JP6086178B1 - Titanium material for hot rolling - Google Patents
Titanium material for hot rolling Download PDFInfo
- Publication number
- JP6086178B1 JP6086178B1 JP2016567285A JP2016567285A JP6086178B1 JP 6086178 B1 JP6086178 B1 JP 6086178B1 JP 2016567285 A JP2016567285 A JP 2016567285A JP 2016567285 A JP2016567285 A JP 2016567285A JP 6086178 B1 JP6086178 B1 JP 6086178B1
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- surface layer
- base material
- slab
- hot rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 237
- 239000010936 titanium Substances 0.000 title claims abstract description 232
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 229
- 239000000463 material Substances 0.000 title claims abstract description 185
- 238000005098 hot rolling Methods 0.000 title claims abstract description 79
- 239000002344 surface layer Substances 0.000 claims abstract description 120
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 33
- 238000005096 rolling process Methods 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 54
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 150000003608 titanium Chemical class 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 52
- 239000000956 alloy Substances 0.000 description 50
- 229910045601 alloy Inorganic materials 0.000 description 45
- 229910052739 hydrogen Inorganic materials 0.000 description 40
- 239000001257 hydrogen Substances 0.000 description 39
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 32
- 238000010438 heat treatment Methods 0.000 description 24
- 238000002844 melting Methods 0.000 description 24
- 230000008018 melting Effects 0.000 description 24
- 238000010894 electron beam technology Methods 0.000 description 22
- 239000002131 composite material Substances 0.000 description 20
- 238000003466 welding Methods 0.000 description 13
- 239000010408 film Substances 0.000 description 11
- 238000005554 pickling Methods 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000005097 cold rolling Methods 0.000 description 8
- 239000000155 melt Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 238000007711 solidification Methods 0.000 description 8
- 238000005422 blasting Methods 0.000 description 7
- 239000011162 core material Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000005204 segregation Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000007751 thermal spraying Methods 0.000 description 6
- 238000005275 alloying Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910000975 Carbon steel Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000004453 electron probe microanalysis Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910000905 alloy phase Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910001257 Nb alloy Inorganic materials 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000009703 powder rolling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000000304 warm extrusion Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/04—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal Rolling (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
工業用純チタンまたはチタン合金からなる母材1bと、母材1bの少なくとも一方の圧延面に形成された母材1bとは異なる化学組成を有する表層部1aと、を備え、表層部1aが、その厚さが2.0〜20.0mm、全厚さに占める割合が片面あたり40%以下であり、表層部1aに含まれる元素の含有量を複数点測定したとき、母材1bからの増加含有量の平均値CAVEと各測定箇所における母材1bからの増加含有量C0との関係:|CAVE−C0|/CAVE×100が40%以下である、熱間圧延用チタン材1。前記表層部の化学組成は、母材からの増加含有量として、Mo、VおよびNbから選択される一種以上を含有し、Mo当量が8.0〜20.0である。この熱間圧延用チタン材1は、安価にも関わらず、所望の特性を有する。A base material 1b made of industrial pure titanium or a titanium alloy, and a surface layer portion 1a having a chemical composition different from that of the base material 1b formed on at least one rolling surface of the base material 1b. When the thickness is 2.0 to 20.0 mm, the proportion of the total thickness is 40% or less per side, and the content of the element contained in the surface layer portion 1a is measured at multiple points, the increase from the base material 1b Relationship between average value CAVE of content and increased content C0 from base material 1b at each measurement location: Titanium material 1 for hot rolling in which | CAVE−C0 | / CAVE × 100 is 40% or less. The chemical composition of the surface layer part includes one or more selected from Mo, V and Nb as the increased content from the base material, and the Mo equivalent is 8.0 to 20.0. This titanium material for hot rolling 1 has desired characteristics despite its low cost.
Description
本発明は、熱間圧延用チタン材に関する。 The present invention relates to a titanium material for hot rolling.
チタン材は、耐食性、耐酸化性、耐疲労性、耐水素脆化性、中性子遮断性などの特性に優れている。これらの特性は、チタンに様々な合金元素を添加することにより達成することができる。 Titanium materials are excellent in properties such as corrosion resistance, oxidation resistance, fatigue resistance, hydrogen embrittlement resistance, and neutron blocking properties. These properties can be achieved by adding various alloying elements to titanium.
工業用純チタンはhcp(稠密六方格子)構造のα相を主体としており、α相に水素を多量に吸収すると水素化物を形成して脆化することが知られている。このため使用環境によっては、水素を吸収して脆化し、破断する事故が起きる場合がある。「チタンの加工技術」(非特許文献1)では、例えば、非酸化性の酸を扱うプラント、または、尿素・アンモニア環境、水素ガス環境での、水素吸収による事故が報告されている。このため、耐水素脆化性に優れるチタン合金材が提案されている。 Pure titanium for industrial use is mainly composed of an α phase having an hcp (dense hexagonal lattice) structure, and it is known that if a large amount of hydrogen is absorbed in the α phase, a hydride is formed and embrittled. For this reason, depending on the use environment, there is a case where an accident occurs in which hydrogen is absorbed and becomes brittle and breaks. In “Titanium processing technology” (Non-Patent Document 1), for example, accidents due to hydrogen absorption in a plant that handles non-oxidizing acids, or in a urea / ammonia environment or a hydrogen gas environment are reported. For this reason, a titanium alloy material excellent in hydrogen embrittlement resistance has been proposed.
特開2013−163840号公報(特許文献1)には、50体積%以上のβ相を含み、水素を500〜6000ppm含む破断伸びが大きいチタン合金が開示されており、水素を多量に含んでも脆化しない例が示されている。 Japanese Unexamined Patent Publication No. 2013-163840 (Patent Document 1) discloses a titanium alloy containing 50% by volume or more of a β phase and containing 500 to 6000 ppm of hydrogen and having a large elongation at break. Even if it contains a large amount of hydrogen, it is brittle. An example is shown that does not.
チタン材は、通常、以下に示す方法により製造される。まず、クロール法によって、原料である酸化チタンを塩素化して四塩化チタンとした後、マグネシウムまたはナトリウムで還元することにより、塊状でスポンジ状の金属チタン(スポンジチタン)を製造する。このスポンジチタンをプレス成形してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造する。この際必要に応じて合金元素が添加されて、チタン合金インゴットが製造される。この後、チタン合金インゴットを分塊、鍛造、圧延してチタンスラブとし、さらに、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延、および真空熱処理してチタン薄板が製造される。 The titanium material is usually produced by the method shown below. First, the raw material titanium oxide is chlorinated to titanium tetrachloride by the crawl method, and then reduced with magnesium or sodium to produce a lump-like sponge-like metal titanium (sponge titanium). This sponge titanium is press-molded to form a titanium consumable electrode, and a titanium ingot is manufactured by vacuum arc melting using the titanium consumable electrode as an electrode. At this time, an alloy element is added as necessary to produce a titanium alloy ingot. Thereafter, the titanium alloy ingot is divided, forged and rolled into a titanium slab, and the titanium slab is further subjected to hot rolling, annealing, pickling, cold rolling, and vacuum heat treatment to produce a titanium thin plate.
また、チタン薄板の製造方法として、チタンインゴットを分塊、水素化粉砕、脱水素、粉末解砕、および分級してチタン粉末を製造し、チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られる。 In addition, as a method for producing a titanium thin plate, titanium ingot is smashed, hydroground, dehydrogenated, powder crushed, and classified to produce titanium powder, and titanium powder is powder-rolled, sintered, and cold-rolled. The manufacturing method is also known.
特開2011−42828号公報(特許文献2)には、チタンインゴットではなくスポンジチタンから直接チタン粉末を製造し、得られるチタン粉末からチタン薄板を製造すべく、チタン金属粉、結着剤、可塑剤、溶剤を含む粘性組成物を薄板状に成形した焼結前成形体を焼結して焼結薄板を製造し、焼結薄板を圧密して焼結圧密薄板を製造し、焼結圧密薄板を再焼結するチタン薄板の製造方法において、焼結薄板の破断伸びを0.4%以上、密度比を80%以上とし、焼結圧密板の密度比を90%以上とする方法が開示されている。 Japanese Patent Laid-Open No. 2011-42828 (Patent Document 2) discloses that a titanium powder is produced directly from sponge titanium instead of a titanium ingot, and a titanium thin plate is produced from the obtained titanium powder. Sintered compacts are manufactured by sintering pre-sintered compacts made of viscous compositions containing agents and solvents into thin sheets, and sintered compacts are manufactured by compacting the sintered compacts. In the method for producing a titanium thin plate for re-sintering, a method is disclosed in which the fracture elongation of the sintered thin plate is 0.4% or more, the density ratio is 80% or more, and the density ratio of the sintered compacted plate is 90% or more. ing.
特開2014−19945号公報(特許文献3)には、チタン合金スクラップまたはチタン合金インゴットを原料としたチタン合金粉に、鉄粉、クロム粉または銅粉を適量添加して複合粉とし、複合粉を炭素鋼カプセル押出し、得られた丸棒の表面のカプセルを溶解除去した後、さらに溶体化処理あるいは、溶体化処理および時効処理を行うことにより、粉末法により品質の優れたチタン合金を製造する方法が開示されている。 Japanese Patent Laid-Open No. 2014-19945 (Patent Document 3) discloses a composite powder obtained by adding an appropriate amount of iron powder, chromium powder or copper powder to titanium alloy powder using titanium alloy scrap or titanium alloy ingot as a raw material. After extruding the carbon steel capsule, the capsule on the surface of the obtained round bar is dissolved and removed, and further solution treatment or solution treatment and aging treatment are performed to produce a titanium alloy with excellent quality by the powder method A method is disclosed.
特開2001−131609号公報(特許文献4)には、スポンジチタン粉末を銅製カプセルに充填した後で押出比1.5以上、押出温度700℃以下で温間押出加工を施して成形し、外側の銅を除く外周加工を施し、成形体の粒界の全長の内20%以上が金属接触しているチタン成形体を製造する方法が開示されている。 In JP 2001-131609 A (Patent Document 4), a sponge capsule is filled with a sponge titanium powder, and then subjected to warm extrusion at an extrusion ratio of 1.5 or more and an extrusion temperature of 700 ° C. or less. A method for producing a titanium molded body in which 20% or more of the total length of the grain boundary of the molded body is in metal contact is performed by performing outer peripheral processing excluding copper.
熱間圧延素材を熱間圧延するに際し、熱間圧延素材が純チタンまたはチタン合金のように熱間での延性不足で熱間変形抵抗値が高い、いわゆる難加工材である場合、これらを薄板に圧延する技術としてパック圧延方法が知られている。パック圧延方法とは、加工性の悪いチタン合金などのコア材を加工性の良い安価な炭素鋼などのカバー材で被覆し、熱間圧延する方法である。 When hot-rolling a hot-rolled material, if the hot-rolled material is a so-called difficult-to-process material with high hot deformation resistance due to insufficient hot ductility, such as pure titanium or titanium alloy, these are thin plates. A pack rolling method is known as a technique for rolling the sheet. The pack rolling method is a method in which a core material such as a titanium alloy having poor workability is covered with a cover material such as inexpensive carbon steel having good workability and hot rolling is performed.
