JPH01287243A - Ti-al intermetallic compound containing mn and nb and its manufacture - Google Patents

Ti-al intermetallic compound containing mn and nb and its manufacture

Info

Publication number
JPH01287243A
JPH01287243A JP11624588A JP11624588A JPH01287243A JP H01287243 A JPH01287243 A JP H01287243A JP 11624588 A JP11624588 A JP 11624588A JP 11624588 A JP11624588 A JP 11624588A JP H01287243 A JPH01287243 A JP H01287243A
Authority
JP
Japan
Prior art keywords
intermetallic compound
temperature
oxidation resistance
annealing
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11624588A
Other languages
Japanese (ja)
Inventor
Toshihiro Hanamura
年裕 花村
Mitsuru Yano
谷野 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11624588A priority Critical patent/JPH01287243A/en
Publication of JPH01287243A publication Critical patent/JPH01287243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To manufacture the title intermetallic compound having excellent high temp. oxidation resistance and cold ductility by executing melting, solidifying and systematizing annealing to Ti, Al, Mn, and Nb compounded with the specific ratios in the atmosphere of an inert gas. CONSTITUTION:Ti, 45-50%, by atom, 60-50% Al, 1-4% Mn, and 0.1-2% Nb are compounded. The compound is heated to about 1,400-1,500 deg.C and is melted to solidify in the environment once substituted into the atmosphere of an Ar gas at about 10<-6>Torr. The compound is then subjected to ordered annealing at about >=800 deg.C, preferably at about 900-1,000 deg.C for about >=24hr in the atmosphere of an inert gas to prepare a Ti-Al intermetallic compound having the crystal structure of L 10 type ordered structure. By this method, the Ti-Al intermetallic compound riched in high temp. oxidation resistance, having high cold ductility and retaining high temp. strength can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温耐熱強度材(航空機用タービンエンジン、
発電用ガスクーヒン、自動車用エンジン、高速回転体)
に用いるのに適したTi−fV系金金属間化合物常温延
性、高温耐酸化性を向上したMn、Nb添加Ti−Al
系金属間化合物及びその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to high-temperature heat-resistant strength materials (aircraft turbine engines,
(Gaskuhin for power generation, automobile engines, high-speed rotating bodies)
Ti-fV gold intermetallic compound suitable for use in Mn and Nb-added Ti-Al with improved room temperature ductility and high temperature oxidation resistance
This invention relates to intermetallic compounds and their production methods.

〔従来の技術] Ti−Al系金属間化合物は、金属材料としては、はぼ
最高の高温比強度を持ち、しかも耐食性が高く、軽推の
材料である。Mctallurgical Trans
−action、Vol、 6八(1,975) p、
1991にば、800℃で40kg/−の高温強度が得
られたことが報告されている。そこで、これらの特性を
利用してTi−Al系金属間化合物はガスクーヒン部品
、自動車用エンジンのバルブ、ピストンへの適用、高温
用タイスや軸受部品などへの適用が好適と考えられてき
た。
[Prior Art] Ti-Al intermetallic compounds have the highest high-temperature specific strength among metal materials, have high corrosion resistance, and are lightweight materials. Mctallurgical Trans
-action, Vol. 68 (1,975) p.
In 1991, it was reported that a high temperature strength of 40 kg/- was obtained at 800°C. Therefore, by utilizing these properties, it has been thought that Ti-Al intermetallic compounds are suitable for application to gasket parts, automobile engine valves, pistons, high-temperature ties, bearing parts, and the like.

