置を必要とすることになり、好
ましくない。 次いで、高温高圧処理したものを鍛造する。 鍛造形式については特に制限はなく、型鍛造、
自由鍛造等の任意のものとすることができる。鍛
造条件としては、例えば1025〜1100℃で0.5×
10-4・sec-1〜2.5×10-4・sec-1とするのが好まし
い。 鍛造温度が1025℃未満では完全な型充満が得ら
れず、1100℃を越えると合金の結晶粒が粗大化し
て超塑性鍛造が困難となる。また、鍛造時の歪速
度が0.5×10-4・sec-1より小さいと生産効率が著
しく低下し、2.5×10-4・sec-1より大きいと変形
応力が大きくなり鍛造が困難となる。 得られた鍛造物に、さらに1100〜1275℃,30〜
90分の溶体化処理を行い、この後に冷却し、700
〜800℃で12〜24時間の時効処理をする。 この時、溶体化処理温度が1100℃より低いと完
全溶体が起こらず、また合金の結晶粒が充分に粗
大化しないため、充分な高温特性が得られない。
一方、1275℃を越えると合金の部分溶融等が発生
し、高温特性が低下する。また、この温度での保
持時間については、30分未満では溶体化と結晶粒
の粗大化が不十分で、高温特性の向上が望めな
い。一方、90分を越えると生産能率が低下する。 時効処理は使用予定温度より高い温度であるこ
とが望ましい。使用予定温度が700℃より低い場
合には、処理温度が700〜800℃であることが好ま
しい。その処理時間は処理温度に依存するが、
700℃の処理温度の場合には24時間、800℃の処理
温度の場合には12時間が、合金の高温特性を充分
安定させるのに好ましい。 (実施例) 次に実施例を示し、この発明についてさらに詳
しくは説明する。 表1に示した合金組成と製造条件により超塑性
耐熱Ni基合金鍛造物を製造した。また、比較の
ために、従来のIN100合金の鍛造物を製造した。
このIN100合金鍛造物の合金組成と製造条件も表
1に併せて示した。
(Industrial Application Field) The present invention relates to a superplastic heat-resistant Ni-based alloy forged product and a method for manufacturing the same. More specifically, the present invention relates to a superplastic heat-resistant Ni-based alloy forging that can be manufactured by a powder metallurgy method and a method for manufacturing the same. (Challenges with conventional technology) IN100 (manufactured by International Nickel Co., Ltd.) (composition described later) has been known as a heat-resistant alloy produced by a powder metallurgy method. However, this IN100 alloy has the problem of insufficient high-temperature strength, and there has been a desire to create a material that is superplastic and has excellent performance such as high-temperature strength. This invention was made in view of the above-mentioned circumstances, and eliminates the drawbacks of conventional superplastic heat-resistant Ni-based alloys, and provides a heat-resistant Ni-based alloy that has excellent superplastic properties, as well as high-temperature strength and ductility. The purpose is to provide forged products and their manufacturing methods. (Means for Solving the Problems) The present invention solves the above problems by: C0.01-0.02%, Co12-17%, Co12-17%,
Cr8~10%, W10~14%, Al2~3%, Ti4~6
%, B0.005 to 0.018%, Zr0.01 to 0.15%, the remainder being essentially Ni, at 1025 to 1250°C.
The alloy is solidified by high temperature and high pressure treatment for 30 to 200 minutes at 800 to 2000 atm, then forged at 1025 to 1100℃, and then solution treated at 1100 to 1275℃ for 30 to 90 minutes and then subjected to 700℃.
Provided is a method for producing a superplastic heat-resistant Ni-based alloy forging, which is characterized by performing an aging treatment at ~800°C for 12 to 24 hours. The present invention also provides a superplastic heat-resistant Ni-based alloy forged product manufactured by the above method. The effects of the constituent elements of the Ni-based alloy of this invention and the reasons for limiting their contents are as follows. C has the effect of strengthening grain boundaries and suppresses cracking at grain boundaries during forging. In order to obtain this effect, the amount of C must be 0.01% by weight or more (hereinafter simply referred to as %). However, if the amount exceeds 0.02%, the entire alloy becomes brittle and cracks are likely to occur during manufacturing, so the amount of C is set at 0.01 to 0.02%. Co has the effect of increasing the ductility of the alloy and suppressing cracking during forging. In order to obtain this effect, the content needs to be 12% or more. However, if the amount exceeds 17%, harmful precipitates will be generated and cracks will easily occur during forging, so the amount of Co should be 12%.
~17%. Cr has the effect of softening the alloy and making it easier to forge. If the amount is less than 8%, this action and effect will not be sufficient, and if it exceeds 10%, harmful phases such as sigma phase will occur in the alloy, causing cracks to occur during forging. Therefore, the Cr content is set to 8 to 10%. W has the effect of forming a solid solution in the gamma phase and gamma prime phase and significantly strengthening these phases. If the amount is less than 10%, this action and effect will not be sufficient, and if it exceeds 14%, harmful phases such as alpha W phase and miu phase will be generated, making it easier for cracks to occur during forging. Therefore, the amount of W is set to 10 to 14%. Al is an element necessary to generate the gamma prime phase, and has the effect of precipitating the gamma prime phase and strengthening the alloy. For this purpose, an Al content of 2% or more is required. However, if it exceeds 3%, the amount of gamma prime phase becomes excessive and the pressure required for forging becomes too high, so the amount of Al should be 2 to 3%.