具体的には、例えば、コア材の表面に剥離剤を塗布し、少なくともその上下2面をカバー材で被覆するか、または、上下面の他に四周面をスペーサー材により覆い、周りを溶接して組み立て、熱間圧延する。パック圧延では、被圧延材であるコア材をカバー材で覆って熱間圧延する。そのため、コア材表面は冷えた媒体(大気またはロール)に直接触れることがなく、コア材の温度低下を抑制できるため、加工性の悪いコア材でも薄板の製造が可能になる。 Specifically, for example, a release agent is applied to the surface of the core material, and at least two upper and lower surfaces thereof are covered with a cover material, or the four peripheral surfaces are covered with a spacer material in addition to the upper and lower surfaces, and the surroundings are welded. Assembled and hot rolled. In pack rolling, a core material, which is a material to be rolled, is covered with a cover material and hot rolled. Therefore, the core material surface does not directly contact a cold medium (atmosphere or roll), and the temperature drop of the core material can be suppressed, so that even a core material with poor workability can be manufactured.
特開昭63−207401号公報(特許文献5)には、密閉被覆箱の組み立て方法が開示され、特開平09−136102号公報(特許文献6)には、10−3torrオーダー以上の真空度にしてカバー材を密封して密閉被覆箱を製造する方法が開示され、さらに、特開平11−057810号公報(特許文献7)には、炭素鋼(カバー材)で覆って10−2torrオーダー以下の真空下で高エネルギー密度溶接によって密封し、密閉被覆箱を製造する方法が開示されている。Japanese Laid-Open Patent Publication No. 63-207401 (Patent Document 5) discloses a method for assembling a hermetically sealed box, and Japanese Laid-Open Patent Publication No. 09-136102 (Patent Document 6) discloses a degree of vacuum of 10 −3 torr order or more. A method of manufacturing a hermetically sealed box by sealing the cover material is disclosed, and further, Japanese Patent Application Laid-Open No. 11-057810 (Patent Document 7) covers carbon steel (cover material) and is in the order of 10 −2 torr. A method for producing a hermetic coated box by sealing by high energy density welding under the following vacuum is disclosed.
一方、耐食性の高い素材を安価に製造する方法として、チタン材を母材となる素材表面に接合する方法が知られている。 On the other hand, as a method for manufacturing a highly corrosion-resistant material at a low cost, a method is known in which a titanium material is bonded to the surface of a material serving as a base material.
特開平08−141754号公報(特許文献8)には、母材として鋼材を用いるとともに合わせ材としてチタンまたはチタン合金を用い、母材と合わせ材の接合面を真空排気した後に溶接して組み立てた圧延用組立スラブを、熱間圧延で接合するチタンクラッド鋼板の製造方法が開示されている。 In Japanese Patent Laid-Open No. 08-141754 (Patent Document 8), steel is used as a base material and titanium or a titanium alloy is used as a joining material, and the joint surface of the base material and the joining material is evacuated and then assembled by welding. A method for manufacturing a titanium clad steel sheet in which an assembly slab for rolling is joined by hot rolling is disclosed.
特開平11−170076号公報(特許文献9)には、0.03質量%以上の炭素を含有する母材鋼材の表面上に、純ニッケル、純鉄および炭素含有量が0.01質量%以下の低炭素鋼のうちのいずれかからなる厚さ20μm以上のインサート材を介在させてチタン箔材を積層配置した後、その積層方向のいずれか一方側からレーザビームを照射し、チタン箔材の少なくとも縁部近傍を全周にわたって母材鋼材と溶融接合させることによりチタン被覆鋼材を製造する方法が開示されている。 In JP-A-11-170076 (Patent Document 9), pure nickel, pure iron, and carbon content are 0.01% by mass or less on the surface of a base steel material containing 0.03% by mass or more of carbon. After the titanium foil material is laminated by interposing an insert material made of any one of the above-mentioned low carbon steels with a thickness of 20 μm or more, a laser beam is irradiated from either side of the lamination direction, A method of manufacturing a titanium-coated steel material by melting and joining at least the vicinity of the edge with a base steel material over the entire circumference is disclosed.
特開2015−045040号公報(特許文献10)では、鋳塊状に成形された多孔質チタン原料(スポンジチタン)の表面を、真空下で電子ビームを用いて溶解して表層部を稠密なチタンとしたチタン鋳塊を製造し、これを熱間圧延および冷間圧延することにより、多孔質チタン原料が鋳塊状に成形された多孔質部と、稠密なチタンで構成されて多孔質部の全表面を被覆する稠密被覆部とを備える稠密なチタン素材(チタン鋳塊)を非常に少ないエネルギーで製造する方法が例示されている。 In JP-A-2015-045040 (Patent Document 10), the surface of a porous titanium raw material (sponge titanium) formed into an ingot shape is melted by using an electron beam under vacuum, and the surface layer portion is made of dense titanium. The titanium ingot is manufactured and hot rolled and cold rolled to form a porous portion in which the porous titanium raw material is formed into an ingot shape, and the entire surface of the porous portion composed of dense titanium. A method for producing a dense titanium material (titanium ingot) having a dense coating portion for coating with very little energy is exemplified.
特開昭62−270277号公報(特許文献11)には、溶射により、自動車用エンジン部材の表面効果処理をすることが記載されている。 Japanese Patent Application Laid-Open No. 62-270277 (Patent Document 11) describes that a surface effect treatment of an engine member for an automobile is performed by thermal spraying.
水素による脆化への対策として、一般に製品に加工後に耐水素吸収性のある表面処理を施すか、または、電気防食を施すことが行われている。しかし、いずれも製品加工または施工の工数が増加するなどして、コスト高になることが避けられず、耐水素脆化性に優れたチタン材を低コストで提供することはできない。 As measures against hydrogen embrittlement, products are generally subjected to surface treatment with hydrogen absorption resistance after processing, or subjected to anticorrosion. However, in any case, it is inevitable that the cost increases due to an increase in the number of processes for product processing or construction, and it is impossible to provide a titanium material excellent in hydrogen embrittlement resistance at a low cost.
また、特許文献1により開示された方法のように、素材全体の50体積%以上をβ相にするためには、高価な添加元素を多量に含有する必要があるためにコストが上昇する。
In addition, as in the method disclosed in
従来、熱間加工を経てチタン材を製造するに際しては、スポンジチタンをプレス成形してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造し、さらにチタンインゴットを分塊、鍛造、圧延してチタンスラブとし、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延することによって製造されていた。 Conventionally, when manufacturing a titanium material through hot working, sponge titanium is press-molded to form a titanium consumable electrode, and a titanium ingot is manufactured by vacuum arc melting using the titanium consumable electrode as an electrode. The titanium slab was forged and rolled into a titanium slab, and the titanium slab was manufactured by hot rolling, annealing, pickling, and cold rolling.
この場合、チタンを溶解してチタンインゴットを製造する工程が必ず加えられていた。チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られているが、チタンインゴットからチタン粉末を製造する方法では、やはりチタンを溶解する工程が加えられていた。 In this case, a process of manufacturing titanium ingot by dissolving titanium has been added. A method of producing titanium powder by powder rolling, sintering, and cold rolling is also known, but in the method of producing titanium powder from a titanium ingot, a step of dissolving titanium is also added.
チタン粉末からチタン材を製造する方法においては、たとえ溶解工程を経ないとしても、高価なチタン粉末を原料として用いるので、得られたチタン材は非常に高価になる。特許文献5〜特許文献6に開示された方法でも同様である。 In the method for producing a titanium material from titanium powder, even if it does not go through a melting step, expensive titanium powder is used as a raw material, so that the obtained titanium material is very expensive. The same applies to the methods disclosed in Patent Documents 5 to 6.
パック圧延においては、カバー材で被覆されるコア材はあくまでスラブまたはインゴットであって、溶解工程を経ているか、高価なチタン粉末を原料としており、製造コストを低減することはできない。 In pack rolling, the core material covered with the cover material is slab or ingot to the last, and has undergone a melting step or is made of expensive titanium powder, and the manufacturing cost cannot be reduced.
特許文献10では、非常に少ないエネルギーで稠密なチタン素材を製造することができるものの、鋳塊状に成形されたスポンジチタンの表面を溶解して稠密なチタン表層部および内部の成分は同種の純チタンまたはチタン合金と規定されており、例えば、表層部のみにチタン合金層を均一かつ広範囲に亘って形成することにより製造コストの低下を図ることはできない。 In Patent Document 10, a dense titanium material can be manufactured with very little energy, but the surface of the titanium sponge formed into an ingot shape is dissolved, and the dense titanium surface layer portion and the internal components are the same kind of pure titanium. Or it is prescribed | regulated as a titanium alloy, for example, a manufacturing cost cannot be reduced by forming a titanium alloy layer uniformly only over the surface layer part over a wide range.
一方、安価な耐食素材を製造できる、母材の表面にチタンまたはチタン合金を接合させた素材では、その多くが母材として鋼を選択している。そのため、表面のチタン層が失われると耐食性は損なわれてしまう。仮に、母材にもチタン材を採用したとしても、通常の製造工程を経て製造されるチタン材を用いる限り、抜本的なコスト改善は期待できない。そこで、本発明者らは、工業用純チタンまたはチタン合金からなるスラブの表層に、特定の合金元素を含有する合金層を設け、安価で特定性能に優れたチタン材を得ることを考えた。 On the other hand, many materials that can manufacture inexpensive corrosion-resistant materials and have titanium or a titanium alloy bonded to the surface of the base material select steel as the base material. Therefore, if the titanium layer on the surface is lost, the corrosion resistance is impaired. Even if a titanium material is adopted as a base material, a drastic cost improvement cannot be expected as long as a titanium material manufactured through a normal manufacturing process is used. Then, the present inventors considered providing an alloy layer containing a specific alloy element on the surface layer of a slab made of industrial pure titanium or a titanium alloy to obtain a titanium material that is inexpensive and excellent in specific performance.
特許文献11のように、溶射は、金属、セラミックスなどを溶融し、チタン材表面に噴きつけて皮膜を形成させる方法である。この方法で皮膜を形成させた場合、皮膜中の気孔の形成を避けることができない。通常、溶射時には、皮膜の酸化を避けるため、不活性ガスでシールドしながら溶射が行われる。これら不活性ガスは、皮膜の気孔内に巻き込まれる。このような不活性ガスを内包する気孔は、熱間加工などで圧着しない。また、チタンの製造においては、一般的に真空熱処理が実施されるが、この処理時に、気孔内の不活性ガスが膨張して、皮膜が剥がれるおそれがある。本発明者らの経験上、溶射により生じる気孔の存在率(空隙率)は、数vol.%以上となり、溶射条件によっては10vol.%を超えることもある。このように、皮膜内の空隙率が高いチタン材は、製造工程において剥離する危険性があり、また、加工時の割れなどの欠損が生じるおそれがある。
As in
皮膜の形成方法としては、コールドスプレー法がある。この方法により表面に皮膜を形成する場合も、不活性の高圧ガスが使用される。この方法では、その条件によっては空隙率を1vol.%未満にすることも可能であるものの、気孔の発生を完全に防止することは極めて難しい。そして、溶射の場合と同様に、気孔は不活性ガスを内包しているため、その後の加工によっても消滅しない。また、真空中で熱処理を施した場合、気孔内の不活性ガスが膨張して、皮膜が割れるおそれがある。 As a method for forming the film, there is a cold spray method. Even when a film is formed on the surface by this method, an inert high-pressure gas is used. In this method, the porosity is 1 vol. However, it is extremely difficult to completely prevent the generation of pores. As in the case of thermal spraying, since the pores contain the inert gas, they do not disappear even by subsequent processing. In addition, when heat treatment is performed in a vacuum, the inert gas in the pores may expand and the film may break.
