JPH0250933A - Ti-al series intermetallic compound containing p and its manufacture - Google Patents

Ti-al series intermetallic compound containing p and its manufacture

Info

Publication number
JPH0250933A
JPH0250933A JP11092389A JP11092389A JPH0250933A JP H0250933 A JPH0250933 A JP H0250933A JP 11092389 A JP11092389 A JP 11092389A JP 11092389 A JP11092389 A JP 11092389A JP H0250933 A JPH0250933 A JP H0250933A
Authority
JP
Japan
Prior art keywords
temp
ductility
intermetallic compound
50atom
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11092389A
Other languages
Japanese (ja)
Inventor
Toshihiro Hanamura
年裕 花村
Mitsuru Yano
谷野 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPH0250933A publication Critical patent/JPH0250933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To manufacture the title compound having high ductility at ordinary temp. and having high temp. oxidizing resistance by regurating its crystal structure to an L10 type regular structure having specific compsn. contg. P. CONSTITUTION:To improve the high ductility at ordinary temp. and high temp. oxidizing resistance of a Ti-Al series intermetaillic compound suitable for a high temp. heat-resistant material, its structure is regulated to L10 type crystal one constituted of 40 to 50atom% Ti and 60 to 50atom% Al and contg. 100wt. ppm P. The Ti amt. is regulated to the range of 40 to 50atom% in order to obtain the Ti-Al intermetallic compound as a single phase by homogeneous annealing without depositing other phases. By the addition of 100 to 1000wt.ppm, P, stacking fault energy is lowered and twinning organization at the time of plastic deformation is activated to improve the ductility at ordinary temp. and the growth of Ti oxide is stopped to improve the high temp. oxidizing resistance; at this time, P should be uniformly dispersed over the whole of the sample without the generation of segregation. In such a manner, the Ti-Al series inermetallic compound having high ductility at ordinary temp. and furthermore retaining high temp. oxidizing resistance can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温耐熱強度材(航空機用タービンエンジン、
発電用ガスタービン、自動車用エンジン、高速回転体)
に用いるのに適したTi−Al系金属間化合物の常温延
性、高温耐酸化性を向上したP添加Ti−/V系金金属
間化合物びその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to high-temperature heat-resistant strength materials (aircraft turbine engines,
gas turbines for power generation, automobile engines, high-speed rotating bodies)
The present invention relates to a P-added Ti-/V-based gold intermetallic compound that has improved room-temperature ductility and high-temperature oxidation resistance, and a method for producing the same.

〔従来の技術〕[Conventional technology]

Ti−Al系金属間化合物は、金属材料としては、はぼ
最高の高温比強度を持ち、しかも耐食性が高く、軽量の
材料である。Metallurgical Trans
action、Vo10 6八(1975) p、19
91には、800°Cで40kg/−の高温強度が得ら
れたことが報告されている。そこで、これらの特性を利
用して、TiAl系金属間化合物はガスタービン部品、
自動車用エンジンのバルブ、ピストンへの適用、高温用
タイスや軸受部品などへの適用が好適と考えられてきた
Ti-Al intermetallic compounds have the highest specific strength at high temperatures among metal materials, have high corrosion resistance, and are lightweight materials. Metallurgical Trans
action, Vo10 68 (1975) p, 19
91, it was reported that a high temperature strength of 40 kg/- was obtained at 800°C. Therefore, by utilizing these properties, TiAl-based intermetallic compounds are used for gas turbine parts,
It has been considered suitable for application to automobile engine valves and pistons, high-temperature ties, bearing parts, etc.

Ti−N系金属間化合物は状態図上である組成幅をもち
Ti40〜50原子%、Af60〜50原子%で熱的原
子状態においてL10型構造(基本的には面心正方構造
であるが(001)方向にTiの層、IVO層が交互に
並ぶ構造)の単一相となる。このため、単結晶状態では
温度の上昇と共に強度が増加する異常強化現象が発見さ
れている。そして多結晶体では高温でも強度が低下しな
いことが知られている。しかしながらTi−Al系金属
間化合物の欠点は常温から700°C付近まで延性が低
いことであり、室温で圧縮率が0.4%、700°Cで
1.1%程度であった。
Ti-N intermetallic compounds have a certain composition range on the phase diagram, and have an L10 type structure (basically a face-centered tetragonal structure, but It becomes a single phase structure in which Ti layers and IVO layers are arranged alternately in the 001) direction. For this reason, an abnormal strengthening phenomenon has been discovered in which the strength increases with increasing temperature in the single crystal state. It is known that polycrystalline materials do not lose their strength even at high temperatures. However, the drawback of Ti-Al intermetallic compounds is that their ductility is low from room temperature to around 700°C, and the compressibility was 0.4% at room temperature and about 1.1% at 700°C.