Ti−AII系金属間化合物は状態図」二である組成幅
をもちT+40〜50原子%、Δ160〜50原子%で
熱平衡状態においてLl、型構造(基本的には面心正方
構造であるが(001)方向にTiの層、AIの層が交
互に並ぶ構造)の単一相となる。このため単結晶状態で
は温度の上昇と共に強度が増加する異常強化現象が発見
されている。そして多結晶体では高温でも強度が低下し
ないことが知られている。しかしながらTi−へl系金
属間化合物の欠点は常温から700℃付近まで延性が低
いことであり室温で圧縮率が0.4%、700℃で1.
1%程度であった。
Ti-AII intermetallic compounds have a composition range in phase diagram 2, with T + 40 to 50 atomic % and Δ 160 to 50 atomic %, in a thermal equilibrium state, they have an Ll type structure (basically a face-centered square structure, but ( It becomes a single phase structure in which Ti layers and AI layers are arranged alternately in the 001) direction. For this reason, an abnormal strengthening phenomenon has been discovered in which the strength increases with increasing temperature in the single crystal state. It is known that polycrystalline materials do not lose their strength even at high temperatures. However, the drawback of Ti-Helium intermetallic compounds is that their ductility is low from room temperature to around 700°C, with a compressibility of 0.4% at room temperature and 1.5% at 700°C.
It was about 1%.

実用材料としてのTi−Al系金属間化合物の開発上の
困難は常温延性を如何に確保するかであったがMn添加
が効果があることが発見されている(特開昭62−21
5号公報)。しかし、Mn添加には高温耐酸化性が劣化
するという欠点がある(部具ら、日本金属学会シンポジ
ウム−規則合金・金属間化合物の塑性変形−1986年
7月16日、p13)ことが報告されている。
The difficulty in developing Ti-Al intermetallic compounds as practical materials was how to ensure room-temperature ductility, but it was discovered that adding Mn was effective (Japanese Patent Laid-Open No. 62-21
Publication No. 5). However, it has been reported that Mn addition has the disadvantage of deteriorating high-temperature oxidation resistance (Buppu et al., Japan Institute of Metals Symposium - Plastic Deformation of Ordered Alloys and Intermetallic Compounds - July 16, 1986, p. 13). ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Ti−Al系金属間化合物は、軽量で、耐熱温度が高く
、耐食性も高いため、高温で使用するタービンブレード
などに好適であるが、常温での延性が小さい(圧縮率0
.4%)ため、圧延、鍛造などによる成形が困難であり
、さらに常温での安全面における信頼性に劣り、実用化
が阻まれていた。本発明はこれらの問題点を克服した高
温耐熱強度材であるTi−Al系金属間化合物を開発す
ることを課題とする。
Ti-Al intermetallic compounds are lightweight, have a high heat resistance, and have high corrosion resistance, so they are suitable for turbine blades used at high temperatures, but they have low ductility at room temperature (compressibility of 0).
.. 4%), making it difficult to form by rolling, forging, etc., and also having poor reliability in terms of safety at room temperature, hindering its practical application. An object of the present invention is to develop a Ti-Al intermetallic compound which is a high-temperature heat-resistant and strong material that overcomes these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の問題点を解決するTi40〜50原子%
、Al60〜50原子%にMn1〜4原子%、Nb0.
1〜2原子%を含有する結晶構造がLl。型規則構造の
高温耐酸化性に富み、常温延性が高く、なおかつ高温強
度を失わないTi−#J系金金属間化合物提供するもの
である。
The present invention solves the above problems by using Ti40 to 50 atomic %.
, Al60-50 at%, Mn1-4 at%, Nb0.
The crystal structure containing 1 to 2 atomic % is Ll. The present invention provides a Ti-#J-based gold intermetallic compound having a regular structure, excellent in high-temperature oxidation resistance, high room-temperature ductility, and not losing high-temperature strength.

また本発明は不活性ガス雰囲気中でTi40〜50原子
%、Al60〜50原子%にMn1〜4原子%、NbO
,1〜2原子%を含有させたものを溶融、凝固した後、
規則化焼鈍を行って作製することを特徴とするMn、 
Nb添加Ti−kl系金属間化合物材料の製造方法を提
供するものである。
In addition, the present invention provides 40 to 50 atomic % of Ti, 60 to 50 atomic % of Al, 1 to 4 atomic % of Mn, and 1 to 4 atomic % of NbO in an inert gas atmosphere.
, after melting and solidifying the material containing 1 to 2 atom%,
Mn characterized by being produced by performing regularization annealing,
A method for manufacturing an Nb-added Ti-kl intermetallic compound material is provided.