熱延時の表面疵を抑制するために、電子ビームを用いてスラブの表層を溶融し、再凝固させる処理として、溶融再凝固処理がある。通常、溶融再凝固した表層は、熱延後の酸洗工程で除去される。本発明者らは、この溶融再凝固処理に着目した。すなわち、本発明者らは、スラブ表層を溶融するときに特定の合金元素を溶融させ、スラブ由来成分とともに凝固させることにより、スラブに特定の合金元素を含有する表層部を形成することができると考えたのである。しかし、熱延時の表面疵の抑制を目的とする溶融再凝固処理は、そのまま、スラブに特定の合金元素を含有する表層部を形成するために利用することはできない。これは、従来の溶融再凝固処理は、形成した表層は酸洗で除去されることを前提としており、表層部の合金成分の偏析について全く考慮されていなかったからである。 In order to suppress surface flaws during hot rolling, there is a melt resolidification process as a process for melting and resolidifying the surface layer of the slab using an electron beam. Usually, the melted and re-solidified surface layer is removed in a pickling step after hot rolling. The present inventors paid attention to this melt resolidification treatment. That is, the present inventors can form a surface layer portion containing a specific alloy element in the slab by melting a specific alloy element when melting the slab surface layer and solidifying it with a slab-derived component. I thought. However, the melt resolidification treatment for the purpose of suppressing surface flaws during hot rolling cannot be used as it is to form a surface layer portion containing a specific alloy element in the slab. This is because the conventional melt resolidification treatment is based on the premise that the formed surface layer is removed by pickling, and no consideration was given to segregation of alloy components in the surface layer portion.
特定の合金元素を含有するスラブ表層部において、合金成分の偏析が存在すると、所望の性能を十分に発揮できないか、所望性能の劣化が早まってしまう。そのため、特定の合金元素を添加する方法が重要となる。 If segregation of the alloy component exists in the slab surface layer portion containing a specific alloy element, the desired performance cannot be sufficiently exhibited or the desired performance is deteriorated quickly. Therefore, a method of adding a specific alloy element is important.
本発明は、耐水素脆化性を向上させるために添加する合金元素の含有量(目標特性を発現する特定の合金元素の使用量)を低減し、かつ、チタン材の製造コストを抑制することにより、安価に所望の特性を有する熱間圧延用チタン材を得ることを目的としている。 The present invention reduces the content of alloying elements added to improve hydrogen embrittlement resistance (the amount of specific alloying elements that express target characteristics) and suppresses the production cost of titanium materials Thus, it is an object to obtain a titanium material for hot rolling having desired characteristics at a low cost.
本発明は、上記課題を解決するためになされたものであり、下記の熱間圧延用チタン材を要旨とする。 This invention is made | formed in order to solve the said subject, and makes a summary the following titanium material for hot rolling.
(1)工業用純チタンまたはチタン合金からなる母材と、前記母材の少なくとも一方の圧延面に形成された前記母材とは異なる化学組成を有する表層部と、を備える熱間圧延用チタン材であって、前記表層部が、その厚さが2.0〜20.0mm、全厚さに占める割合が片面あたり40%以下であり、前記表層部の化学組成が、母材からの増加含有量として、Mo、VおよびNbから選択される一種以上を含有し、下記(1)式で算出されるMo当量が8.0〜20.0であり、前記表層部に含まれる元素の含有量を複数点測定したとき、母材からの増加含有量の平均値CAVEと各測定箇所における母材からの増加含有量C0との関係:|CAVE−C0|/CAVE×100が40%以下である、熱間圧延用チタン材。
Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6 (1)(1) Titanium for hot rolling comprising a base material made of industrial pure titanium or a titanium alloy, and a surface layer portion having a chemical composition different from that of the base material formed on at least one rolling surface of the base material. The surface layer portion has a thickness of 2.0 to 20.0 mm, the ratio of the total thickness to 40% or less per side, and the chemical composition of the surface layer portion is increased from the base material. As a content, one or more selected from Mo, V and Nb is contained, the Mo equivalent calculated by the following formula (1) is 8.0 to 20.0, and the inclusion of the elements contained in the surface layer portion When the amount is measured at multiple points, the relationship between the average value C AVE of the increased content from the base material and the increased content C 0 from the base material at each measurement location: | C AVE −C 0 | / C AVE × 100 Is a titanium material for hot rolling, having a content of 40% or less.
Mo equivalent = Mo content (% by mass) + V content (% by mass) /1.5+Nb content (% by mass) /3.6 (1)
(2)前記母材の圧延面以外の面に、他の表層部が形成されており、
前記他の表層部が、前記表層部と同一の化学組成および金属組織を備える、
上記(1)の熱間圧延用チタン材。(2) Other surface layer portions are formed on a surface other than the rolling surface of the base material,
The other surface layer portion has the same chemical composition and metal structure as the surface layer portion.
(1) Titanium material for hot rolling.
本発明に係る熱間圧延用チタン材は、工業用純チタンまたはチタン合金からなる母材と、母材とは異なる化学組成を有する表層部とを備えるものであるから、これを用いて製造されたチタン複合材は、全体が同一のチタン合金からなるチタン材と比較して、同等の耐水素脆化性を有するが、安価に製造することができる。 The titanium material for hot rolling according to the present invention includes a base material made of pure industrial titanium or a titanium alloy and a surface layer portion having a chemical composition different from that of the base material, and is thus manufactured using the base material. Compared with a titanium material made entirely of the same titanium alloy, the titanium composite material has equivalent hydrogen embrittlement resistance, but can be manufactured at low cost.
本発明の熱間圧延用チタン材は、熱間加工に供される素材(スラブ、ブルーム、ビレットなどの鋳片)であり、熱間加工後、必要に応じて、冷間加工、熱処理などを施して、チタン複合材に加工される。以下、図面を用いて、本発明本発明の熱間圧延用チタン材を説明する。また、以下の説明において、各元素の含有量に関する「%」は「質量%」を意味する。 The titanium material for hot rolling of the present invention is a material (slabs such as slabs, blooms and billets) subjected to hot working, and after hot working, cold working, heat treatment, etc. are performed as necessary. And processed into a titanium composite. Hereinafter, the titanium material for hot rolling according to the present invention will be described with reference to the drawings. In the following description, “%” regarding the content of each element means “mass%”.
1.熱間圧延用チタン材
1−1.全体構成
図1に示すように、本発明に係る熱間圧延用チタン材1は、母材1bと、母材1bの圧延面に表層部1aとを備える。そして、表層部は所定の中間層(図示省略)を備える。母材1bは、工業用純チタンまたはチタン合金からなり、表層部1aは、母材1bとは異なる化学組成を有する。図2に示すように、本発明に係る熱間圧延用チタン材1は、母材1bの両方の圧延面に表層部1aa、1abを備えるものでもよい。このように、この熱間圧延用チタン材1における耐水素脆化性は、外部環境に接する表層部1a(図2に示す例では1aa、1ab)によって担保される。この熱間圧延用チタン材1は、全体が同一のチタン合金からなるチタン材と比較して、同等の耐水素脆化性を有するが、安価に製造することができる。1. 1. Titanium material for hot rolling 1-1. Overall Configuration As shown in FIG. 1, a titanium material for
なお、熱間圧延用チタン材が矩形チタン鋳片の場合の寸法は、そのまま熱間圧延に供し得る寸法であれば特に限定されない。熱間圧延としてコイル圧延を適用し、板厚3〜8mm程度の熱延コイル薄中板を製造する場合、矩形チタン鋳片としては、厚み50〜300mm程度、長さ3000〜10000m程度、幅600〜1500mm程度とすれば良い。 In addition, the dimension in case the titanium material for hot rolling is a rectangular titanium cast piece will not be specifically limited if it is a dimension which can be used for hot rolling as it is. When coil rolling is applied as hot rolling to produce a hot rolled thin coil sheet having a thickness of about 3 to 8 mm, the rectangular titanium cast has a thickness of about 50 to 300 mm, a length of about 3000 to 10000 m, and a width of 600. It may be about ˜1500 mm.
表層部の厚さが薄すぎると、最終製品の表層の厚さも薄くなり、所望の特性が十分に得られない。一方、厚すぎると、チタン複合材全体に占めるチタン合金の割合が増すため、コストメリットが小さくなる。そのため、表層部の厚さは2.0〜20.0mmとする。表層部の厚さの全厚さに占める割合は片面あたり40%以下とする。 If the thickness of the surface layer portion is too thin, the thickness of the surface layer of the final product is also thin, and desired characteristics cannot be obtained sufficiently. On the other hand, if it is too thick, the proportion of the titanium alloy in the entire titanium composite increases, so the cost merit decreases. Therefore, the thickness of the surface layer portion is set to 2.0 to 20.0 mm. The ratio of the thickness of the surface layer part to the total thickness is 40% or less per side.
1−2.母材
母材1は、工業用純チタンまたはチタン合金からなる。ただし、チタン合金を用いることにより、工業用純チタンを用いる場合よりも優れた機械的特性(強度や延性など)を得られる。1-2. Base
母材1としては、JISに規定される純チタンのうち、JIS1〜4種の工業用純チタンを用いることができる。すなわち、0.1%以下のC、0.015%以下のH、0.4%以下のO、0.07%以下のN、0.5%以下のFeを含有し、残部がTiである工業用純チタンである。これらJIS1〜4種の工業用純チタンを使用すれば、十分な加工性を有しており、割れなどが発生せず、熱間加工後に表面のチタン合金と一体化したチタン材が得られる。
As the
母材1としては、α型、α+β型、β型チタン合金を用いることができる。
As the
ここで、α型チタン合金としては、例えば、Ti−0.5Cu、Ti−1.0Cu、Ti−1.0Cu−0.5Nb、Ti−1.0Cu−1.0Sn−0.3Si−0.25Nb、Ti−0.5Al−0.45Si、Ti−0.9Al−0.35Si、Ti−3Al−2.5V、Ti−5Al−2.5Sn、Ti−6Al−2Sn−4Zr−2Mo、Ti−6Al−2.75Sn−4Zr−0.4Mo−0.45Siなどが例示される。 Here, as an alpha type titanium alloy, Ti-0.5Cu, Ti-1.0Cu, Ti-1.0Cu-0.5Nb, Ti-1.0Cu-1.0Sn-0.3Si-0. 25Nb, Ti-0.5Al-0.45Si, Ti-0.9Al-0.35Si, Ti-3Al-2.5V, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti- Examples thereof include 6Al-2.75Sn-4Zr-0.4Mo-0.45Si.