実用材料としてのTi−Al系金属間化合物の開発上の
困難は常温延性を如何に確保するかであったがMn添加
が効果があることが発見されている(特開昭62−21
5号公報)。しかし、Mn添加には高温耐酸化性が劣化
するという欠点がある(鶴見ら、日本金属学会シンポジ
ウム−規則合金・金属間化合物の塑性変形−1986年
7月16日、p13)ことが報告されている。
The difficulty in developing Ti-Al intermetallic compounds as practical materials was how to ensure room-temperature ductility, but it was discovered that adding Mn was effective (Japanese Patent Laid-Open No. 62-21
Publication No. 5). However, it has been reported that Mn addition has the disadvantage of deteriorating high-temperature oxidation resistance (Tsurumi et al., Japan Institute of Metals Symposium - Plastic Deformation of Ordered Alloys and Intermetallic Compounds - July 16, 1986, p. 13). There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

T i −/V系金金属間化合物、軽量で、耐熱温度が
高く、耐食性も高いため、高温で使用するクービンブレ
ードなどに好適であるが、常温での延性が小さい(圧縮
率0.4%)ため、圧延、鍛造などによる成形が困難で
あり、さらに常温での安全面における信頬性に劣り、実
用化が阻まれていた。
Ti-/V-based gold intermetallic compounds are lightweight, have a high heat resistance, and have high corrosion resistance, so they are suitable for Kubin blades that are used at high temperatures, but they have low ductility at room temperature (compressibility of 0.4 %), making it difficult to form by rolling, forging, etc., and also being unreliable in terms of safety at room temperature, hindering its practical application.

本発明はこれらの問題点を克服した高温耐熱強度材であ
るTi−A7系金金属化合物を開発することを課題とす
る。
An object of the present invention is to develop a Ti-A7-based gold metal compound which is a high-temperature heat-resistant strength material that overcomes these problems.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は上記の問題点を解決したものでTi40〜50
原子%、A75Q〜50原子%から成り、P10o 〜
1000wtppmを含有する結晶構造がL10型規則
構造である常温延性が高くなおかつ高温耐酸化性を失わ
ないTi−Al系金属間化合物を提供すること、及び上
記組成の原料を不活性ガス雰囲気中で溶融、凝固した後
、規則化焼鈍を行って作製することを特徴とするTi−
Al系金属間化合物材料の製造方法を提供するものであ
る。
The present invention solves the above problems and
atomic%, A75Q ~ 50 atomic%, P10o ~
To provide a Ti-Al based intermetallic compound containing 1000wtppm and having a crystal structure having an L10 regular structure, which has high room temperature ductility and does not lose high temperature oxidation resistance, and by melting a raw material having the above composition in an inert gas atmosphere. , which is produced by performing regular annealing after solidification
A method for manufacturing an Al-based intermetallic compound material is provided.

Ti量を40〜50原子%の範囲としたのはTiN系金
属間化合物の単一相の組成域がこの幅をもっているため
で、この組成であれば他の相を析出させずに均一化焼鈍
により、Ti−At’系金属間化合物を単相で得ること
ができるからである。
The Ti content was set in the range of 40 to 50 atomic % because the composition range of the single phase of the TiN-based intermetallic compound has this range, and with this composition, uniform annealing is possible without precipitating other phases. This is because a Ti-At'-based intermetallic compound can be obtained in a single phase.