Ti量を40〜50原子%の範囲としたのはTi −A
l系金属間化合物の単一相の組成域がこの幅をもってい
るためで、この組成であれば他の相を析出させずに均一
化焼鈍により、Ti−IV系金金属間化合物単相で得る
ことができるからである。
The reason why the amount of Ti was set in the range of 40 to 50 at% was because Ti-A
This is because the composition range of a single phase of the I-IV series gold intermetallic compound has this width.With this composition, a single phase of the Ti-IV series gold intermetallic compound can be obtained by homogenizing annealing without precipitating other phases. This is because it is possible.

1〜4原子%Mn、0.1〜2原子%Nbが存在すると
これによって積層欠陥エネルギーを低下させ双晶変形機
構を活発にして常温延性を向上させると共に、Ti酵化
物の成長を止めて高温耐酸化性を向上させる。
The presence of 1 to 4 atom% Mn and 0.1 to 2 atom% Nb lowers the stacking fault energy and activates the twin deformation mechanism to improve room-temperature ductility, and also stops the growth of Ti fermentation products and improves high-temperature ductility. Improves oxidation resistance.

こうして作製したMn、 Nbを含有するTi−IV系
金金属間化合物常温で30%近くの、また800℃で4
0%近くの圧縮率を示し、Ti−Al系金属間化合物の
問題点である常温から700℃付近の低延性を改善した
ものである。
The Ti-IV gold intermetallic compound containing Mn and Nb produced in this way has a concentration of nearly 30% at room temperature and 4% at 800°C.
It exhibits a compressibility of nearly 0% and improves the low ductility from room temperature to around 700°C, which is a problem with Ti-Al intermetallic compounds.

本発明のMn、 Nb添加Ti−Al系金属間化合物の
製造方法はTi40〜50原子%、IV60〜50原子
%にMn1〜4原子%、Nb0.1〜2原子%を添加し
たものを一旦真空(10””torr以上)にしArガ
ス雰囲気に置換した環境下で1400℃〜1500℃に
加熱し、溶融凝固した後、規則化のため、前記と同様の
不活性ガス雰囲気中において規則化焼鈍を行う。
The method for producing the Mn and Nb-added Ti-Al intermetallic compound of the present invention is to add 1 to 4 at% of Mn and 0.1 to 2 at% of Nb to 40 to 50 at% of Ti and 60 to 50 at% of IV, and then vacuum (more than 10" torr) and heated to 1400 to 1500 °C in an Ar gas atmosphere to melt and solidify, and then undergo ordering annealing in the same inert gas atmosphere as above for ordering. conduct.

これはLl、型構造を得るためにはTiとAIを高温で
拡散させねばならないからである。規則化焼鈍の際の温
度としては800℃以上でTi−/V系金金属間化合物
融点以下の単一相域であれば目的を達することができる
が、この中でも900〜1100’Cの温度範囲が望ま
しい。また、加熱時間としては、規則化のための原子拡
散に時間が必要であるため高温では短時間となるが、完
全に規則化させるためには24時間以上とすることが望
ましい。得られたMn、Nb添加Ti−IV系金金属間
化合物規則化していることはX線デイフラクトメーター
により、各ピークがTi−IV系金金属間化合物Ll。
This is because Ti and AI must be diffused at high temperatures in order to obtain the Ll type structure. The purpose can be achieved as long as the temperature during ordering annealing is in a single phase range of 800°C or higher and below the melting point of the Ti-/V-based gold intermetallic compound, but within this range, temperatures in the range of 900 to 1100'C are suitable. is desirable. Further, the heating time is short at high temperatures because time is required for atomic diffusion for ordering, but it is desirable to set it to 24 hours or more in order to achieve complete ordering. The obtained Mn and Nb-added Ti-IV gold intermetallic compound was found to be ordered by an X-ray diffractometer, and each peak was found to be Ti-IV gold intermetallic compound Ll.

型構造に相当することを確認すればよい。Just make sure that it corresponds to the type structure.

次に本発明のMn、 Nb添加Ti−へl系金属間化合
物で常温延性が向上する理由について説明する。
Next, the reason why the room-temperature ductility is improved by the Mn- and Nb-added Ti-heli-based intermetallic compound of the present invention will be explained.

Mn、 Nb添加により、Ti−Al系金属間化合物の
積層欠陥エネルギーが低下するものと考えられる。
It is thought that the addition of Mn and Nb lowers the stacking fault energy of the Ti-Al intermetallic compound.

それは変形機構において双晶変形、とくに交叉双晶が活
発になることにより電子顕微鏡観察、超高圧電子顕微鏡
内その場観察等で確かめられている。
This has been confirmed by electron microscopy observation and in-situ observation inside an ultra-high-voltage electron microscope, due to the activation of twinning deformation, especially cross twinning, in the deformation mechanism.

発明者らは本合金について電子顕微鏡によるコントラス
ト実験により塑性変形進行中においてこの交叉双晶は双
晶境界上に転位をpile−upさせずに逆に転位反応
によりずベリ転位を形成し延性能を高めていることを確
認している。
The inventors conducted a contrast experiment using an electron microscope on this alloy and found that during the progress of plastic deformation, these crossed twins do not pile up dislocations on the twin boundaries, but conversely form Berri dislocations without causing a dislocation reaction, improving ductility. I have confirmed that it is increasing.

一例として3種類の試料TiA/、、TiAl−4at
%Mn。
As an example, three types of samples TiA/, TiAl-4at
%Mn.

TiAJ  2at%Mn−1at%Nbの均−化焼鈍
後の光学顕微鏡組織写真を第1図に示す。Mn、 Nb
の併用添加により、双晶の発生が活発になっていること
が見られる。
FIG. 1 shows an optical micrograph of the structure of TiAJ 2at%Mn-1at%Nb after equalization annealing. Mn, Nb
It can be seen that the generation of twins becomes more active due to the combined addition of .

次にNb、 Mnの併用添加により高温耐酸化性が向上
する理由について述べる。第2図に静的空気中にて80
0℃に保持した3種類の試料TiAl、TiAl−4a
む%Mn、、TiAl−2at%Mn−fat%Nbの
酸化増量変化、第3図にこれらの試料において800℃
3200時間保持によってできた酸化膜のEPMA分析
結果を示す。第2図からMn添加によって耐酸化性が劣
化するがMn、 Nbの併用添加において耐酸化性が向
上することが示される。
Next, we will discuss the reason why high temperature oxidation resistance is improved by the combined addition of Nb and Mn. Figure 2 shows 80° in static air.
Three types of samples TiAl and TiAl-4a kept at 0°C
%Mn, , TiAl-2at%Mn-fat%Nb.
The EPMA analysis results of the oxide film formed by holding for 3200 hours are shown. FIG. 2 shows that the oxidation resistance deteriorates with the addition of Mn, but the oxidation resistance improves with the combined addition of Mn and Nb.

第3図の各EPMA分析結果において右はじの破線より
右側が71〜リツクスであり、左側が酸化物にあたる。
In each EPMA analysis result in FIG. 3, the right side of the dashed line on the right side corresponds to 71~lix, and the left side corresponds to the oxide.

まず、TiAlの場合はマトリックスに続いて酸化層と
のクラックと思われる部分が見られ、さらに続いてTi
酸化物域、へl酸化物とTi酸化物の共存域、最後に再
びTi酸化物のみの領域となっている。つまりTi酸化
物がマトリックス側と外表面側に分かれ、その中心にI
VV化物とTi酸化物の共存域があるのが特徴である。
First, in the case of TiAl, we can see what appears to be a crack with the oxide layer following the matrix, and then
There is an oxide region, a region where Hel oxide and Ti oxide coexist, and finally a region where only Ti oxide exists again. In other words, the Ti oxide is divided into the matrix side and the outer surface side, and the I
It is characterized by a coexistence region of VV compound and Ti oxide.

これに対し、TiAl−4at%Mnではマトリックス
に続き、Mnの偏析域があり、それに続く層はT i 
klの場合と同じTi酸化物域、へ!酸化物とTi酸化
物の共存域、Ti酸化物域となっている。この結果より
Mn添加TiAlにおいて高温耐酸化性が劣化する理由
として、Mnのマトリックスと酸化膜との境界における
偏析が酸化膜とマトリックスの密着性を劣化させている
ことが考えられる。
On the other hand, in TiAl-4at%Mn, there is a Mn segregation region following the matrix, and the subsequent layer is Ti
The same Ti oxide region as in the case of kl, to! This is a coexistence region of oxide and Ti oxide, and a Ti oxide region. From this result, it is considered that the reason why high-temperature oxidation resistance deteriorates in Mn-doped TiAl is that segregation of Mn at the boundary between the matrix and the oxide film deteriorates the adhesion between the oxide film and the matrix.

Mn、 Nb併用添加Ti八へでばTi1V−4at%
Mnの場合に見られたマトリックスと酸化膜との境界に
おけるMnの偏析が見られず、最外表面においてMnが
出ているのが特徴である。またTi−richの酸化物
とAf−richの酸化物との分離が起こっており、N
bはTi−rich酸化物側に現われている。この様に
、Mnのマトリックス近傍の偏析が無くなったことが高
温耐酸化性向上の要因であると推定される。
If Mn and Nb are added together, Ti1V-4at%
The characteristic is that the segregation of Mn at the boundary between the matrix and the oxide film, which was observed in the case of Mn, is not observed, and Mn is exposed at the outermost surface. Also, separation between Ti-rich oxide and Af-rich oxide occurs, and N
b appears on the Ti-rich oxide side. Thus, it is presumed that the elimination of Mn segregation near the matrix is a factor in the improvement in high-temperature oxidation resistance.

(実施例〕 次に本発明の実施例を示す。(Example〕 Next, examples of the present invention will be shown.

純度99.8wt%のスポンジTi49.1at%(6
2,0wt%)、純度99.99 wt%のAJ49.
1at%(34,9wt%)にMn1.4at%(2w
t%) 、NbO,4at%(1wt%)を添加したち
のを真空溶解炉を用い、−旦真空(10−’torr以
上)にし、Arガス雰囲気に置換した環境下で1500
℃に加熱し、溶融凝固した後、規則化のため、前記と同
様の不活性ガス雰囲気中において規則化焼鈍を行った。
Sponge Ti 49.1 at% (6
2.0 wt%), purity 99.99 wt% AJ49.
1at% (34.9wt%) and Mn1.4at% (2w
t%), NbO, 4at% (1wt%) was added using a vacuum melting furnace, the temperature was reduced to a vacuum (10-'torr or more), and the atmosphere was replaced with an Ar gas atmosphere at 1500 °C.
After heating to 0.degree. C. to melt and solidify, ordering annealing was performed in the same inert gas atmosphere as described above for ordering.

規則化焼鈍の際の温度としては800℃以上でT i 
−IV系金金属間化合物融点以下の単一相域であれば目
的を達することができるが、この中でも1000℃の温
度範囲を用いた。また、加熱時間としては、完全に規則
化させるために72時間とした。得られたMn、Nb添
加TiAl試料が規則化していることはX線デイフラク
トメーターにより、各ピークがTiAl試料のLl。型
構造に相当することを確認した。
The temperature during ordering annealing is 800°C or higher.
Although the objective can be achieved in a single phase range below the melting point of the -IV series gold intermetallic compound, a temperature range of 1000°C was used. Further, the heating time was set to 72 hours to ensure complete regularization. The obtained Mn and Nb-added TiAl sample was found to be ordered by an X-ray diffractometer, and each peak was Ll of the TiAl sample. We confirmed that it corresponds to the type structure.

表1にこうして得られた試料から放電加工にて切り出し
た5φX 5 mmの試料を用いて常温圧縮試験を行っ
た耐力及び圧縮率の結果をTiAl試料及びMn、、N
b添加Ti/V試料について示す。これよりTiA/試
料と比較してMn、 Nb添加により室温延性が大幅に
向上していることが見られる。また、高温耐酸化性の向
上については第2図に示した通りである。
Table 1 shows the yield strength and compressibility results of a room temperature compression test using a 5φ x 5 mm sample cut out by electrical discharge machining from the sample thus obtained.
The figure shows the b-added Ti/V sample. It can be seen from this that the addition of Mn and Nb significantly improves the room temperature ductility compared to the TiA/sample. Furthermore, the improvement in high temperature oxidation resistance is as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば高温耐酸化性に富み、常温延性が高く、
なおかつ高温強度を失なわないT i−/V系金金属間
化合物得ることができる。
According to the present invention, it has high high temperature oxidation resistance, high room temperature ductility,
Furthermore, it is possible to obtain a Ti-/V-based gold intermetallic compound that does not lose its high-temperature strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(aL (b)、 (C)はTiAl、 TiA
l−4at%Mn、TiAl−2at%Mn−fat%
Nbの均−化焼鈍後の金属組織を示す光学顕微鏡組織写
真、第2図は静的空気中にて800℃に保持した3種類
の試料の酸化増量変化を示す図、第3図(a)、 (b
)、 (C)はこれら試料において800℃,200時
間保持によってできた酸化膜のEPMA分析結果を示す
図である。 特許出願人 新日本製鐵株式会社
Figure 1 (aL (b), (C) are TiAl, TiA
l-4at%Mn, TiAl-2at%Mn-fat%
Optical microscopic microstructure photograph showing the metal structure after equalization annealing of Nb, Figure 2 is a diagram showing changes in oxidation weight gain of three types of samples held at 800°C in static air, Figure 3 (a) , (b
) and (C) are diagrams showing the EPMA analysis results of oxide films formed by holding these samples at 800° C. for 200 hours. Patent applicant Nippon Steel Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)Ti40〜50原子%、Al60〜50原子%、
Mn1〜4原子%及びNb0.1〜2原子%含有する結
晶構造がL1_0型規則構造であるTi−Al系金属間
化合物。
(1) Ti40-50 at%, Al60-50 at%,
A Ti-Al intermetallic compound containing 1 to 4 at% of Mn and 0.1 to 2 at% of Nb and having a crystal structure of an L1_0 type regular structure.
(2)Ti45〜50原子%、Al50〜55原子%の
原子比率から成るマトリックスにMn1〜4原子%及び
Nb0.1〜2原子%含有する800℃における高温高
耐酸化性かつ常温圧縮率が30%以上のL1_0型規則
構造をもつTi−Al系金属間化合物。
(2) Contains 1 to 4 at% of Mn and 0.1 to 2 at% of Nb in a matrix consisting of 45 to 50 at% of Ti and 50 to 55 at% of Al. High temperature high oxidation resistance at 800°C and room temperature compressibility of 30. % or more of L1_0 type ordered structure.
(3)Ti40〜50原子%、Al60〜50原子%、
Mn1〜4原子%及びNb0.1〜2原子%とを不活性
ガス雰囲気中で溶融、凝固した後、規則化焼鈍を行うこ
とを特徴とする高温強度材料用Ti−Al系金属間化合
物の製造方法。
(3) Ti40-50 at%, Al60-50 at%,
Production of a Ti-Al intermetallic compound for high-temperature strength materials, characterized by melting and solidifying 1 to 4 atomic % of Mn and 0.1 to 2 atomic % of Nb in an inert gas atmosphere, and then subjecting it to ordering annealing. Method.
JP11624588A 1988-05-13 1988-05-13 Ti-al intermetallic compound containing mn and nb and its manufacture Pending JPH01287243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11624588A JPH01287243A (en) 1988-05-13 1988-05-13 Ti-al intermetallic compound containing mn and nb and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11624588A JPH01287243A (en) 1988-05-13 1988-05-13 Ti-al intermetallic compound containing mn and nb and its manufacture

Publications (1)

Publication Number Publication Date
JPH01287243A true JPH01287243A (en) 1989-11-17

Family

ID=14682374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11624588A Pending JPH01287243A (en) 1988-05-13 1988-05-13 Ti-al intermetallic compound containing mn and nb and its manufacture

Country Status (1)

Country Link
JP (1) JPH01287243A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118043A (en) * 1988-10-03 1990-05-02 General Electric Co <Ge> Titanium-aluminum alloy improved with manganese niobium
JPH0466630A (en) * 1990-07-05 1992-03-03 Honda Motor Co Ltd Ti-al intermetallic compound excellent in hot workability
JPH05200529A (en) * 1991-08-29 1993-08-10 General Electric Co <Ge> Directional coagulation casting of aluminum titanium
JPH0711369A (en) * 1991-08-29 1995-01-13 Natl Res Inst For Metals Polycrystal body of high ductility ti-al intermetallic compound
US5451366A (en) * 1992-07-17 1995-09-19 Sumitomo Light Metal Industries, Ltd. Product of a halogen containing Ti-Al system intermetallic compound having a superior oxidation and wear resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118043A (en) * 1988-10-03 1990-05-02 General Electric Co <Ge> Titanium-aluminum alloy improved with manganese niobium
JPH0466630A (en) * 1990-07-05 1992-03-03 Honda Motor Co Ltd Ti-al intermetallic compound excellent in hot workability
JPH05200529A (en) * 1991-08-29 1993-08-10 General Electric Co <Ge> Directional coagulation casting of aluminum titanium
JPH0711369A (en) * 1991-08-29 1995-01-13 Natl Res Inst For Metals Polycrystal body of high ductility ti-al intermetallic compound
US5451366A (en) * 1992-07-17 1995-09-19 Sumitomo Light Metal Industries, Ltd. Product of a halogen containing Ti-Al system intermetallic compound having a superior oxidation and wear resistance

Similar Documents

Publication Publication Date Title
KR102236938B1 (en) Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same
US5741376A (en) High temperature melting niobium-titanium-chromium-aluminum-silicon alloys
JP2006144116A (en) STEEL SHEET HAVING HIGH Al CONTENT AND EXHIBITING EXCELLENT WORKABILITY AND METHOD FOR PRODUCTION THEREOF
KR20040007212A (en) Nickel base superalloys and turbine components fabricated therefrom
WO2020189215A1 (en) Titanium aluminide alloy material for hot forging, forging method for titanium aluminide alloy material, and forged body
JP4756974B2 (en) Ni3 (Si, Ti) -based foil and method for producing the same
KR930006686B1 (en) Catalyst carrier and its production
EP2204466A1 (en) METHOD OF TREATING SURFACE OF Ti-Al ALLOY AND TI-AL ALLOY OBTAINED BY THE SAME
US4661169A (en) Producing an iron-chromium-aluminum alloy with an adherent textured aluminum oxide surface
JPH06145854A (en) Alumina nickel single crystal alloy composition and its preparation
JPH01287243A (en) Ti-al intermetallic compound containing mn and nb and its manufacture
KR102227228B1 (en) SELF-HEALING Ni ALLOY HAVING HIGH HEAT-RESISTANCE
US20060185772A1 (en) Process for producing heat-resistant intermetallic compound Ni3Al foil having room-temperature ductility and heat-resistant intermetallic compound Ni3Al foil having room-temperature ductility
JP2020026568A (en) Titanium alloy, method for producing the same and engine component including the same
JPH06116691A (en) Method for heat-treating ti-al intermetallic compound series ti alloy
RU2776521C1 (en) Titanium-based alloy and a product made of it
US5348594A (en) Ti-Al intermetallic compound with Se
JPH0250933A (en) Ti-al series intermetallic compound containing p and its manufacture
KR101923477B1 (en) Method for producing alloy comprising titanium nitride or titanium aluminide nitride
JP2711558B2 (en) TiA intermetallic compound and method for producing the same
FR2458596A1 (en) FERROUS ALLOYS HAVING LONG ORDINATED STRUCTURE, MANUFACTURED ARTICLES THEREFROM AND METHOD OF MAKING THE SAME
EP0349734B1 (en) Titanium-aluminium intermetallic compound and process for its preparation
CN115627386B (en) TiAlRe alloy suitable for rolling deformation and rolling method thereof
JP2914736B2 (en) Heat resistant stainless steel foil for combustion exhaust gas purification catalyst carrier with heat fatigue resistance
JPH04318138A (en) Tial-base alloy material excellnt in oxidation resistance at high temperature