また、α+β型チタン合金としては、例えば、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−7V、Ti−3Al−5V、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−6Al−2Sn−4Zr−6Mo、Ti−1Fe−0.35O、Ti−1.5Fe−0.5O、Ti−5Al−1Fe、Ti−5Al−1Fe−0.3Si、Ti−5Al−2Fe、Ti−5Al−2Fe−0.3Si、Ti−5Al−2Fe−3Mo、Ti−4.5Al−2Fe−2V−3Moなどが例示される。 Examples of the α + β type titanium alloy include Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-7V, Ti-3Al-5V, Ti-5Al-2Sn-2Zr-4Mo-4Cr, and Ti. -6Al-2Sn-4Zr-6Mo, Ti-1Fe-0.35O, Ti-1.5Fe-0.5O, Ti-5Al-1Fe, Ti-5Al-1Fe-0.3Si, Ti-5Al-2Fe, Ti Examples thereof include -5Al-2Fe-0.3Si, Ti-5Al-2Fe-3Mo, Ti-4.5Al-2Fe-2V-3Mo, and the like.
さらに、β型チタン合金としては、例えば、Ti−11.5Mo−6Zr−4.5Sn,Ti−8V−3Al−6Cr−4Mo−4Zr,Ti−10V−2Fe−3Mo,Ti−13V−11Cr−3Al,Ti−15V−3Al−3Cr−3Sn、Ti−6.8Mo−4.5Fe−1.5Al、Ti−20V−4Al−1Sn、Ti−22V−4Alなどが例示される。 Further, as the β-type titanium alloy, for example, Ti-11.5Mo-6Zr-4.5Sn, Ti-8V-3Al-6Cr-4Mo-4Zr, Ti-10V-2Fe-3Mo, Ti-13V-11Cr-3Al Ti-15V-3Al-3Cr-3Sn, Ti-6.8Mo-4.5Fe-1.5Al, Ti-20V-4Al-1Sn, Ti-22V-4Al, and the like.
母材は、溶解法、粉末冶金法など公知の製造方法により製造すればよく、特に制約がない。例えば、母材は、インゴットをブレークダウンによりスラブやビレット形状にした後、切削整精して製造できる。ブレークダウンにより製造された場合、ブレークダウンにより表面が比較的平坦になっているため、合金元素を含有する元素を比較的均一に散布しやすく、合金相の元素分布を均一にしやすい。 The base material may be manufactured by a known manufacturing method such as a melting method or a powder metallurgy method, and is not particularly limited. For example, the base material can be manufactured by cutting and refining an ingot into a slab or billet shape by breakdown. When manufactured by breakdown, since the surface is relatively flat by breakdown, it is easy to disperse the element containing the alloy element relatively uniformly, and it is easy to make the element distribution of the alloy phase uniform.
一方、鋳造時に直接製造された鋳塊を母材として用いることもできる。この場合、切削整精工程を省略できるため、より安価に製造することができる。また、鋳塊を製造後に、表面を切削整精してから用いれば、ブレークダウンを経て製造した場合同様の効果が期待できる。 On the other hand, the ingot directly manufactured at the time of casting can also be used as a base material. In this case, since the cutting and refining process can be omitted, it can be manufactured at lower cost. In addition, if the surface is cut and refined after the ingot is manufactured, the same effect can be expected when it is manufactured through breakdown.
1−3.表層部
(化学成分)
本発明の熱間圧延用チタン材から製造されたチタン複合材の表層の少なくとも一方(少なくとも外部環境に接する表層)の耐水素吸収性を高めるために、熱間圧延用チタン材の表層部は、以下に掲げる各種合金元素を含有させてもよい。1-3. Surface layer (chemical component)
In order to increase the hydrogen absorption resistance of at least one of the surface layers of the titanium composite material produced from the titanium material for hot rolling of the present invention (at least the surface layer in contact with the external environment), the surface layer portion of the titanium material for hot rolling is Various alloy elements listed below may be included.
Mo当量:8.0〜20.0
ただし、Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6である。
耐水素吸収性を得る層は、β安定化元素を一定範囲含有するチタン合金層である。β相を形成することを規定する理由は、チタンのα相はわずか数10ppmの水素濃度でも水素化物を形成するのに対し、チタン合金のβ相はおおよそ1000ppm以上の水素を固溶できるため、水素起因による脆化を生じ難い特徴を有するためである。Mo equivalent: 8.0 to 20.0
However, Mo equivalent = Mo content (mass%) + V content (mass%) / 1.5 + Nb content (mass%) / 3.6.
The layer for obtaining hydrogen absorption resistance is a titanium alloy layer containing a certain range of β-stabilizing elements. The reason for prescribing the formation of the β phase is that the α phase of titanium forms a hydride even at a hydrogen concentration of only a few tens of ppm, whereas the β phase of the titanium alloy can dissolve about 1000 ppm or more of hydrogen, This is because it has the characteristic that it is difficult to cause embrittlement due to hydrogen.
Fe、Crなどの共析型のβ安定化元素を含む場合には、チタンとそれらの元素が化合物を形成して、脆化を招くおそれがある。しかし、β安定化元素のうち、Mo、VおよびNbをMo当量:8.0〜20.0の範囲で含有する場合には、FeおよびCrなどが同時に存在していてもβ相が安定し、化合物相を形成しないため脆化を生じない。 When a eutectoid β-stabilizing element such as Fe or Cr is included, titanium and these elements may form a compound, which may lead to embrittlement. However, among the β-stabilizing elements, when Mo, V, and Nb are contained in the range of Mo equivalents: 8.0 to 20.0, the β-phase is stabilized even if Fe and Cr are present at the same time. Since no compound phase is formed, embrittlement does not occur.
ここで、Mo当量の下限は、充分な量のβ相を得るために必要な合金量である。上限は、合金添加量が多いチタン合金は価格が高いため、コスト面から使用に適さないことから定めた。 Here, the lower limit of the Mo equivalent is the amount of alloy necessary to obtain a sufficient amount of β phase. The upper limit was determined because a titanium alloy with a large amount of alloy addition is not suitable for use because of its high cost.
上記以外の残部は、チタンおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてTa、Si、MnおよびCu等があり、一般的な不純物元素であるC、N、Fe、OおよびHと併せて、総量で5%以下許容される。 The balance other than the above is titanium and impurities. Impurities can be contained within a range that does not hinder the target characteristics, and other impurities include Ta, Si, Mn, and Cu as impurity elements mainly mixed from scrap, and C, which are general impurity elements, In combination with N, Fe, O and H, a total amount of 5% or less is allowed.
2.チタン複合材
本発明の熱間圧延用チタン材は、熱間加工に供される素材(スラブ、ブルーム、ビレットなどの鋳片)であり、熱間加工後、必要に応じて、冷間加工、熱処理などを施して、チタン複合材に加工される。そして、チタン複合材には、本発明の熱間圧延用チタン材の母材に由来する内層と、同表層部に由来する表層を備えている。
(厚さ)
外部環境に接する表層の厚さが薄過ぎると、耐水素吸収性が十分に得られない。一方、表層が厚い場合には耐水素吸収性には問題はないが、素材全体に占める表層の割合が増すため、製造コストが嵩む。このため、チタン複合材の全厚に対する表層の厚さの割合(表層占有率)は、片面あたり2〜20%とする。2. Titanium composite material The titanium material for hot rolling of the present invention is a material (slab, slab, bloom, billet, etc.) subjected to hot working, and after hot working, if necessary, cold working, It is processed into titanium composite by heat treatment. The titanium composite material includes an inner layer derived from the base material of the titanium material for hot rolling according to the present invention and a surface layer derived from the surface layer portion.
(thickness)
If the thickness of the surface layer in contact with the external environment is too thin, sufficient hydrogen absorption resistance cannot be obtained. On the other hand, when the surface layer is thick, there is no problem in hydrogen absorption resistance, but the manufacturing cost increases because the ratio of the surface layer to the entire material increases. For this reason, the ratio of the thickness of the surface layer to the total thickness of the titanium composite (surface layer occupancy) is 2 to 20% per side.
表層の厚さは、表層部1aの厚さ、その後に実施される熱間加工時の加工率に依存する。
The thickness of the surface layer depends on the thickness of the
(空隙率)
表層の空隙率は、0.1%以下であることが好ましい。空隙率が、0.1%を超えると、熱間圧延が施される際に、表層の膨れや剥がれなどを引き起こす恐れがある。(Porosity)
The porosity of the surface layer is preferably 0.1% or less. When the porosity exceeds 0.1%, the surface layer may be swollen or peeled off during hot rolling.
空隙率は、素材断面を光学顕微鏡観察により写真を撮影し、その写真を画像処理することで容易に測定できる。断面の任意の10〜20箇所観察し、空隙率を測定し、その平均を全体の空隙率とすることができる。なお、熱間圧延または冷間圧延後を施した材料の空隙率は、熱間圧延用チタン材の空隙率と同等である。 The porosity can be easily measured by taking a photograph of the cross-section of the material with an optical microscope and processing the photograph. Arbitrary 10-20 places of a cross section are observed, the porosity can be measured, and the average can be made into the whole porosity. In addition, the porosity of the material which performed hot rolling or after cold rolling is equivalent to the porosity of the titanium material for hot rolling.
(偏析)
表層部に含まれる元素の含有量を複数点測定したとき、母材からの増加含有量の平均値CAVEと各測定箇所における母材からの増加含有量C0との関係:|CAVE−C0|/CAVE×100が40%以下である。|CAVE−C0|/CAVE×100が40%を超える場合には、所望性能を十分に発揮できないか、所望性能の劣化が早まるからである。|CAVE−C0|/CAVE×100は20%以下であることが好ましい。(Segregation)
When the content of elements contained in the surface layer is measured at a plurality of points, the relationship between the average value C AVE of the increased content from the base material and the increased content C 0 from the base material at each measurement location: | C AVE − C 0 | / C AVE × 100 is 40% or less. This is because if | C AVE −C 0 | / C AVE × 100 exceeds 40%, the desired performance cannot be sufficiently exhibited, or the degradation of the desired performance is accelerated. | C AVE −C 0 | / C AVE × 100 is preferably 20% or less.
なお、表層部における特定元素は、EPMAまたはGDSを用いて測定することができる。具体的には、表層部の任意の10〜20箇所を測定し、それぞれの測定箇所における母材からの増加含有量の平均値を各測定箇所における増加含有量C0とし、増加含有量C0の平均値を表層部における増加含有量の平均値CAVEとすればよい。The specific element in the surface layer portion can be measured using EPMA or GDS. Specifically, arbitrary 10 to 20 locations on the surface layer portion are measured, and the average value of the increased content from the base material at each measured location is defined as the increased content C 0 at each measured location, and the increased content C 0. May be the average value C AVE of the increased content in the surface layer portion.