Pを100〜l 000wtppm添加するのはこれに
よって積層欠陥エネルギーを低下させ塑性変形時の双晶
変形機構を活発にして常温延性を向上させるのと共に、
Ti酸化物の成長を止めて高温耐酸化性を向上する目的
であり、この際Pは偏析が生じないで試料全体に均一に
分散する必要がある。
The reason why P is added in an amount of 100 to 1000 wtppm is to lower the stacking fault energy, activate the twin deformation mechanism during plastic deformation, and improve room temperature ductility.
The purpose is to stop the growth of Ti oxide and improve high-temperature oxidation resistance, and in this case, P needs to be uniformly dispersed throughout the sample without segregation.

こうして作製したPを含有するTi−jV系金金属間化
合物常温で30%近くの、また600°Cで40%近(
の圧縮率を示し、Ti−Al系金属間化合物の問題点で
ある常温から700°C付近の低延性を改善したもので
ある。
The P-containing Ti-jV gold intermetallic compound prepared in this way has a yield of nearly 30% at room temperature and nearly 40% at 600°C (
It shows a compressibility of 100°C, and improves the low ductility from room temperature to around 700°C, which is a problem with Ti-Al intermetallic compounds.

本発明のP添加Ti−Al系金属間化合物の製造方法は
Ti40〜50原子%、A1’5Q〜50原子%に21
00〜1000wtppmを添加したものを一旦真空(
10−”torr以上)にしArガス雰囲気に置換した
環境下で溶融点以上かつ坩堝との反応を避けるために1
400°C〜1500°Cに加熱し、溶融凝固した後、
規則化のため、前記と同様の不活性ガス雰囲気中におい
て規則化焼鈍を行う。これはL l o型構造を得るた
めにはTiとNを高温で拡散させねばならないからであ
る。規則化焼鈍の際の温度としては800°C以上でT
i−Al系金属間化合物の融点以下の単一相域であれば
目的を達することができるが、この中でも900〜11
00°Cの温度範囲が望ましい。
The method for producing the P-added Ti-Al intermetallic compound of the present invention includes 40 to 50 atom% of Ti and 21 to 50 atom% of A1'5Q to 50 atom%.
00 to 1000wtppm was added in a vacuum (
10-"torr or higher) in an environment substituted with an Ar gas atmosphere, and in order to avoid reaction with the crucible.
After heating to 400°C to 1500°C and melting and solidifying,
For ordering, ordering annealing is performed in the same inert gas atmosphere as described above. This is because Ti and N must be diffused at high temperatures in order to obtain the L lo type structure. The temperature during ordering annealing is T at 800°C or higher.
The purpose can be achieved in the single phase range below the melting point of the i-Al intermetallic compound, but among these, 900 to 11
A temperature range of 00°C is preferred.

この条件でPの均一拡散も満たされる。また、加熱時間
としては、規則化のための原子拡散に時間が必要である
ため、高温では短時間となるが、完全に規則化させるた
めには24時間以上とすることが望ましい。得られたP
添加Ti−Al系金属間化合物が規則化していることば
X線デイフラクトメーターにより、各ピークがTi −
Al系金属間化合物のL10型構造に相当することを確
認すればよい。
Uniform diffusion of P is also satisfied under this condition. Further, the heating time is short at high temperatures because time is required for atomic diffusion for ordering, but it is desirable to set it to 24 hours or more in order to achieve complete ordering. Obtained P
Using a word X-ray diffractometer in which the added Ti-Al intermetallic compound is ordered, each peak is Ti -
It is sufficient to confirm that it corresponds to the L10 type structure of an Al-based intermetallic compound.

次に本発明のP添加Ti−Al系金属間化合物の常温延
性向上の理由について説明する。第三元素P添加により
、Ti−Al系金属間化合物の積層欠陥エネルギーが低
下するものと考えられる。それは変形機構において双晶
変形、とくに交叉双晶が活発になることにより電子顕微
鏡観察、超高圧電子顕微境内その場観察等で確かめられ
ている。発明者らは本合金について電子顕微鏡によるコ
ン1〜ラスト実験により塑性変形進行中においてこの交
叉双晶は双晶境界上に転位をpile−upさせずに逆
に転位反応によりすべり転位を形成し延性能を高めてい
ることを確認している。
Next, the reason for the improvement in room temperature ductility of the P-added Ti-Al intermetallic compound of the present invention will be explained. It is believed that the addition of the third element P reduces the stacking fault energy of the Ti-Al intermetallic compound. This has been confirmed by electron microscopy and in-situ ultra-high-voltage electron microscopy observations due to the activation of twin deformation, especially cross twinning, in the deformation mechanism. The inventors conducted Con1-Last experiments using an electron microscope on this alloy and found that during plastic deformation, these crossed twins do not pile up dislocations on the twin boundaries, but instead form slip dislocations through a dislocation reaction and spread. We have confirmed that performance has been improved.