shall be. Ti forms a gamma prime phase with Al,
It has the effect of strengthening the gamma prime phase. If the amount is less than 4%, sufficient effects cannot be obtained. On the other hand, if it exceeds 6%, eta phase will be generated and cracks will easily occur during forging. For this reason, the amount of Ti is set to 4 to 6%. Like C, B has the effect of suppressing cracking at grain boundaries during forging. If the amount is less than 0.005%, this action and effect will not be sufficient, and if it exceeds 0.018%, the melting point of the alloy will decrease, causing partial melting and cracking during forging. Therefore, the amount of B is 0.005~
It shall be 0.018%. Like C and B, Zr acts as a grain boundary strengthening element and prevents cracking during forging. That amount
If it is less than 0.01%, this action and effect will not be sufficient, and if it exceeds 0.15%, a harmful phase will be generated and promote cracking during forging, so the Zr content should be 0.01 to 0.15%. In this invention, when producing a superplastically thermoformed Ni-based alloy forging, first, alloy powder having the above composition ratio is heated at 1025-1250℃ and 800-
Solidify by high-temperature and high-pressure treatment at 2,000 atmospheres for 30 to 200 minutes. If the processing temperature at this time is lower than 1025°C, sufficient sintering will not occur, and if it exceeds 1250°C, the alloy will partially melt, forming harmful structures and reducing the strength of the product. In addition, if the processing pressure at that time is less than 800 atm,
If the powder is not sintered and solidified and the pressure exceeds 2,000 atmospheres, a high-pressure device will be required to generate pressure, which is not preferable. Next, the high temperature and high pressure treated material is forged. There are no particular restrictions on the forging format; die forging,
It can be of any type, such as free forging. Forging conditions are, for example, 0.5× at 1025 to 1100℃.
It is preferably 10 -4 ·sec -1 to 2.5×10 -4 ·sec -1 . If the forging temperature is less than 1025°C, complete mold filling cannot be obtained, and if it exceeds 1100°C, the crystal grains of the alloy become coarse and superplastic forging becomes difficult. Furthermore, if the strain rate during forging is less than 0.5×10 -4 · sec -1 , the production efficiency will drop significantly, and if it is greater than 2.5 × 10 -4 · sec -1 , the deformation stress will increase, making forging difficult. The obtained forged product is further heated at 1100~1275℃, 30~
Solution treatment is performed for 90 minutes, after which it is cooled and heated to 700
Aging treatment at ~800℃ for 12-24 hours. At this time, if the solution treatment temperature is lower than 1100°C, complete solution will not occur and the crystal grains of the alloy will not become sufficiently coarse, so that sufficient high temperature properties will not be obtained.
On the other hand, if the temperature exceeds 1275°C, partial melting of the alloy will occur and the high temperature properties will deteriorate. Furthermore, if the holding time at this temperature is less than 30 minutes, solution treatment and coarsening of crystal grains will be insufficient, and no improvement in high-temperature properties can be expected. On the other hand, if the time exceeds 90 minutes, production efficiency will decrease. It is desirable that the aging treatment be performed at a temperature higher than the intended use temperature. When the intended use temperature is lower than 700°C, the treatment temperature is preferably 700 to 800°C. The processing time depends on the processing temperature,
24 hours for a treatment temperature of 700°C and 12 hours for a treatment temperature of 800°C are preferred to sufficiently stabilize the high temperature properties of the alloy. (Example) Next, an example will be shown and the present invention will be explained in more detail. A superplastic heat-resistant Ni-based alloy forging was manufactured using the alloy composition and manufacturing conditions shown in Table 1. For comparison, a conventional forging of IN100 alloy was also produced.
The alloy composition and manufacturing conditions of this IN100 alloy forging are also shown in Table 1.

【表】【table】

【表】 なお、表1中の引張特性値は、引張試験片(平
行部直径3.0mm、平行部長さ15mm)を用い、760℃
で0.2%耐力までは0.05mm/分、0.2%耐力以降破
断までは1.0mm/分の速度で引張変形させた時の
値である。 表1からも明らかなように、この発明の合金鍛
造物は、従来のIN100合金鍛造物に比べて、引張
強度が131.5kgf/mm2,0.2%耐力が115.4kgf/mm2
伸びが5.7%と著しく優れた特性を有することが
確認される。 (発明の効果) 以上詳しく説明した通り、この発明によつて、
高温強度および延性に優れた超塑性耐熱Ni基合
金鍛造物を製造することができる。大型製品や複
雑形状の製品を容易に鍛造することができるた
め、ジエツトエンジン、発電設備等の各種のガス
タービンなどの効率化が可能となる。
[Table] The tensile property values in Table 1 are measured at 760°C using a tensile test piece (parallel part diameter 3.0 mm, parallel part length 15 mm).
This is the value when tensile deformation is performed at a rate of 0.05 mm/min up to 0.2% proof stress and 1.0 mm/min after 0.2% proof stress until rupture. As is clear from Table 1, the alloy forged product of the present invention has a tensile strength of 131.5 kgf/mm 2 , a 0.2% yield strength of 115.4 kgf/mm 2 , and a
It is confirmed that it has extremely excellent properties with an elongation of 5.7%. (Effect of the invention) As explained in detail above, with this invention,
A superplastic heat-resistant Ni-based alloy forging with excellent high-temperature strength and ductility can be produced. Since large products and products with complex shapes can be easily forged, it is possible to improve the efficiency of various gas turbines such as jet engines and power generation equipment.

Claims (1)

【特許請求の範囲】 1 重量%で、C0.01〜0.02%,Co12〜17%,
Cr8〜10%,W10〜14%、Al2〜3%,Ti4〜6
%,B0.005〜0.018%,Zr0.01〜0.15%を含み、残
部は実質的にNiよりなる粉末を1025〜1250℃,
800〜2000気圧下で30〜200分で高温高圧処理して
固化させた合金を、1025〜1100℃で鍛造し、次い
で1100〜1275℃で30分〜90分の溶体化処理と700
〜800℃で12〜24時間の時効処理を行なうことを
特徴とする超塑性耐熱Ni基合金鍛造物の製造方
法。 2 0.5×10-4・sec-1〜2.5×10-4・sec-1の歪速度
で鍛造する請求項1記載の製造方法。 3 重量%で、C0.01〜0.02%,Co12〜17%,
Cr8〜10%,W10〜14%、Al2〜3%,Ti4〜6
%,B0.005〜0.018%,Zr0.01〜0.15%を含み、残
部は実質的にNiよりなることを特徴とする超塑
性耐熱Ni基合金鍛造物。
[Claims] 1% by weight: C0.01~0.02%, Co12~17%,
Cr8~10%, W10~14%, Al2~3%, Ti4~6
%, B0.005 to 0.018%, Zr0.01 to 0.15%, the remainder being essentially Ni, at 1025 to 1250°C.
The alloy is solidified by high temperature and high pressure treatment for 30 to 200 minutes at 800 to 2000 atm, then forged at 1025 to 1100℃, and then solution treated at 1100 to 1275℃ for 30 to 90 minutes and then subjected to 700℃.
A method for producing a superplastic heat-resistant Ni-based alloy forging, characterized by performing an aging treatment at ~800°C for 12 to 24 hours. 2. The manufacturing method according to claim 1, wherein the forging is carried out at a strain rate of 20.5×10 -4 ·sec -1 to 2.5×10 -4 ·sec -1 . 3 Weight%: C0.01~0.02%, Co12~17%,
Cr8~10%, W10~14%, Al2~3%, Ti4~6
%, B0.005 to 0.018%, and Zr0.01 to 0.15%, with the remainder essentially consisting of Ni.
JP17494888A 1988-07-15 1988-07-15 Heat-resistant ni-base alloy for super plastic forging and production of the alloy and forgings Granted JPH0225537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17494888A JPH0225537A (en) 1988-07-15 1988-07-15 Heat-resistant ni-base alloy for super plastic forging and production of the alloy and forgings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17494888A JPH0225537A (en) 1988-07-15 1988-07-15 Heat-resistant ni-base alloy for super plastic forging and production of the alloy and forgings

Publications (2)

Publication Number Publication Date
JPH0225537A JPH0225537A (en) 1990-01-29
JPH0432137B2 true JPH0432137B2 (en) 1992-05-28

Family

ID=15987532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17494888A Granted JPH0225537A (en) 1988-07-15 1988-07-15 Heat-resistant ni-base alloy for super plastic forging and production of the alloy and forgings

Country Status (1)

Country Link
JP (1) JPH0225537A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3063499B2 (en) * 1993-12-13 2000-07-12 住友電気工業株式会社 Manufacturing method of powder compact for sintered parts
JP5645054B2 (en) * 2010-05-06 2014-12-24 独立行政法人物質・材料研究機構 Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
CN106756658B (en) * 2016-11-29 2019-07-19 四川六合特种金属材料股份有限公司 A method of improving high-alloying inductile high-temperature alloy material performance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896845A (en) * 1981-11-27 1983-06-09 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Nickel base superalloy sheet and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896845A (en) * 1981-11-27 1983-06-09 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Nickel base superalloy sheet and manufacture

Also Published As

Publication number Publication date
JPH0225537A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
JP4287991B2 (en) TiAl-based alloy, method for producing the same, and moving blade using the same
JP6150192B2 (en) Method for producing Ni-base superalloy
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JP6252704B2 (en) Method for producing Ni-base superalloy
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
US4579602A (en) Forging process for superalloys
EP3257963A1 (en) METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
ES2698523T3 (en) Procedure to produce a construction element from a composite material with a metallic matrix and intermetallic phases incorporated
US5393483A (en) High-temperature fatigue-resistant nickel based superalloy and thermomechanical process
US5061324A (en) Thermomechanical processing for fatigue-resistant nickel based superalloys
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
WO2017204286A1 (en) HOT DIE Ni-BASED ALLOY, HOT FORGING DIE USING SAME, AND FORGED PRODUCT MANUFACTURING METHOD
JP4994843B2 (en) Nickel-containing alloy, method for producing the same, and article obtained therefrom
CN107406911B (en) Method for producing titanium and titanium alloy products
JPH0116292B2 (en)
US3765958A (en) Method of heat treating a formed powder product material
US3702791A (en) Method of forming superalloys
JPH03174938A (en) Method for hot forging ni base super heat-resistant alloy
JPH0432137B2 (en)
US3775101A (en) Method of forming articles of manufacture from superalloy powders
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy
JPH0338330B2 (en)
JP3227223B2 (en) Constant temperature forging method
JPH03236403A (en) Manufacture of ti al base alloy-made machine parts

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term