(中間層)
表層は、内層近傍に中間層を備えている。すなわち、本発明の熱間圧延用チタン材は、母材表面に、例えば、溶融再凝固処理によって形成した表層部を備えているが、その表層部は、その後の、熱延加熱時、および、冷延後の熱処理工程において、母材と表層部との界面で拡散が生じ、最終的にチタン複合材に仕上げた時には、上記母材由来の内層と、上記表層部由来の表層との間には中間層が形成される。この中間層が、上記内層と上記表層とを金属結合させ、強固に接合する。また、中間層では連続した元素勾配を生じるため、上記内層と上記表層との強度差を和らげることができ、加工時の割れを抑制することができる。この中間層の厚さは、0.5μm以上とするのがこのましい。(Middle layer)
The surface layer includes an intermediate layer in the vicinity of the inner layer. That is, the titanium material for hot rolling of the present invention is provided with a surface layer portion formed by, for example, melt resolidification treatment on the surface of the base material, and the surface layer portion is then subjected to hot rolling heating, and In the heat treatment step after cold rolling, diffusion occurs at the interface between the base material and the surface layer portion, and when the titanium composite material is finally finished, it is between the inner layer derived from the base material and the surface layer derived from the surface layer portion. An intermediate layer is formed. This intermediate layer bonds the inner layer and the surface layer to each other and bonds them firmly. Further, since a continuous element gradient is generated in the intermediate layer, the difference in strength between the inner layer and the surface layer can be reduced, and cracks during processing can be suppressed. The thickness of this intermediate layer is preferably 0.5 μm or more.
なお、中間層の厚さは、EPMAまたはGDSを用いて測定することができる。GDSを用いればより詳細な測定が可能である。GDSの場合は表層をある程度、研磨で除去した後、表面から深さ方向にGDS分析を行うことで中間層の厚みを測定することが可能である。中間層とは、母材からの増加含有量(母材には含まれない元素の場合は、その含有量、母材にも含まれる元素の場合には、母材からの含有量の増加分)をCMIDとし、表層部における増加含有量の平均をCAVEとするとき、0<CMID≦0.8×CAVEの領域を意味する。The thickness of the intermediate layer can be measured using EPMA or GDS. If GDS is used, more detailed measurement is possible. In the case of GDS, after removing the surface layer to some extent by polishing, the thickness of the intermediate layer can be measured by performing GDS analysis in the depth direction from the surface. The intermediate layer is the increased content from the base material (in the case of an element not included in the base material, its content, in the case of an element also included in the base material, the increase in content from the base material) ) Is C MID, and the average of the increased content in the surface layer portion is C AVE , it means a region of 0 <C MID ≦ 0.8 × C AVE .
3.熱間圧延用チタン材の製造方法
3−1.溶融再凝固による表層部の形成
本発明の熱間圧延用チタン材は、母材表層を溶融させ、その時に特定の合金元素を溶融させ、母材由来成分とともに凝固させることにより、母材に特定の合金元素を含有する表層部を形成することにより製造することができる。図5〜7は、いずれも溶融再凝固の方法を示す説明図である。3. 3. Method for producing titanium material for hot rolling 3-1. Formation of surface layer by melt resolidification The titanium material for hot rolling of the present invention is specified as a base material by melting the surface layer of the base material, melting a specific alloy element at that time, and solidifying it together with components derived from the base material. It can manufacture by forming the surface layer part containing these alloy elements. 5-7 is explanatory drawing which shows the method of melt re-solidification all.
熱間圧延用チタン材の母材表面を溶融再凝固させる方法としては、レーザー加熱、プラズマ加熱、誘導加熱、電子ビーム加熱などがあり、いずれかの方法で行えばよい。特に、特に電子ビーム加熱の場合、高真空中で行うため、溶融再凝固処理の際に、この層にボイド等を形成しても、真空であるため、後の圧延で圧着し無害化できる。 As a method for melting and resolidifying the surface of the base material of the titanium material for hot rolling, there are laser heating, plasma heating, induction heating, electron beam heating, etc., and any method may be used. In particular, especially in the case of electron beam heating, since it is performed in a high vacuum, even if a void or the like is formed in this layer during the melt resolidification treatment, it can be made harmless by pressure bonding in subsequent rolling because it is a vacuum.
さらに、エネルギー効率が高いことから大面積を処理しても深く溶融させることができるため、特にチタン複合材の製造に適している。真空中で溶融する場合の真空度は、3×10−3Torr以下のより高い真空度であることが望ましい。また、熱間圧延用チタン材の表層を溶融再凝固する回数については、特に制限はなく、必要に応じて回数を増やしても、素材の表層部の合金層の厚みや添加元素の添加量が上記の範囲内であれば問題ない。ただし、回数が多くなるほど、処理時間が長くなりコスト増につながるため、1回ないし2回であることが望ましい。Furthermore, since it is high in energy efficiency, it can be melted deeply even if a large area is processed, and is particularly suitable for the production of titanium composite materials. The degree of vacuum in the case of melting in vacuum is desirably a higher degree of vacuum of 3 × 10 −3 Torr or less. In addition, the number of times of melting and resolidifying the surface layer of the titanium material for hot rolling is not particularly limited, and even if the number of times is increased as necessary, the thickness of the alloy layer on the surface layer portion of the material and the amount of additive elements added are not limited. There is no problem if it is within the above range. However, as the number of times increases, the processing time becomes longer and the cost increases.
表層の溶融再凝固法は、矩形のスラブの場合では図5に示しているように実施する。すなわち、矩形スラブ10の外表面のうち、少なくとも熱間圧延工程での圧延面(熱延ロールに接する面)となる幅広な2面10A,10Bについて、電子ビームを照射して、その面における表面層のみを溶融させる。ここでは先ずその2面10A,10Bのうちの一方の面10Aについて実施するものとする。
In the case of a rectangular slab, the melt resolidification method of the surface layer is performed as shown in FIG. That is, among the outer surfaces of the rectangular slab 10, at least two
ここで、図5に示しているように、矩形鋳片10の面10Aに対する一基の電子ビーム照射ガン12による電子ビームの照射領域14の面積は、照射すべき面10Aの全面積と比較して格段に小さいのが通常である、そこで、実際には、電子ビーム照射ガン12を連続的に移動させながら、または、矩形鋳片10を連続的に移動させながら、電子ビーム照射を行なうのが通常である。この照射領域は、電子ビームの焦点を調整することによって、あるいは電磁レンズを使用して小ビームを高周波数で振動(オシレーション Oscillation)させてビーム束を形成させることによって、その形状や面積を調整することができる。
Here, as shown in FIG. 5, the area of the electron beam irradiation region 14 by the single electron
そして、図5中の矢印Aで示しているように、電子ビーム照射ガン12を連続的に移動させるものとして、以下の説明を進める。なお電子ビーム照射ガンの移動方向は特に限定されないが、一般には矩形鋳片10の長さ方向(通常は鋳造方向D)または幅方向(通常は鋳造方向Dと垂直な方向)に沿って連続的に移動させ、前記照射領域14の幅W(円形ビームまたはビーム束の場合は、直径W)で連続的に帯状に照射する。さらにその隣の未照射の帯状領域について逆方向(もしくは同方向)に照射ガン12を連続的に移動させながら帯状に電子ビーム照射を行なう。また場合によっては複数の照射ガンを用いて、同時に複数の領域について同時に電子ビーム照射を行なっても良い。図5では、矩形鋳片10の長さ方向(通常は鋳造方向D)に沿って矩形ビームを連続的に移動させる場合を示している。
Then, as indicated by an arrow A in FIG. 5, the following explanation will be made on the assumption that the electron
このような表層加熱処理工程によって矩形チタン鋳片10の表面(面10A)に電子ビームを照射して、その表面を溶融するように加熱すれば、図6の中央左寄りに示すように、矩形チタン鋳片10の面10Aの表面層が、入熱量に応じた深さだけ最大溶融される。しかしながら、電子ビームの照射方向に対して垂直方向からの深さは図7に示すように一定ではなく、電子ビーム照射の中央部が最も深さが大きくなり、帯状の端部に行くほどその厚みが減少する、下に凸の湾曲形状となる。
If the surface (
またその溶融層16よりも鋳片内部側の領域も、電子ビーム照射による熱影響によって温度上昇し、純チタンのβ変態点以上の温度となった部分(熱影響層=HAZ層)がβ相に変態する。このように表層加熱処理工程での電子ビーム照射による熱影響によってβ相に変態した領域も、溶融層16の形状と同様に下に凸の湾曲形状となる。 The region inside the slab from the molten layer 16 also rises in temperature due to the heat effect of electron beam irradiation, and the portion where the temperature is higher than the β transformation point of pure titanium (heat affected layer = HAZ layer) is the β phase. To metamorphosis. In this way, the region transformed into the β phase by the heat effect of the electron beam irradiation in the surface heat treatment step also has a downwardly curved shape similar to the shape of the molten layer 16.
目的とする合金元素から成る素材とともに溶融再凝固を行うことにより、熱間圧延用素材表層を合金化する。この際に用いる素材としては、粉末、チップ、ワイヤー、薄膜、切り粉、メッシュのうちの1種以上を用いればよい。溶融前に配置する材料の成分および量については、素材表面とともに溶融し凝固した後の元素濃化領域の成分が目標成分となるように定める。 The surface layer of the material for hot rolling is alloyed by performing melt resolidification together with the material composed of the target alloy element. As a material used in this case, one or more of powder, chip, wire, thin film, cutting powder, and mesh may be used. The component and amount of the material to be arranged before melting are determined so that the component in the element concentration region after melting and solidifying together with the material surface becomes the target component.
ただし、この添加する素材が大きすぎると、合金成分の偏析の原因となる。そして、合金成分の偏析が存在すると、所望の性能を十分に発揮できないか、劣化が早まってしまう。このため、チタン母材表面の被加熱部位が溶融状態にあるうちに、合金素材が溶融し終えるサイズにすることが重要である。また、特定の時間における溶融部の形状および広さを考慮した上で、上記合金素材をチタン母材表面に均等に配置しておくことが重要である。しかしながら、電子ビームを使って照射位置を連続的に移動させる場合には、溶融部は溶融したチタンおよび合金とともに連続的に移動しながら攪拌されるため、合金素材は必ずしも連続的に配置しておく必要はない。そのほか、チタンの融点よりも極端に高い融点を有する合金素材の使用は避けなければならないことは当然である。 However, if the material to be added is too large, it causes segregation of alloy components. And when the segregation of an alloy component exists, desired performance cannot fully be exhibited, or deterioration will be accelerated. For this reason, it is important to make the size of the alloy material completely melted while the heated portion on the surface of the titanium base material is in a molten state. In addition, it is important that the alloy material is evenly arranged on the surface of the titanium base material in consideration of the shape and size of the melted part at a specific time. However, when the irradiation position is continuously moved using the electron beam, the molten part is stirred while moving continuously with the molten titanium and the alloy, so that the alloy material is always arranged continuously. There is no need. In addition, it is natural that the use of an alloy material having a melting point extremely higher than that of titanium must be avoided.