高温耐酸化性は材料表面にできた酸化皮膜が酸素の透過
を防くことにより向−トする。TiAlの場合には試料
表面上にできたTi0z−x層中の酸素vacancy
を通してOが拡散することにより酸化が進行すると考え
られるため、高温耐酸化性を向上するためには酸素νa
cancyをなくして0の拡散を抑制する必要がある。
High-temperature oxidation resistance is improved by the oxide film formed on the material surface that prevents oxygen from permeating. In the case of TiAl, the oxygen vacancy in the Ti0z-x layer formed on the sample surface
It is thought that oxidation progresses due to the diffusion of O through the oxygen νa
It is necessary to suppress the spread of 0 by eliminating the ``cancy''.

本発明の合金で耐酸化性が向上する理由は、vb属の元
素であるPがTIの価電子数の4より大きな5価をもつ
ため、自由電子の供給を行い、表面に生成されたTiO
□−8層中の酸素vacancyを減少させ、酸素の内
方拡散を抑制し、高温酸化雰囲気でTi7Vにできる酸
化層’rio2−Xの成長を止めるためと考えられる。
The reason why the oxidation resistance of the alloy of the present invention is improved is that P, which is an element of the Vb group, has a valence of 5, which is larger than the number of valence electrons of TI (4).
This is thought to be because the oxygen vacancy in the □-8 layer is reduced, the inward diffusion of oxygen is suppressed, and the growth of the oxide layer 'rio2-X, which is formed in Ti7V in a high-temperature oxidizing atmosphere, is stopped.

〔実施例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

純度99.8wt%のスポンジTi50atm%(63
,9wt%)、純度 99.99 wt%のIV50a
tm%(36,0wt%)にP 500wtppmを添
加したものを真空溶解炉を用い、−旦真空(10−6t
orr以上)にし、Arガス雰囲気に置換した環境下で
1500°Cに加熱し、溶融凝固した後、規則化のため
、前期と同様の不活性ガス雰囲気中において規則化焼鈍
を行った。規則化焼鈍の際の温度としては800°C以
上でTi−M基金属間化合物の融点以下の単一相域であ
れば目的を達することができるが、この中でも1000
°Cの温度範囲を用いた。また、加熱時間としては、完
全に規則化させるために72時間とした。得られたP添
加Ti−/V系金金属間化合物規則化していることはX
線デイフラクトメーターにより、各ピークがTi−Al
系金属間化合物のLL、型構造に相当することを確認し
た。
Sponge Ti50atm% (63
, 9 wt%), purity 99.99 wt% IV50a
tm% (36.0wt%) with 500wtppm of P added thereto was melted in a vacuum melting furnace,
orr or more) and heated to 1500°C in an environment substituted with an Ar gas atmosphere to melt and solidify, and then ordering annealing was performed in the same inert gas atmosphere as in the previous period for ordering. The purpose can be achieved as long as the temperature during ordering annealing is in a single phase range of 800°C or higher and below the melting point of the Ti-M-based intermetallic compound, but among these, 1000 °C
A temperature range of °C was used. Further, the heating time was set to 72 hours to ensure complete regularization. The obtained P-added Ti-/V-based gold intermetallic compound is ordered.
Using a line diffractometer, each peak was detected as Ti-Al.
It was confirmed that it corresponds to the LL type structure of the intermetallic compound.

第1図にこうして得られた試料から放電加工にて切り出
した5φX 5 mmの試料を用いて常温圧縮試験を行
った結果を応力−歪曲線で示す。図からTiA/試料と
比較してP添加により室温延性が大幅に向上しているこ
とが見られる。
FIG. 1 shows a stress-strain curve showing the results of a cold compression test using a 5φ×5 mm sample cut out from the sample thus obtained by electrical discharge machining. From the figure, it can be seen that the addition of P significantly improves the room temperature ductility compared to the TiA/sample.

さらに比較のため、表1にTi/VとP添加量 i j
Vの常温圧縮における耐力および延性、表2にP添加量
 i A/およびTiAZの800°Cでの圧縮におけ
る耐力及び延性を示す。
For further comparison, Table 1 shows the amounts of Ti/V and P added.
Table 2 shows the yield strength and ductility of V when compressed at room temperature.

本発明の試料は第三元素無添加のTiAZと比較して圧
縮変形での降伏点および常温圧縮率の顕著な向上が認め
られた。4wt%Mn添加材と比較しても降伏点、常温
圧縮率はほぼ同程度の性能を示した(第2図)。耐酸化
性についてはMn添加によって耐酸化性、特にWeig
ht Ga1nが第三元素無添加T i A/と比して
低下するのに対し、P添加材ではWeight Ga1
n値が低い値を示し、P添加量の100〜1200原子
ppm域で耐酸化性が向上しているのが顕著に認められ
た(第3図)。
The sample of the present invention was found to have significantly improved yield point under compressive deformation and room temperature compressibility compared to TiAZ without the addition of a third element. Even when compared with the 4wt% Mn-added material, the yield point and room temperature compressibility showed almost the same performance (Figure 2). Regarding oxidation resistance, Mn addition improves oxidation resistance, especially Weig
ht Ga1n decreases compared to T i A/ without the addition of a third element, whereas Weight Ga1 in the P-added material decreases.
It was observed that the n value was low, and the oxidation resistance was significantly improved in the P addition amount range of 100 to 1200 atomic ppm (Figure 3).

以上の結果を表3に示す。表3はTiA1と第三元素添
加Ti1Vの常温〜高温の圧縮における耐力及び延性、
高温耐酸化試験結果(Weight Ga1n )の各
々の数値を示す。
The above results are shown in Table 3. Table 3 shows the yield strength and ductility of TiA1 and third element-added Ti1V in compression at room temperature to high temperature.
Each numerical value of the high temperature oxidation resistance test result (Weight Ga1n) is shown.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、常温延性が高く、なおかつ高温耐酸化
性を失なわないT i −A/系金金属間化合物得るこ
とができる。
According to the present invention, it is possible to obtain a Ti-A/based gold intermetallic compound that has high room-temperature ductility and does not lose high-temperature oxidation resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に従って得られた試料を用いて常温圧縮
試験を行った結果を示す応力−歪曲線、第2図はTiA
lと第三元素添加のTiAJ!の常温〜高温の圧縮にお
ける耐力及び延性を示す図、第3図は第三元素添加Ti
1V及びT i IVの高温耐酸化試験結果(Weig
ht Ga1n )を示す図である。 ■ 0口く・■( Nへ 〜 警鳴ψ ≧ (・2イlメ)q・y、看求暎ゴ 0口く・厘( Nへり+め( ≧ θ 寸 (%) φ嗟ゴ
Figure 1 is a stress-strain curve showing the results of a cold compression test using the sample obtained according to the example, and Figure 2 is a TiA
TiAJ with addition of l and third element! Figure 3 shows the yield strength and ductility in compression at room temperature to high temperature.
1V and T i IV high temperature oxidation resistance test results (Weig
ht Ga1n ). ■ 0 mouth ku・■( To N ~ Alarm ψ ≧ (・2 Ilme) q・y, look after 0 mouth ku・厘 ( N edge + me ( ≧ θ size (%) φ 嗟go

Claims (3)