溶融再凝固処理後は、100℃以上500℃未満の温度で1時間以上保持するのがよい。溶融再凝固後、急激に冷却すると凝固時の歪で表層部に微細な割れが発生するおそれがある。その後の熱延工程や冷延工程において、この微細な割れが起点となって、表層部の剥離が発生する、部分的に合金層が薄い部位が発生するなど、特性が劣化するおそれがある。また、微細な割れによって内部が酸化すると、酸洗工程で除去する必要があり、合金層の厚さをさらに減少させる。上記の温度で保持することで表面の微細な割れを抑制できる。また、この温度であれば大気中で保持しても大気酸化は殆どしない。 After the melt resolidification treatment, it is preferable to hold at a temperature of 100 ° C. or higher and lower than 500 ° C. for 1 hour or longer. If it is cooled rapidly after melting and resolidification, fine cracks may occur in the surface layer due to strain during solidification. In the subsequent hot rolling process and cold rolling process, the fine cracks may be the starting point, and the surface layer may be peeled off, or a part having a partially thin alloy layer may be generated. Further, if the inside is oxidized due to fine cracks, it is necessary to remove in the pickling process, and the thickness of the alloy layer is further reduced. By maintaining at the above temperature, fine cracks on the surface can be suppressed. At this temperature, atmospheric oxidation hardly occurs even if the temperature is maintained.
母材表面に溶融再凝固処理によって形成した表層部を備える熱間圧延用チタン材は、その後の、熱延加熱時、および、冷延後の熱処理工程において、母材と表層部との界面で拡散が生じ、最終的にチタン複合材に仕上げた時には、上記母材由来の内層と、上記表層部由来の表層との間には、特定元素の濃度勾配があり、中間層が形成される。このため、この中間層が、上記内層と上記表層とを金属結合させ、強固に接合する。また、中間層では連続した元素勾配を生じるため、上記内層と上記表層との強度差を和らげることができ、加工時の割れを抑制することができる。 The titanium material for hot rolling provided with a surface layer portion formed by melt re-solidification treatment on the surface of the base material is used at the interface between the base material and the surface layer portion in the subsequent heat treatment process during hot rolling and after cold rolling. When diffusion occurs and finally the titanium composite material is finished, there is a concentration gradient of a specific element between the inner layer derived from the base material and the surface layer derived from the surface layer portion, and an intermediate layer is formed. For this reason, this intermediate | middle layer makes the said inner layer and the said surface layer metal-bond, and joins firmly. Further, since a continuous element gradient is generated in the intermediate layer, the difference in strength between the inner layer and the surface layer can be reduced, and cracks during processing can be suppressed.
また、溶融再凝固処理により合金化する場合、上述したように溶融部の形状が湾曲しているため、最終製品にもその形状が引き継がれる。そして、熱延加熱時、熱延後の熱処理時、冷延後の熱処理時などに、湾曲した母材との界面から合金元素が拡散し接合するため、元素の拡散方向は深さ方向のみならず、幅方向にも拡散が生じる。従って、母材と合金層の中間部での合金元素の勾配は深さ方向だけでなく幅方向にも生じる。そのため、例えば固溶強化能が異なる元素を添加した場合、強度差は深さ方向に垂直方向のみならず、平行方向にも生じ、濃度勾配が複雑化するため、強度差による割れが発生し難くなる。 Further, when alloying by melt re-solidification treatment, the shape of the melted portion is curved as described above, so that the shape is also inherited in the final product. And during hot rolling heating, heat treatment after hot rolling, heat treatment after cold rolling, etc., the alloy element diffuses and joins from the interface with the curved base material, so if the element diffusion direction is only in the depth direction In addition, diffusion also occurs in the width direction. Therefore, the gradient of the alloy element in the intermediate portion between the base material and the alloy layer occurs not only in the depth direction but also in the width direction. Therefore, for example, when elements having different solid solution strengthening capabilities are added, the strength difference occurs not only in the direction perpendicular to the depth direction but also in the parallel direction, and the concentration gradient becomes complicated, so that cracks due to the strength difference are unlikely to occur. Become.
母材表面を溶融再凝固させて表層部には、更に、所定の合金成分を含有するチタン板を貼り付けて熱間圧延用チタン材を製造してもよい。 The base metal surface may be melted and re-solidified, and a titanium plate containing a predetermined alloy component may be further attached to the surface layer portion to produce a hot-rolled titanium material.
図8は、母材表面を溶融再凝固させて表層部を形成したチタン矩形鋳片(スラブ)6とチタン板7を真空中で溶接することにより貼り合わせることを模式的に示す説明図であり、図9は、チタン矩形鋳片(スラブ)6の表面だけでなく側面にもチタン板7,8を溶接することにより貼り合わせることを模式的に示す説明図である。以降の説明では、母材表面を溶融再凝固させて表層部を形成したチタン矩形鋳片(スラブ)6を「チタンスラブ6」と称する。
FIG. 8 is an explanatory view schematically showing that a titanium rectangular cast piece (slab) 6 and a titanium plate 7 in which a surface layer portion is formed by melting and resolidifying the surface of a base material are bonded together by welding in a vacuum. FIG. 9 is an explanatory view schematically showing that the
図8,9に示すように、チタンスラブ6の表層に特性を発現する合金元素を含有したチタン板7,8を貼り合わせた後、熱延クラッド法により接合させることによりチタン複合材の表層3,4を合金化する。すなわち、チタンスラブ6の圧延面に当たる表面に、合金元素を含有するチタン板7を貼り合わせた後、好ましくは真空容器内で、少なくとも周囲を溶接部9により溶接することによって、チタンスラブ6とチタン板7の間を真空で密閉し、圧延することによりチタンスラブ6とチタン板7とを貼り合わせる。チタンスラブ6にチタン板7を貼り合わせる溶接は、チタンスラブ6とチタン板7の間に大気が侵入しないよう、例えば、図8,7に示すように全周を溶接する。
As shown in FIGS. 8 and 9, after the
チタンは活性な金属であるため、大気中に放置すると表面に強固な不動態皮膜を形成する。この表面部の酸化濃化層を除去することは不可能である。しかし、ステンレス等とは異なり、チタンには酸素が固溶し易いため、真空中で密閉されて外部からの酸素の供給が無い状態で加熱されると、表面の酸素は内部に拡散し固溶するため、表面に形成した不動態皮膜は消滅する。そのため、チタンスラブ6とその表面のチタン板7とは、その間に介在物なども発生せずに、熱延クラッド法により完全に密着することができる。
Titanium is an active metal and forms a strong passive film on the surface when left in the atmosphere. It is impossible to remove the oxidized layer on the surface. However, unlike stainless steel, etc., oxygen easily dissolves in titanium. Therefore, when heated in a vacuum and sealed without external oxygen supply, oxygen on the surface diffuses into the solid solution. Therefore, the passive film formed on the surface disappears. Therefore, the
さらに、チタンスラブ6として鋳造ままのスラブを用いると、凝固時に生成した粗大な結晶粒に起因し、その後の熱間圧延工程で表面疵が発生してしまう。これに対し、本発明のようにチタンスラブ6の圧延面にチタン板7を貼り合わせると、貼り合わせたチタン板7が微細な組織を有するために熱間圧延工程での表面疵も抑制できる。
Furthermore, when the as-cast slab is used as the
図1に示すチタン複合材を製造する場合には、図8に示すようにチタンスラブ6の片面にのみチタン板7を真空中で貼り合わせることが好ましく、チタンスラブ6のもう片面にはチタン板7を貼り付けずに熱間圧延してもよい。
When the titanium composite shown in FIG. 1 is manufactured, it is preferable that a titanium plate 7 is bonded to only one surface of the
図9に示すように、チタンスラブ6の片面たけでなく両面にチタン板7を貼り合わせてもよい。これにより、上述したように熱間圧延工程での熱延疵の発生を抑制できる。熱間圧延においては、通常、チタンスラブ6に圧下されることによって、チタンスラブ6の側面の少なくとも一部が熱延板の表面側に回り込む。そのため、チタンスラブ6の側面の表層の組織が粗大であったり、多数の欠陥が存在していたりすると、熱延板の幅方向の両端近くの表面に表面疵が発生する可能性がある。このため、図9に示すように、熱間圧延時のエッジ側となるチタンスラブ6の側面についても、圧延面と同様に同一規格のチタン板8を貼り合わせて溶接するのがよい。これにより、熱延板の幅方向の両端近くの表面における表面疵の発生を有効に防止できる。この溶接は、真空中で行うのが好ましい。
As shown in FIG. 9, a titanium plate 7 may be bonded to both sides of the
なお、熱間圧延時にチタンスラブ6の側面が回り込む量は、製造方法により異なるが、通常は20〜30mm程度であるため、チタンスラブ6の側面全面にチタン板8を貼り付ける必要はなく、製造方法に則した回り込み量に相当する部分にのみチタン板8を貼り付ければよい。熱間圧延以降に高温長時間焼鈍を行うことにより、母材由来成分をチタン複合材の内部に含有させることができる。例えば700〜900℃で30時間の熱処理が例示される。
In addition, although the amount by which the side surface of the
チタンスラブ6とチタン板7,8を溶接する方法は、電子ビーム溶接やプラズマ溶接などがある。特に電子ビーム溶接は、高真空下で実施できることから、チタンスラブ6とチタン板7,8との間を高真空にすることができるため、望ましい。チタン板7,8を真空中で溶接する場合の真空度は3×10-3Torrオーダー以下のより高い真空度であることが望ましい。Methods for welding the
なお、チタンスラブ6とチタン板7との溶接は、必ずしも真空容器内で行う必要はなく、例えば、チタン板7の内部に真空吸引用孔を設けておき、チタン板7をチタンスラブ6と重ね合わせた後に、真空吸引孔を用いてチタンスラブ6とチタン板7との間を真空引きしながらチタンスラブ6とチタン板7とを溶接し、溶接後に真空吸引孔を封止してもよい。
The
3−2.熱間圧延用チタン材の母材
熱間圧延用チタン材の母材は、通常、インゴットをブレークダウンによりスラブやビレット形状にした後、切削精整して製造される。また、近年ではインゴット製造時に直接熱延可能な矩形スラブを製造し、熱延に供されることもある。ブレークダウンにより製造された場合、ブレークダウンにより表面が比較的平坦になっているため、合金元素を含有する素材を比較的均一に散布し易く、合金相の元素分布を均一にしやすい。3-2. Base material of hot-rolling titanium material The base material of the hot-rolling titanium material is usually manufactured by cutting and refining an ingot into a slab or billet shape by breakdown. In recent years, rectangular slabs that can be hot-rolled directly at the time of ingot production are sometimes produced and used for hot-rolling. When manufactured by breakdown, since the surface is relatively flat by breakdown, it is easy to disperse the material containing the alloy element relatively uniformly, and it is easy to make the element distribution of the alloy phase uniform.
一方、鋳造時に熱延用素材の形状に直接製造された鋳塊を素材として用いる場合、切削精整工程を省略できるため、より安価に製造することができる。また、鋳塊を製造後に、表面を切削精整してから用いれば、ブレークダウンを経て製造した場合同様の効果が期待できる。本発明においては、表層に安定的に合金層が形成すればよく、状況に合わせて適切な素材を選べばよい。このため、母材については特に限定しない。 On the other hand, when the ingot directly manufactured in the shape of the hot-rolling material at the time of casting is used as the material, the cutting and refining process can be omitted, so that it can be manufactured at a lower cost. In addition, if the ingot is manufactured and then used after the surface is cut and refined, the same effect can be expected when it is manufactured through breakdown. In the present invention, an alloy layer may be stably formed on the surface layer, and an appropriate material may be selected according to the situation. For this reason, the base material is not particularly limited.
例えば、スラブを組み立て、周囲を溶接した後、700〜850℃に加熱し10〜30%の接合圧延を行い、その後β域温度で3〜10時間加熱し母材成分を表層部に拡散させた後に、熱間圧延を行うことが好ましい。β域温度で熱間圧延を行うことによって、変形抵抗が低くなり圧延し易くなるからである。 For example, after assembling the slab and welding the surroundings, it is heated to 700 to 850 ° C. and bonded and rolled at 10 to 30%, and then heated at the β region temperature for 3 to 10 hours to diffuse the base material component to the surface layer portion. It is preferable to perform hot rolling later. This is because by performing hot rolling at a β-region temperature, the deformation resistance becomes low and rolling becomes easy.
4.チタン複合材の製造方法
溶融再凝固処理により形成した合金層を最終製品として残存させることが重要であり、スケールロスや表面疵による表面層の除去を可能な限り抑制する必要がある。具体的には、下記のような熱間圧延工程上の工夫を、生産に使用する設備の特性や能力を考慮した上で最適化し適宜採用することにより、達成される。4). Manufacturing method of titanium composite It is important to leave the alloy layer formed by the melt resolidification treatment as a final product, and it is necessary to suppress the removal of the surface layer due to scale loss and surface flaws as much as possible. Specifically, this is achieved by optimizing and appropriately adopting the following devices in the hot rolling process in consideration of the characteristics and capabilities of the equipment used for production.
4−1.加熱工程
熱間圧延用素材を加熱する際には低温短時間加熱を行うことによりスケールロスを低く抑制できるが、チタン材は熱伝導が小さくスラブ内部が低温状態で熱間圧延を行うと内部で割れが発生し易くなる欠点もあり、使用する加熱炉の性能や特性に合わせてスケール発生を最小限に抑制するように最適化する。4-1. Heating process When heating the raw material for hot rolling, scale loss can be suppressed by heating at low temperature for a short time, but the titanium material has low heat conduction, and if the inside of the slab is hot rolled at a low temperature, There is also a drawback that cracks are likely to occur, and optimization is performed to minimize the generation of scales according to the performance and characteristics of the heating furnace used.
4−2.熱間圧延工程
熱間圧延工程においても、表面温度が高すぎると通板時にスケールが多く生成し、スケールロスが大きくなる。一方で、低すぎると、スケールロスは小さくなるが、表面疵が発生し易くなるため、後工程の酸洗で除去する必要があり、表面疵が抑制できる温度範囲で熱間圧延することが望ましい。そのため、最適温度域で圧延することが望ましい。また、圧延中にチタン材の表面温度が低下するため、圧延中のロール冷却は最小限とし、チタン材の表面温度の低下を抑制することが望ましい。4-2. Hot rolling process Also in the hot rolling process, if the surface temperature is too high, a large amount of scale is generated during sheet passing, and the scale loss increases. On the other hand, if it is too low, the scale loss is reduced, but surface flaws are likely to occur. Therefore, it is necessary to remove by surface pickling, and it is desirable to perform hot rolling in a temperature range in which surface flaws can be suppressed. . Therefore, it is desirable to perform rolling in the optimum temperature range. In addition, since the surface temperature of the titanium material decreases during rolling, it is desirable to minimize roll cooling during rolling and suppress the decrease in the surface temperature of the titanium material.
4−3.酸洗工程
熱間圧延された板には、表面に酸化層があるため、その後の工程で酸化層を除去するデスケーリングの工程がある。チタンでは主に、ショットブラスト後に、硝ふっ酸溶液による酸洗で酸化層を除去するのが一般的である。また、場合によっては酸洗後に砥石研磨により表面を研削する場合もある。デスケーリング後に、熱間圧延用チタン材の母材および表層部に由来する、内層および表層からなる、2層または3層構造となっていればよい。4-3. Pickling process Since the hot-rolled plate has an oxide layer on its surface, there is a descaling process for removing the oxide layer in the subsequent process. In titanium, after shot blasting, the oxide layer is generally removed by pickling with a nitric hydrofluoric acid solution. In some cases, the surface may be ground by grinding with a grindstone after pickling. After descaling, a two-layer or three-layer structure including an inner layer and a surface layer derived from the base material and the surface layer portion of the titanium material for hot rolling may be used.
熱間圧延工程で生成したスケールは厚いため、通常は酸洗処理の前処理としてショットブラスト処理を行い表面のスケールの一部を除去すると同時に、表面にクラックを形成させ、その後の酸洗工程で液をクラックに浸透させ、母材の一部も含めて除去している。このとき、母材表面にクラックを生じさせないに弱いブラスト処理を行うことが重要であり、チタン材表面の化学成分に応じて最適なブラスト条件を選択する必要がある。具体的には、例えば適正な投射材の選択や投射速度(エンペラーの回転速度で調整可能)を最適化することによって、母材にクラックが生じない条件を選択する。これらの条件の最適化は、チタン材表面に形成させた溶融再凝固層の特性によって異なるため、予め最適条件をそれぞれ決めておけばよい。 Since the scale generated in the hot rolling process is thick, usually a shot blasting process is performed as a pretreatment for the pickling process to remove a part of the scale on the surface, and at the same time, cracks are formed on the surface, and in the subsequent pickling process The liquid penetrates into the cracks and removes part of the base material. At this time, it is important to perform weak blasting without causing cracks on the surface of the base material, and it is necessary to select optimum blasting conditions according to the chemical components on the surface of the titanium material. Specifically, for example, by selecting an appropriate projecting material and optimizing the projecting speed (adjustable by the rotation speed of the emperor), a condition that does not cause a crack in the base material is selected. Since optimization of these conditions differs depending on the characteristics of the melt-resolidified layer formed on the surface of the titanium material, the optimum conditions may be determined in advance.
以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.
所定の合金を含有する表層3,4を有するチタン複合材2を製造する母材となるスラブには、真空アーク溶解で製造したTi−5Al−1Fe合金を、熱間鍛造した後に切削加工して作製した28〜143mm厚のスラブを用いた。なお、本実施例におけるチタン鋳塊の化学成分は、Al:5%,Fe:1%,O:0.15%である。このチタンスラブを用いて、スラブ表面にMo,V,Nbの合金元素素材を散布し、溶融再凝固させて、スラブ表層全面に合金元素が固溶した領域(合金層)を深さ1〜15mm形成させた。
The slab, which is a base material for manufacturing the
当該スラブを950℃に加熱し、厚さ5mmまで熱間圧延した後に、大気雰囲気中で700℃、2時間の熱処理を行い、次いで、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。 The slab is heated to 950 ° C. and hot-rolled to a thickness of 5 mm, then heat-treated at 700 ° C. for 2 hours in an air atmosphere, and then descaled on both the front and back surfaces using shot blasting and nitric hydrofluoric acid. Processed.
本発明に加え、表層部を有さないチタンスラブを用いて同様に、熱間圧延、熱処理、デスケーリングの工程を行い、比較例を作製した。 In addition to the present invention, using a titanium slab having no surface layer portion, similarly, hot rolling, heat treatment, and descaling steps were performed to produce a comparative example.
上記で製造した各チタン板を、水素吸収環境である1体積%H2+99体積%Ar雰囲気で500℃、5時間暴露した。Each titanium plate produced above was exposed at 500 ° C. for 5 hours in a 1% by volume H 2 + 99% by volume Ar atmosphere as a hydrogen absorption environment.
各チタン板の表層3,4の合金元素濃度は、EPMAを用いて、表面から合金濃化部の下端までの範囲を線分析した結果の平均値である。残部は、OやCなどのコンタミ成分を除いて、工業用純チタンに含まれる成分である。 The alloy element concentration of the surface layers 3 and 4 of each titanium plate is an average value as a result of performing a line analysis on the range from the surface to the lower end of the alloy concentrated portion using EPMA. The remainder is a component contained in industrial pure titanium except for contamination components such as O and C.
各チタン板から、板厚(4.8〜5.0mm)×10mm×55mm、2mmVノッチの衝撃試験片を作製した。試験片の長手方向を圧延方向とし、ノッチの方向は板厚貫通方向とした。水素脆性は衝撃値で評価した。 From each titanium plate, an impact test piece having a plate thickness (4.8 to 5.0 mm) × 10 mm × 55 mm and 2 mmV notch was produced. The longitudinal direction of the test piece was the rolling direction, and the notch direction was the plate thickness penetration direction. Hydrogen brittleness was evaluated by impact value.
表層に溶融層を形成していないチタン板を、水素環境に暴露しないで衝撃値を評価すると、20J/cm2であった。その値から、30%以上低下した14J/cm2以下の場合を水素脆化の基準として、不合格と判定した。When the impact value was evaluated without exposing a titanium plate having a molten layer on the surface layer to a hydrogen environment, it was 20 J / cm 2 . From the value, the case of 14 J / cm 2 or less, which was reduced by 30% or more, was determined to be unacceptable on the basis of hydrogen embrittlement.
上記の結果を表1にまとめて示す。 The results are summarized in Table 1.
No.1は、表層部(合金濃化層)を形成しない場合であり、水素環境に暴露後の衝撃値は13J/cm2と低い。No. 1 is a case where a surface layer portion (alloy concentrated layer) is not formed, and the impact value after exposure to a hydrogen environment is as low as 13 J / cm 2 .
No.2は、表層部の厚みは本発明の範囲であるが、Mo当量が低く、水素環境に暴露後の衝撃値も低い。 No. No. 2, the thickness of the surface layer portion is within the range of the present invention, but the Mo equivalent is low, and the impact value after exposure to a hydrogen environment is also low.
No.3は、Mo当量は本発明の範囲であるが、表層部の偏析が本発明の範囲を外れており、水素環境に暴露後の衝撃値が低い。 No. No. 3, Mo equivalent is within the scope of the present invention, but segregation of the surface layer part is outside the scope of the present invention, and the impact value after exposure to a hydrogen environment is low.
No.4〜8は、表層部の厚みとMo当量が本発明の範囲を満たし、衝撃値も16J/cm2以上と高い。No. As for 4-8, the thickness and Mo equivalent of a surface layer part satisfy | fill the range of this invention, and an impact value is as high as 16 J / cm < 2 > or more.
No.9,10,15は、Mo当量が本発明の範囲を外れている。 No. 9, 10, and 15 have Mo equivalents outside the scope of the present invention.
No.11〜14は本発明の範囲であり、水素環境に暴露後の衝撃値が高い。 No. 11-14 is the range of this invention, and the impact value after exposure to a hydrogen environment is high.