【特許請求の範囲】[Claims] (1)Ti40〜50原子%、Al60〜50原子%か
ら成り、P100〜1000wtppmを含有する、結
晶構造がL1_0型規則構造であるTi−Al系金属間
化合物。
(1) A Ti-Al based intermetallic compound consisting of 40 to 50 atomic % of Ti, 60 to 50 atomic % of Al, and containing 100 to 1000 wtppm of P, and whose crystal structure is an L1_0 type ordered structure.
(2)Ti45〜50原子%、Al50〜55原子%の
原子比率から成り、P100〜1000wtppmを含
有する常温圧縮率が30%以上のL1_0型規則構造を
もつTi−Al系金属間化合物。
(2) A Ti-Al based intermetallic compound having an L1_0 type ordered structure with a room temperature compressibility of 30% or more, consisting of an atomic ratio of 45 to 50 atomic % Ti, 50 to 55 atomic % Al, and containing 100 to 1000 wtppm of P.
(3)Ti40〜50原子%、Al60〜50原子%と
P100〜1000wtppmとを、不活性ガス雰囲気
中で溶融、凝固した後、規則化焼鈍を行うことを特徴と
する高温強度材料用Ti−Al系金属間化合物の製造方
法。
(3) Ti-Al for high-temperature strength materials characterized by melting and solidifying 40 to 50 at. % of Ti, 60 to 50 at. Method for producing intermetallic compounds.
JP11092389A 1988-05-13 1989-04-28 Ti-al series intermetallic compound containing p and its manufacture Pending JPH0250933A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-116244 1988-05-13
JP11624488 1988-05-13

Publications (1)

Publication Number Publication Date
JPH0250933A true JPH0250933A (en) 1990-02-20

Family

ID=14682355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11092389A Pending JPH0250933A (en) 1988-05-13 1989-04-28 Ti-al series intermetallic compound containing p and its manufacture

Country Status (1)

Country Link
JP (1) JPH0250933A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163333A (en) * 1988-12-16 1990-06-22 Nippon Steel Corp Ti-al intermetallic compound and its manufacture
JPH0925547A (en) * 1995-07-07 1997-01-28 Japan Atom Energy Res Inst Intermetallic compound enough in low temperature ductility and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163333A (en) * 1988-12-16 1990-06-22 Nippon Steel Corp Ti-al intermetallic compound and its manufacture
JP2711558B2 (en) * 1988-12-16 1998-02-10 新日本製鐵株式会社 TiA intermetallic compound and method for producing the same
JPH0925547A (en) * 1995-07-07 1997-01-28 Japan Atom Energy Res Inst Intermetallic compound enough in low temperature ductility and production thereof

Similar Documents

Publication Publication Date Title
Liu et al. Ordered intermetallics
US4879092A (en) Titanium aluminum alloys modified by chromium and niobium and method of preparation
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
JPH06145854A (en) Alumina nickel single crystal alloy composition and its preparation
FR2612944A1 (en) AUSTENITIC STAINLESS STEEL ALLOYING RADIATION RESISTANT
KR101601207B1 (en) super heat resistant alloy and the manufacturing method thereof
JP2020026568A (en) Titanium alloy, method for producing the same and engine component including the same
US5348595A (en) Process for the preaparation of a Ti-Al intermetallic compound
JPH0250933A (en) Ti-al series intermetallic compound containing p and its manufacture
JP2711558B2 (en) TiA intermetallic compound and method for producing the same
JPH01287243A (en) Ti-al intermetallic compound containing mn and nb and its manufacture
EP0349734B1 (en) Titanium-aluminium intermetallic compound and process for its preparation
US5725691A (en) Nickel aluminide alloy suitable for structural applications
JPH03197634A (en) Ti-al intermetallic compound having excellent high temperature oxidation resistance
JPH04318138A (en) Tial-base alloy material excellnt in oxidation resistance at high temperature
JP2001121202A (en) MANUFACTURING METHOD OF HEAT-RESISTANT INTERMETALLIC COMPOUND Ni3Al FOIL WITH ROOM TEMPERATURE DUCTILITY
JPH09227972A (en) Titanium-aluminium intermetallic compound base alloy material having superplasticity and its production
JP3903168B2 (en) Method for producing two-phase alloy foil comprising Ni3Al phase and Ni solid solution phase
WO2024181505A1 (en) Niobium silicide-based alloy and method for producing same
RU2451766C1 (en) Method for biaxial textured substrate production from binary alloy on basis of nickel for epitaxial application of buffer and high-temperature superconductive layers for ribbon superconductors to substrate
JPH05287421A (en) Tial-based alloy excellent in oxidation resistance
KR102226046B1 (en) Brazing filler metal and the manufacturing method thereof
JP4276853B2 (en) Niobium-based composite material
Meier High temperature oxidation and corrosion of metal-silicides
JP2024122558A (en) Niobium silicide-based alloy and its manufacturing method