母材となるスラブに、真空アーク溶解、鍛造、切削の工程で作製したTi−6Al−4Vの70mm厚を用いた。このチタンスラブを用いて、スラブ表面にMo、V、Nbの合金元素素材を散布し、溶融再凝固させて、スラブ表層全面に合金元素が固溶した領域(表層部)を深さ3〜10mm形成させた。 A 70 mm thickness of Ti-6Al-4V produced by vacuum arc melting, forging and cutting processes was used for the slab to be the base material. Using this titanium slab, Mo, V, and Nb alloy element materials are sprinkled on the slab surface, melted and re-solidified, and a region (surface layer part) where the alloy element is solid solution on the entire surface of the slab is 3 to 10 mm deep. Formed.
当該スラブを950℃に加熱し、厚さ5mmまで熱間圧延した後に、大気雰囲気中で700℃、2時間の熱処理を行い、次いで、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。 The slab is heated to 950 ° C. and hot-rolled to a thickness of 5 mm, then heat-treated at 700 ° C. for 2 hours in an air atmosphere, and then descaled on both the front and back surfaces using shot blasting and nitric hydrofluoric acid. Processed.
本発明に加え、表層部を有さないチタンスラブを用いて同様に、熱間圧延、熱処理、デスケーリングの工程を行い、比較例を作製した。 In addition to the present invention, using a titanium slab having no surface layer portion, similarly, hot rolling, heat treatment, and descaling steps were performed to produce a comparative example.
実施例1と同様に、水素脆性を衝撃値で評価した。表層に溶融層を形成していないチタン板を、水素環境に暴露しないで衝撃値を評価すると、20J/cm2であった。その値から、30%以上低下した14J/cm2以下の場合を水素脆化の基準として、不合格と判定した。As in Example 1, hydrogen embrittlement was evaluated by impact value. When the impact value was evaluated without exposing a titanium plate having a molten layer on the surface layer to a hydrogen environment, it was 20 J / cm 2 . From the value, the case of 14 J / cm 2 or less, which was reduced by 30% or more, was determined to be unacceptable on the basis of hydrogen embrittlement.
上記の結果を表2にまとめて示す。 The above results are summarized in Table 2.
No.1は、表層部(合金濃化層)を形成しない場合であり、水素環境に暴露後の衝撃値は14J/cm2と低い。No. 1 is a case where a surface layer portion (alloy concentrated layer) is not formed, and the impact value after exposure to a hydrogen environment is as low as 14 J / cm 2 .
No.2〜4は、表層部の厚みとMo当量が本発明の範囲であり、水素環境に暴露後の衝撃値も15J/cm2以上であり高い。No. In Nos. 2 to 4, the thickness of the surface layer portion and the Mo equivalent are within the range of the present invention, and the impact value after exposure to a hydrogen environment is 15 J / cm 2 or more and is high.
母材となるスラブに、真空アーク溶解、鍛造、切削の工程で作製した純チタン2種の70mm厚を用いた。このチタンスラブを用いて、スラブ表面にMoの合金元素素材を散布し、溶融再凝固させて、スラブ表層全面に合金元素が固溶した領域(表層部)を深さ3〜10mm形成させた。 Two types of 70 mm thick pure titanium produced by vacuum arc melting, forging, and cutting processes were used for the slab to be the base material. Using this titanium slab, an alloy element material of Mo was sprayed on the surface of the slab and melted and re-solidified to form a region (surface layer portion) having a depth of 3 to 10 mm in which the alloy element was dissolved in the entire surface of the slab.
当該スラブを850℃に加熱し、厚さ4.8〜5.0mmまで熱間圧延した後に、真空雰囲気で、600〜650℃、4〜10時間の焼鈍を施した。次いで、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。 The slab was heated to 850 ° C. and hot-rolled to a thickness of 4.8 to 5.0 mm, and then annealed at 600 to 650 ° C. for 4 to 10 hours in a vacuum atmosphere. Next, descaling treatment was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid.
上記で製造した各チタン板を、水素吸収環境である1体積%H2+99体積%Ar雰囲気で500℃、5時間暴露した。Each titanium plate produced above was exposed at 500 ° C. for 5 hours in a 1% by volume H 2 + 99% by volume Ar atmosphere as a hydrogen absorption environment.
各チタン板の表層3,4の合金元素濃度は、EPMAを用いて、表面から合金濃化部の下端までの範囲を線分析した結果の平均値である。残部は、OやCなどのコンタミ成分を除いて、工業用純チタンに含まれる成分である。 The alloy element concentration of the surface layers 3 and 4 of each titanium plate is an average value as a result of performing a line analysis on the range from the surface to the lower end of the alloy concentrated portion using EPMA. The remainder is a component contained in industrial pure titanium except for contamination components such as O and C.
各チタン板から、板厚(4.8〜5.0mm)×10mm×55mm、2mmVノッチの衝撃試験片を作製した。試験片の長手方向を圧延方向とし、ノッチの方向は板厚貫通方向とした。水素脆性は衝撃値で評価した。 From each titanium plate, an impact test piece having a plate thickness (4.8 to 5.0 mm) × 10 mm × 55 mm and 2 mmV notch was produced. The longitudinal direction of the test piece was the rolling direction, and the notch direction was the plate thickness penetration direction. Hydrogen brittleness was evaluated by impact value.
表層に溶融層を形成していないチタン板を、水素環境に暴露しないで衝撃値を評価すると、2.7J/cm2であった。その値から、30%以上低下した1.9J/cm2以下の場合を水素脆化の基準として、不合格と判定した。When the impact value was evaluated without exposing the titanium plate having the melt layer formed on the surface layer to a hydrogen environment, it was 2.7 J / cm 2 . From the value, the case of 1.9 J / cm 2 or less, which was reduced by 30% or more, was determined to be unacceptable on the basis of hydrogen embrittlement.
上記の結果を表3にまとめて示す。 The results are summarized in Table 3.
No.1〜3は、表層部の厚みとMo当量が本発明の範囲であり、水素環境に暴露後の衝撃値も15J/cm2以上であり高い。No. 1 to 3, the surface layer thickness and Mo equivalent are within the scope of the present invention, and the impact value after exposure to a hydrogen environment is 15 J / cm 2 or more, which is high.
1.熱間圧延用チタン材
1a,1aa,1ab.表層部
1b.母材
2.チタン複合材
3,4.表層(表面層)
5.内層1. Titanium materials for
5). Inner layer
Claims (2)
前記母材の少なくとも一方の圧延面に形成された前記母材とは異なる化学組成を有する表層部と、を備える熱間圧延用チタン材であって、
前記表層部が、その厚さが2.0〜20.0mm、全厚さに占める割合が片面あたり40%以下であり、
前記表層部の化学組成が、母材からの増加含有量として、
Mo、VおよびNbから選択される一種以上を含有し、下記(1)式で算出されるMo当量が8.0〜20.0であり、
前記表層部に含まれる元素の含有量を複数点測定したとき、母材からの増加含有量の平均値CAVEと各測定箇所における母材からの増加含有量C0との関係:|CAVE−C0|/CAVE×100が40%以下である、
熱間圧延用チタン材。
Mo当量=Mo含有量(質量%)+V含有量(質量%)/1.5+Nb含有量(質量%)/3.6 (1)A base material made of pure titanium or titanium alloy for industrial use;
A titanium layer for hot rolling comprising a surface layer portion having a chemical composition different from that of the base material formed on at least one rolling surface of the base material,
The surface layer portion has a thickness of 2.0 to 20.0 mm, and the proportion of the total thickness is 40% or less per side,
The chemical composition of the surface layer part is an increased content from the base material,
One or more selected from Mo, V and Nb are contained, and the Mo equivalent calculated by the following formula (1) is 8.0 to 20.0.
When the content of the element contained in the surface layer is measured at a plurality of points, the relationship between the average value C AVE of the increased content from the base material and the increased content C 0 from the base material at each measurement location: | C AVE −C 0 | / C AVE × 100 is 40% or less,
Titanium material for hot rolling.
Mo equivalent = Mo content (% by mass) + V content (% by mass) /1.5+Nb content (% by mass) /3.6 (1)
前記他の表層部が、前記表層部と同一の化学組成および金属組織を備える、
請求項1に記載の熱間圧延用チタン材。
Other surface layer portions are formed on surfaces other than the rolling surface of the base material,
The other surface layer portion has the same chemical composition and metal structure as the surface layer portion.
The titanium material for hot rolling according to claim 1.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015149403 | 2015-07-29 | ||
JP2015149403 | 2015-07-29 | ||
PCT/JP2016/072343 WO2017018521A1 (en) | 2015-07-29 | 2016-07-29 | Titanium material for hot rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6086178B1 true JP6086178B1 (en) | 2017-03-01 |
JPWO2017018521A1 JPWO2017018521A1 (en) | 2017-07-27 |
Family
ID=57884516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016567285A Active JP6086178B1 (en) | 2015-07-29 | 2016-07-29 | Titanium material for hot rolling |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6086178B1 (en) |
TW (1) | TWI617671B (en) |
WO (1) | WO2017018521A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111560539A (en) * | 2020-06-04 | 2020-08-21 | 成都先进金属材料产业技术研究院有限公司 | Preparation method of consumable electrode for smelting TB14 titanium alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009041065A (en) * | 2007-08-08 | 2009-02-26 | Nippon Steel Corp | Titanium alloy for heat-resistant members with excellent high-temperature fatigue strength and creep resistance |
WO2014163087A1 (en) * | 2013-04-01 | 2014-10-09 | 新日鐵住金株式会社 | Titanium cast piece for hot rolling use, and method for producing same |
JP2014233753A (en) * | 2013-06-05 | 2014-12-15 | 新日鐵住金株式会社 | Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same |
-
2016
- 2016-07-29 WO PCT/JP2016/072343 patent/WO2017018521A1/en active Application Filing
- 2016-07-29 TW TW105124208A patent/TWI617671B/en not_active IP Right Cessation
- 2016-07-29 JP JP2016567285A patent/JP6086178B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009041065A (en) * | 2007-08-08 | 2009-02-26 | Nippon Steel Corp | Titanium alloy for heat-resistant members with excellent high-temperature fatigue strength and creep resistance |
WO2014163087A1 (en) * | 2013-04-01 | 2014-10-09 | 新日鐵住金株式会社 | Titanium cast piece for hot rolling use, and method for producing same |
JP2014233753A (en) * | 2013-06-05 | 2014-12-15 | 新日鐵住金株式会社 | Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2017018521A1 (en) | 2017-02-02 |
TW201710517A (en) | 2017-03-16 |
JPWO2017018521A1 (en) | 2017-07-27 |
TWI617671B (en) | 2018-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6658756B2 (en) | Titanium composite materials and titanium materials for hot rolling | |
JP6787418B2 (en) | Titanium material for hot rolling | |
JP6515359B2 (en) | Titanium composite material and titanium material for hot rolling | |
TWI605130B (en) | Titanium composites and titanium materials for hot rolling | |
JP6128289B1 (en) | Titanium composite and titanium material for hot rolling | |
JP6787428B2 (en) | Titanium material for hot rolling | |
JP6086178B1 (en) | Titanium material for hot rolling | |
JP6137423B1 (en) | Titanium composite and titanium material for hot rolling | |
JP6515357B2 (en) | Titanium material for hot rolling | |
JP6848991B2 (en) | Titanium material for hot rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20161226 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170117 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6086178 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |