JPH08236997A - Method of correcting mounting position of mounting device - Google Patents

Method of correcting mounting position of mounting device

Info

Publication number
JPH08236997A
JPH08236997A JP7041554A JP4155495A JPH08236997A JP H08236997 A JPH08236997 A JP H08236997A JP 7041554 A JP7041554 A JP 7041554A JP 4155495 A JP4155495 A JP 4155495A JP H08236997 A JPH08236997 A JP H08236997A
Authority
JP
Japan
Prior art keywords
measured
mounting
component
theoretical
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7041554A
Other languages
Japanese (ja)
Other versions
JP3286105B2 (en
Inventor
Takao Mori
孝雄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP04155495A priority Critical patent/JP3286105B2/en
Publication of JPH08236997A publication Critical patent/JPH08236997A/en
Application granted granted Critical
Publication of JP3286105B2 publication Critical patent/JP3286105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

PURPOSE: To obtain a proper correction position even if a substrate is distorted by operating a correction position of a part mounting place based on relative position relation of the theoretical position of a part mounting position to the theoretical position of each of four or more measurement points and a measured position of the measurement points. CONSTITUTION: A printed board 3 is provided with a fiducial mark 40 at four or more measurement points in advance. The coordinates of a theoretical position of each measurement point provided with the fiducial mark 40 and the coordinates of a theoretical point of a part mounting place are stored in a memory part 34 of a control device 30 in advance. Then, each fiducial mark 40 is imaged one by one by a substrate recognition camera 27 and each position is measured. After the measured position of the measurement points is obtained, a corrected position of a part mounting place is operated based on a coordinate conversion parameter obtained from relative position relation of the theoretical position of a part mounting place to the theoretical position of each measurement point and the measured position of each measurement point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、部品をプリント基板に
装着する実装機において、プリント基板の位置ずれ、変
形等に応じて装着位置の補正を行う装着位置補正方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting position correcting method for correcting a mounting position in a mounting machine for mounting a component on a printed circuit board in accordance with a displacement, deformation or the like of the printed circuit board.

【0002】[0002]

【従来の技術】従来から、ノズル部材を有する部品装着
用ヘッドにより、IC等の部品を部品供給部から吸着し
て位置決めされているプリント基板上に移送し、プリン
ト基板の所定の位置に装着するようにした実装機が一般
に知られている。
2. Description of the Related Art Conventionally, a component mounting head having a nozzle member transfers a component such as an IC from a component supply section onto a positioned printed circuit board and mounts it at a predetermined position on the printed circuit board. Such a mounting machine is generally known.

【0003】このような実装機において、プリント基板
の部品装着箇所の理論位置は予め記憶されているが、プ
リント基板の位置ずれ等があった場合、上記理論位置に
部品を装着するだけでは装着位置に誤差が生じる。この
ため、プリント基板の位置ずれ等を調べ、それに応じて
部品装着位置を補正することは従来においても行われて
いる。
In such a mounting machine, the theoretical position of the component mounting location on the printed circuit board is stored in advance. However, if there is a displacement of the printed circuit board or the like, it is possible to simply mount the component at the theoretical position. Error occurs. Therefore, it has been conventionally performed to check the positional deviation of the printed circuit board and correct the component mounting position accordingly.

【0004】従来のこの種の装着位置補正方法は、通
常、プリント基板の2点にフィデューシャルマークを付
しておき、実装の際に、部品装着用ヘッドに設けたカメ
ラ等により上記フィデューシャルマークを検出してその
位置を測定し、これによりプリント基板の位置ずれ等を
調べてそれに応じた座標変換を行うようにしている。
In the conventional mounting position correcting method of this type, generally, fiducial marks are attached to two points on a printed circuit board, and at the time of mounting, the above-mentioned fiducial is detected by a camera provided in a component mounting head. The charmark is detected and the position thereof is measured, whereby the displacement of the printed circuit board or the like is checked and the coordinate conversion is performed accordingly.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の方
法によると、2点のフィデューシャルマークの各X,Y
座標を計測することにより、X方向及びY方向の位置ず
れと、基板の傾きと、熱膨張等による基板の伸びとを調
べることができ、これらの要因による装着位置のずれを
補正することは可能である。
According to the conventional method as described above, the X and Y of two fiducial marks are formed.
By measuring the coordinates, it is possible to check the positional deviation in the X and Y directions, the inclination of the board, and the expansion of the board due to thermal expansion, and it is possible to correct the deviation of the mounting position due to these factors. Is.

【0006】しかし、基板の材質が比較的変形し易いも
のであれば、上記の位置ずれ、傾き、伸びのほかに、基
板の2次元平面のゆがみ、ひずみも装着位置のずれを招
く大きな要因となり、このような基板のゆがみ等が生じ
た場合に、従来の方法ではそれに応じた補正を行うこと
ができず、部品装着位置の精度が低下するという問題が
あった。
However, if the material of the substrate is relatively easily deformed, in addition to the above-mentioned displacement, inclination, and elongation, the distortion and distortion of the two-dimensional plane of the substrate are also major factors that cause the displacement of the mounting position. However, when such a distortion of the substrate occurs, the conventional method cannot perform the corresponding correction, and there is a problem that the accuracy of the component mounting position decreases.

【0007】本発明は、上記の事情に鑑み、プリント基
板のゆがみ等が生じた場合にもそれに応じた部品装着位
置の補正を行うことができ、精度を大幅に向上すること
ができる実装機の装着位置補正方法を提供することを目
的とする。
In view of the above circumstances, the present invention provides a mounting machine capable of correcting the component mounting position in accordance with the distortion of the printed circuit board and greatly improving the accuracy. An object is to provide a mounting position correction method.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
部品装着用ヘッドにより部品供給部から部品を吸着し
て、プリント基板の部品装着箇所に装着する実装機にお
いて、上記プリント基板に4点以上の被測定点を設定
し、この各被測定点の理論位置と上記部品装着箇所の理
論位置とを予め記憶し、上記部品装着用ヘッドに設けた
検出手段により上記各被測定点を検出してこれらの位置
を測定した後、上記各被測定点の理論位置に対する上記
部品装着箇所の理論位置の相対的な位置関係から求めた
パラメータと、上記検出手段によって測定された各被測
定点の実測位置とに基づいて、上記部品装着箇所の補正
位置を演算するようにしたものである。
The invention according to claim 1 is
In a mounter that picks up a component from a component supply unit by a component mounting head and mounts it on a component mounting location on a printed circuit board, four or more measured points are set on the printed circuit board and the theory of each measured point is set. The position and the theoretical position of the component mounting location are stored in advance, the measuring points provided on the component mounting head are used to detect the measured points, and the positions are measured. The corrected position of the component mounting location is calculated based on the parameter obtained from the relative positional relationship of the theoretical position of the component mounting location with respect to the position and the actually measured position of each measured point measured by the detecting means. It was done like this.

【0009】また、請求項2に係る発明は、請求項1記
載の部品装着位置補正方法において、プリント基板の4
箇所以上の被測定点に付されたフィデューシャルマーク
を、部品装着用ヘッドに具備された撮像手段によって撮
像することにより、上記各被測定点の測定を行うように
したものである。
According to a second aspect of the present invention, there is provided a method of correcting a component mounting position according to the first aspect, wherein the printed circuit board 4
The fiducial marks attached to the points to be measured or more are imaged by the image pickup means provided in the component mounting head to measure the points to be measured.

【0010】[0010]

【作用】請求項1に係る方法によれば、基板の位置ずれ
や変形等を調べるための被測定点を4点以上とし、その
各被測定点の理論位置に対する部品装着箇所の理論位置
の相対的な位置関係と被測定点の実測位置とに基づいて
部品装着箇所の補正位置を演算することにより、プリン
ト基板の2次元平面のゆがみ等によって基板がいびつに
変形している場合でも、上記部品装着箇所の補正位置が
適正に求められる。
According to the method of claim 1, there are four or more measured points for checking the displacement and deformation of the board, and the relative position of the component mounting position to the theoretical position of each measured point. By calculating the correction position of the component mounting position based on the actual positional relationship and the measured position of the measured point, even if the board is distorted due to the distortion of the two-dimensional plane of the printed board, The correction position of the mounting location is properly obtained.

【0011】請求項2に係る方法によれば、上記各被測
定点の測定が容易に行われる。
According to the method of the second aspect, the measurement of each of the measured points is easily performed.

【0012】[0012]

【実施例】本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0013】図1及び図2は、本発明の方法が適用され
る実装機の構造を示している。同図に示すように、実装
機の基台1上には、プリント基板搬送用のコンベア2が
配置され、プリント基板3がこのコンベア2上を搬送さ
れて所定の装着作業位置で停止されるようになってい
る。上記コンベア2の側方には、部品供給部4が配置さ
れている。この部品供給部4は部品供給用のフィーダー
を備え、例えば多数列のテープフィーダー4aを備えて
いる。
1 and 2 show the structure of a mounting machine to which the method of the present invention is applied. As shown in the figure, a conveyor 2 for conveying a printed circuit board is arranged on a base 1 of the mounting machine, and the printed circuit board 3 is conveyed on the conveyor 2 and stopped at a predetermined mounting work position. It has become. A component supply unit 4 is arranged on the side of the conveyor 2. The component supply unit 4 includes a component supply feeder, for example, a multi-row tape feeder 4a.

【0014】また、上記基台1の上方には、部品装着用
のヘッドユニット(部品装着用ヘッド)5が装備されて
いる。このヘッドユニット5は、部品供給部4とプリン
ト基板3が位置する部品装着部とにわたって移動可能と
され、当実施例ではX軸方向(コンベア2の方向)およ
びY軸方向(水平面上でX軸と直交する方向)に移動す
ることができるようになっている。
A head unit (component mounting head) 5 for mounting components is installed above the base 1. The head unit 5 is movable across the component supply unit 4 and the component mounting unit on which the printed circuit board 3 is located. In this embodiment, the head unit 5 is in the X-axis direction (direction of the conveyor 2) and the Y-axis direction (X-axis on a horizontal plane). It is possible to move in the direction orthogonal to.

【0015】すなわち、上記基台1上には、Y軸方向の
固定レール7と、Y軸サーボモータ9により回転駆動さ
れるボールねじ軸8とが配設され、上記固定レール7上
にヘッドユニット支持部材11が配置されて、この支持
部材11に設けられたナット部分12が上記ボールねじ
軸8に螺合している。また、上記支持部材11には、X
軸方向のガイド部材13と、X軸サーボモータ15によ
り駆動されるボールねじ軸14とが配設され、上記ガイ
ド部材13にヘッドユニット5が移動可能に保持され、
このヘッドユニット5に設けられたナット部分(図示せ
ず)が上記ボールねじ軸14に螺合している。そして、
Y軸サーボモータ9の作動により上記支持部材11がY
軸方向に移動するとともに、X軸サーボモータ15の作
動によりヘッドユニット5が支持部材11に対してX軸
方向に移動するようになっている。
That is, a fixed rail 7 in the Y-axis direction and a ball screw shaft 8 which is rotationally driven by a Y-axis servomotor 9 are arranged on the base 1, and the head unit is mounted on the fixed rail 7. A support member 11 is arranged, and a nut portion 12 provided on the support member 11 is screwed onto the ball screw shaft 8. In addition, the support member 11 has an X
An axial guide member 13 and a ball screw shaft 14 driven by an X-axis servomotor 15 are arranged, and the head unit 5 is movably held by the guide member 13.
A nut portion (not shown) provided on the head unit 5 is screwed onto the ball screw shaft 14. And
By the operation of the Y-axis servomotor 9, the supporting member 11 is moved to Y
While moving in the axial direction, the head unit 5 moves in the X-axis direction with respect to the support member 11 by the operation of the X-axis servomotor 15.

【0016】また、上記Y軸サーボモータ9及びX軸サ
ーボモータ15には、それぞれロータリエンコーダから
なる位置検出装置10,16が設けられており、これに
よって上記ヘッドユニット5の移動位置検出がなされる
ようになっている。
Further, the Y-axis servomotor 9 and the X-axis servomotor 15 are provided with position detecting devices 10 and 16 each composed of a rotary encoder, by which the moving position of the head unit 5 is detected. It is like this.

【0017】上記ヘッドユニット5には、部品を吸着す
る1乃至複数のノズル部材が設けられ、図示の例では2
本のノズル部材21,22が設けられている。上記両ノ
ズル部材21,22は、それぞれヘッドユニット5のフ
レームに対してZ軸方向(上下方向)の移動及びR軸
(ノズル中心軸)回りの回転が可能とされ、それぞれZ
軸サーボモータ17,18及びR軸サーボモータ19,
20(図3に示す)により作動されるようになってい
る。これらの各サーボモータ17〜19には、エンコー
ダからなる位置検出手段23〜25(図3に示す)がそ
れぞれ設けられており、これらによって各ノズル部材2
1の作動位置検出が行われるようになっている。また、
各ノズル部材21,22は、バルブ等を介して図外の負
圧供給手段に接続され、必要時に部品吸着用の負圧がノ
ズル部材21,22に供給されるようになっている。
The head unit 5 is provided with one to a plurality of nozzle members for attracting components, and in the illustrated example, two nozzle members are provided.
Book nozzle members 21 and 22 are provided. Both of the nozzle members 21 and 22 are movable in the Z-axis direction (vertical direction) and rotatable about the R-axis (nozzle central axis) with respect to the frame of the head unit 5, and each of them is Z-shaped.
Axis servo motors 17, 18 and R axis servo motors 19,
20 (shown in FIG. 3). The servo motors 17 to 19 are respectively provided with position detecting means 23 to 25 (shown in FIG. 3) which are composed of encoders, by which the nozzle members 2 are provided.
The operation position detection of No. 1 is performed. Also,
Each of the nozzle members 21, 22 is connected to a negative pressure supply means (not shown) via a valve or the like, and a negative pressure for sucking components is supplied to the nozzle members 21, 22 when necessary.

【0018】さらに、上記ヘッドユニット5には、プリ
ント基板の被測定点を検出する検出手段としての基板認
識カメラ27が取付けられている。この基板認識カメラ
27は、プリント基板3の表面に付されたフィデューシ
ャルマークを撮像するようになっている。
Further, a board recognition camera 27 is attached to the head unit 5 as a detection means for detecting a measured point on the printed board. The board recognition camera 27 takes an image of the fiducial mark provided on the surface of the printed board 3.

【0019】また、上記基台1には、上記ヘッドユニッ
ト5により吸着された部品の吸着状態を認識するための
部品認識カメラ29が設けられている。この部品認識カ
メラ29は、上記部品供給部4の側方に配設されてお
り、部品供給部4において部品を吸着した後、上記ヘッ
ドユニット5が部品認識カメラ29の上方の所定位置に
移動させられることにより吸着部品を撮像するようにな
っている。
Further, the base 1 is provided with a component recognition camera 29 for recognizing the suction state of the components sucked by the head unit 5. The component recognition camera 29 is arranged on the side of the component supply unit 4, and after the component supply unit 4 picks up a component, the head unit 5 is moved to a predetermined position above the component recognition camera 29. As a result, the suction component is imaged.

【0020】次に、上記実装機の制御系について図3の
ブロック図を用いて説明する。
Next, the control system of the mounting machine will be described with reference to the block diagram of FIG.

【0021】上記実装機には、図3に示すような制御装
置30が搭載されており、上記Y軸及びX軸サーボモー
タ9,15、ヘッドユニット5の各ノズル部材21,2
2に対するZ軸サーボモータ17,18、R軸サーボモ
ータ19,20及び各サーボモータに対する位置検出手
段10,16,23〜26等はすべてこの制御装置30
に電気的に接続され、この制御装置30によって統括制
御されるようになっている。詳細には、実装機の動作を
統括制御する主演算部32と、部品等に関する情報を記
憶した記憶部34と、この記憶部34に記憶された情報
に基づいて主演算部32により制御される軸制御部31
とが制御装置30に設けられ、上記サーボモータ等はこ
の軸制御部31に接続されている。
A control device 30 as shown in FIG. 3 is mounted on the mounting machine, and the nozzle members 21 and 21 of the Y-axis and X-axis servomotors 9 and 15 and the head unit 5 are mounted.
The Z-axis servomotors 17 and 18, the R-axis servomotors 19 and 20, and the position detection means 10, 16 and 23 to 26 for the respective servomotors are all provided in the controller 30.
Is electrically connected to and is controlled by the control device 30. Specifically, the main computing unit 32 that controls the operation of the mounting machine in a centralized manner, the storage unit 34 that stores information about parts and the like, and is controlled by the main computing unit 32 based on the information stored in the storage unit 34. Axis control unit 31
Are provided in the control device 30, and the servomotors and the like are connected to the axis control unit 31.

【0022】上記軸制御部31及び主演算部32は、実
装時に所定の実装動作を行わせる制御を行うとともに、
後述のように部品装着箇所の補正位置を求める際には、
プリント基板3上の各フィデューシャルマークに対応す
る位置に上記基板認識カメラ27を配置すべく上記ヘッ
ドユニット5を移動させるようになっている。
The axis control section 31 and the main calculation section 32 perform control for performing a predetermined mounting operation at the time of mounting, and
When obtaining the correction position of the component mounting location as described below,
The head unit 5 is moved so as to arrange the board recognition camera 27 at a position corresponding to each fiducial mark on the printed board 3.

【0023】また、上記主演算部32には、画像処理部
33が接続されており、この画像処理部33に上記基板
認識カメラ27及び部品認識カメラ29が接続されてい
る。そして、基板認識カメラ27及び部品認識カメラ2
9によって取込まれた画像データに所定の画像処理が施
されて主演算部32に出力されることにより、主演算部
32においてプリント基板3のフィデューシャルマーク
の認識や、吸着部品の認識が行われるようになってい
る。
An image processing unit 33 is connected to the main computing unit 32, and the board recognition camera 27 and the component recognition camera 29 are connected to the image processing unit 33. Then, the board recognition camera 27 and the component recognition camera 2
By performing predetermined image processing on the image data taken in by 9 and outputting the image data to the main calculation unit 32, the main calculation unit 32 can recognize the fiducial mark of the printed circuit board 3 and the suction component. It is supposed to be done.

【0024】上記のような実装機における装着位置補正
方法の実施例を、図4〜図8を参照しつつ説明する。
An embodiment of the mounting position correcting method in the mounting machine as described above will be described with reference to FIGS.

【0025】上記実装機の所定の装着作業用位置に搬入
されるプリント基板3には、4箇所以上の被測定点に予
めフィデューシャルマーク40が付され、例えば図4に
示すように、プリント基板3が長方形状である場合にそ
の4隅の各コーナー近傍の所定位置である4点にフィデ
ューシャルマーク40が付されている。また、プリント
基板3にはプリント配線が施されており、そのプリント
配線等に応じた所定数箇所に部品が装着されるようにな
っている。この部品の装着箇所は設計段階で規定されて
いる。
On the printed circuit board 3 which is carried into the predetermined mounting work position of the mounting machine, the fiducial marks 40 are preliminarily attached to four or more measured points. For example, as shown in FIG. When the substrate 3 has a rectangular shape, the fiducial marks 40 are provided at four points which are predetermined positions near the four corners. Further, printed wiring is provided on the printed circuit board 3, and components are mounted at a predetermined number of places according to the printed wiring and the like. The mounting location of this component is specified at the design stage.

【0026】当実施例の方法では、上記フィデューシャ
ルマーク40が付された各被測定点の理論位置の座標
と、上記部品装着箇所の理論位置の座標とを、予め上記
制御装置30の記憶部34に記憶させておく。図5は上
記各被測定点及び部品装着箇所の理論位置の座標を示す
ものであって、点A(AX,AY)、点B(BX,B
Y)、点C(CX,CY)及び点D(DX,DY)は上
記4点のフィデューシャルマーク(被測定点)の理論位
置の座標、点M(MX,MY)は1つの部品装着箇所の
理論位置の座標である。
In the method of this embodiment, the coordinates of the theoretical position of each measured point marked with the fiducial mark 40 and the coordinates of the theoretical position of the component mounting location are stored in advance in the control device 30. It is stored in the unit 34. FIG. 5 shows the coordinates of the theoretical position of each of the above-mentioned measured points and component mounting points, and points A (AX, AY) and point B (BX, B
Y), point C (CX, CY) and point D (DX, DY) are coordinates of theoretical positions of the above four fiducial marks (measured points), and point M (MX, MY) is one component mounting The coordinates of the theoretical position of the place.

【0027】このように各被測定点及び部品装着箇所の
理論位置の座標を記憶させた上で、プリント基板3に対
する部品の実装に際しては、先ず、ヘッドユニット5に
具備された基板認識カメラ27が上記点A,B,C,D
に対応する位置に順に移動するように上記X軸サーボモ
ータ15及びY軸サーボモータ9を制御し、上記基板認
識カメラ27によって上記各フィデューシャルマーク4
0を順次撮像し、それぞれの位置を測定する。これによ
り、各被測定点の実測位置の座標を求める。図6に示す
点a(ax,ay)、点b(bx,by)、点c(c
x,cy)及び点d(dx,dy)は、上記4点のフィ
デューシャルマーク40(被測定点)の実測位置の座標
である。
After storing the coordinates of the theoretical position of each measured point and the component mounting position in this way, when mounting the component on the printed circuit board 3, first, the substrate recognition camera 27 provided in the head unit 5 is used. Above points A, B, C, D
The X-axis servomotor 15 and the Y-axis servomotor 9 are controlled so as to sequentially move to the positions corresponding to, and each of the fiducial marks 4 is moved by the board recognition camera 27.
0 is sequentially imaged and each position is measured. Thereby, the coordinates of the actually measured position of each measured point are obtained. Point a (ax, ay), point b (bx, by), point c (c shown in FIG. 6
x, cy) and the point d (dx, dy) are the coordinates of the actually measured positions of the above four fiducial marks 40 (points to be measured).

【0028】プリント基板3の位置ずれ、傾き、伸び、
ゆがみ等があった場合に、被測定点の理論位置である点
A,B,C,Dを結んだ四角形ABCDと、被測定点の
実測位置である点a,b,c,dを結んだ四角形abc
dとは、座標上の位置、大きさ、形状等が異なるものと
なる。
Positional deviation, inclination, extension of the printed circuit board 3,
When there is a distortion or the like, a square ABCD connecting the points A, B, C and D which are the theoretical positions of the measured point and the points a, b, c and d which are the measured positions of the measured point are connected. Quadrangle abc
The position on the coordinate, the size, the shape, and the like are different from d.

【0029】被測定点の実測位置を求めた後は、各被測
定点の理論位置(点A,B,C,D)に対する上記部品
装着箇所の理論位置(点M)の相対的な位置関係から求
められる座標変換用パラメータと、上記各被測定点の実
測位置(点a,b,c,d)とに基づいて、上記部品装
着箇所の補正位置を演算する。例えば、図7(a)及び
同図(b)に示すような手法で、補正位置を演算する。
After the measured position of the measured point is obtained, the relative positional relationship of the theoretical position of the component mounting point (point M) with respect to the theoretical position of each measured point (points A, B, C, D). The correction position of the component mounting position is calculated based on the coordinate conversion parameter obtained from the above and the measured position (points a, b, c, d) of each of the measured points. For example, the correction position is calculated by the method shown in FIGS. 7A and 7B.

【0030】この手法を具体的に説明する。上記被測定
点の理論上の位置を結んだ四角形ABCDにおいて、辺
ADと辺BCとをそれぞれα:(1−α)に内分する点
を通る直線L11を考えると、このような直線はαの値を
変えれば無数に存在するが、このうちで上記点Mを通る
直線L11は一義的に定まるので、直線L11が点Mを通る
ときのαの値を求める。同様に辺ABと辺DCとをそれ
ぞれβ:(1−β)に内分する点を通る直線L12を考
え、直線L12が上記点Mを通るときのβの値を求める。
こうして、座標変換用パラメータとしてのα、βの値を
特定する(図7(a)参照)。
This method will be specifically described. Considering a straight line L11 passing through a point that internally divides the side AD and the side BC into α: (1-α) in the quadrangle ABCD that connects the theoretical positions of the points to be measured, such a straight line is α There are innumerable if the value of is changed, but the straight line L11 passing through the point M is uniquely determined, and therefore the value of α when the straight line L11 passes through the point M is obtained. Similarly, consider a straight line L12 that passes through a point that internally divides the sides AB and DC into β: (1-β), and obtain the value of β when the straight line L12 passes through the point M.
In this way, the values of α and β as the coordinate conversion parameters are specified (see FIG. 7A).

【0031】次いで、これらα、βの値と、実測位置で
ある点a,b,c,dとを用い、四角形abcdにおい
て辺adと辺bcとをそれぞれα:(1−α)に内分す
る点を通る直線L21を求めるとともに、同様に辺abと
辺dcとをそれぞれβ:(1−β)に内分する点を通る
直線L22を求め、さらに、上記直線L21と直線L22との
交点m(mx,my)を求め、この点mの座標を部品装
着箇所の補正位置とする(図7(b)参照)。また、直
線L11と直線L12との傾きの差と、直線L12と直線L22
との傾きの差とを求め、その平均を座標変換の傾きとす
る。
Next, using the values of α and β and the measured points a, b, c, and d, the side ad and the side bc in the quadrangle abcd are internally divided into α: (1-α), respectively. The straight line L21 passing through the point is also found, and the straight line L22 passing through the point that internally divides the side ab and the side dc into β: (1-β) is also obtained, and further, the intersection of the straight line L21 and the straight line L22. m (mx, my) is obtained, and the coordinates of this point m are set as the correction position of the component mounting location (see FIG. 7B). In addition, the difference in inclination between the straight line L11 and the straight line L12, and the straight line L12 and the straight line L22
The difference between the slopes of and is calculated, and the average is used as the slope of coordinate conversion.

【0032】そして、部品装着時には、補正位置である
上記点mの位置へ部品を装着するようにX軸サーボモー
タ15及びY軸サーボモータ9を制御し、かつ、上記座
標変換の傾きに応じて部品の角度を補正するようにR軸
サーボモータ19,20を制御する。
Then, at the time of component mounting, the X-axis servomotor 15 and the Y-axis servomotor 9 are controlled so as to mount the component at the point m, which is the correction position, and according to the inclination of the coordinate conversion. The R-axis servomotors 19 and 20 are controlled so as to correct the angles of the parts.

【0033】なお、図7では1つの部品の装着箇所を補
正する場合について示したが、プリント基板3に複数の
部品を装着する場合、その各装着箇所の理論位置の座標
を予め記憶し、各箇所についてそれぞれ図7に示す手法
で補正位置及び座標変換の傾きを求めるようにすればよ
い。
Although FIG. 7 shows the case where the mounting position of one component is corrected, when mounting a plurality of components on the printed circuit board 3, the coordinates of the theoretical position of each mounting position are stored in advance, and The correction position and the slope of the coordinate conversion may be obtained for each location by the method shown in FIG.

【0034】また、図5〜図7では部品装着箇所の理論
位置(点M)が四角形ABCDの内方にある場合につい
て示し、この場合は上記α,βが内分比を示す値であっ
て0<α<1,0<β<1となるが、部品装着箇所の理
論位置(点M)は四角形ABCDの外方にあってもよ
く、この場合はα,βの一方もしくは双方が外分比を示
す値となるようにすればよい。つまり、例えば点Mが四
角形ABCDの縦方向外方にある場合、αは外分比を示
す値(α>1)とし、辺ADと辺BCとをそれぞれα:
(α−1)に外分する点を通る直線が点Mを通るときの
αの値を求めるようにすればよく、また、点Mが四角形
ABCDの横方向外方にある場合、βは外分比を示す値
(β>1)とし、辺ABと辺DCとをそれぞれβ:(β
−1)に外分する点を通る直線が上記点Mを通るときの
βの値を求めるようにすればよい。上記の装着位置補正
方法は上記制御装置の主演算部32等で実行される。装
着位置補正のための制御、演算等の処理をフローチャー
トで示すと図8のようになる。
Further, FIGS. 5 to 7 show the case where the theoretical position (point M) of the component mounting location is inside the quadrangle ABCD. In this case, α and β are values showing the internal division ratio. Although 0 <α <1 and 0 <β <1, the theoretical position (point M) of the component mounting position may be outside the quadrangle ABCD. In this case, one or both of α and β are It may be a value indicating a ratio. That is, for example, when the point M is located outside the quadrangle ABCD in the vertical direction, α is a value indicating the external division ratio (α> 1), and the sides AD and BC are α:
It suffices to find the value of α when a straight line passing through the point that is externally divided into (α-1) passes through the point M. Further, when the point M is laterally outside the quadrangle ABCD, β is the outside. A value indicating the ratio (β> 1) is set, and the sides AB and DC are respectively set to β: (β
The value of β may be obtained when the straight line passing through the point that is externally divided into -1) passes through the point M. The mounting position correction method described above is executed by the main arithmetic unit 32 and the like of the control device. FIG. 8 is a flow chart showing the processing such as control and calculation for the mounting position correction.

【0035】すなわち、このフローチャートの処理がス
タートすると、先ず実装機の基台1上の装着作業用位置
へのプリント基板3の搬入及び固定が行われる(ステッ
プS1)。次に、マークカウント値iが「1」とされ
(ステップS2)、それから、プリント基板3上のi番
目(最初は1番目)のフィデューシャルマーク40の理
論位置に基板認識カメラ27が移動し(ステップS
3)、このフィデューシャルマーク40が撮像されてそ
の実測位置が検出される(ステップS4)。そして、マ
ークカウント値iが4以下か否かが調べられ、4以下で
あればこの値iに1が加算された上でステップS3,S
4の処理が繰り返される。こうして、1番目から4番目
までの各フィデューシャルマーク40実測位置が順次検
出され、つまり図6中に示す4点a,b,c,dの位置
が求められる。
That is, when the process of this flowchart is started, first, the printed board 3 is carried in and fixed to the mounting work position on the base 1 of the mounting machine (step S1). Next, the mark count value i is set to "1" (step S2), and then the board recognition camera 27 moves to the theoretical position of the i-th (first is the first) fiducial mark 40 on the printed board 3. (Step S
3) The image of the fiducial mark 40 is picked up and its measured position is detected (step S4). Then, it is checked whether or not the mark count value i is 4 or less. If it is 4 or less, 1 is added to this value i, and then the steps S3, S
The process of 4 is repeated. Thus, the actually measured positions of the first to fourth fiducial marks 40 are sequentially detected, that is, the positions of the four points a, b, c, d shown in FIG. 6 are obtained.

【0036】次に、搭載部品カウント値jが「1」とさ
れ(ステップS2)、それから、j番目の部品搭載デー
タが存在するか否かが調べられる(ステップS8)。そ
して、部品搭載データが存在する場合は、座標変換の計
算(ステップS9)によって部品装着箇所の補正位置が
求められ、その補正された装着位置に部品が装着される
(ステップS10)。さらに、搭載部品カウント値jが
加算された上で再びステップS8の判定が行われ、部品
搭載データが存在しなくなるまで、ステップS8〜ステ
ップS11の処理が繰り返されることにより、プリント
基板に搭載すべき所要数の部品について、順次、装着位
置の補正、及び補正された位置への部品の装着が行われ
る。
Next, the mounted component count value j is set to "1" (step S2), and then it is checked whether or not the jth component mounting data exists (step S8). Then, when the component mounting data exists, the correction position of the component mounting position is obtained by the coordinate conversion calculation (step S9), and the component is mounted at the corrected mounting position (step S10). Further, after the mounted component count value j is added, the determination in step S8 is performed again, and the processes in steps S8 to S11 are repeated until the component mounting data no longer exists, so that the component should be mounted on the printed circuit board. With respect to the required number of components, the mounting positions are sequentially corrected and the components are mounted at the corrected positions.

【0037】上記ステップS9の座標変換の計算では、
予め記憶されている各フィデューシャルマーク40の理
論位置(図5,図7中の点A,B,C,Dの位置)と、
上記ステップS2〜S6の処理で求められた各フィデュ
ーシャルマーク40の実測位置(図6,図7中の点a,
b,c,dの位置)と、予め記憶された部品搭載データ
に含まれる当該部品の装着箇所の理論位置とから、前述
の図7に示すような手法で部品装着箇所の補正位置が求
められる。
In the calculation of the coordinate conversion in step S9,
Theoretical positions of the fiducial marks 40 stored in advance (positions of points A, B, C, D in FIGS. 5 and 7),
The measured position of each fiducial mark 40 obtained by the processing of steps S2 to S6 (point a in FIG. 6 and FIG. 7,
(b, c, d positions) and the theoretical position of the mounting location of the component included in the component mounting data stored in advance, the corrected position of the component mounting location is obtained by the method shown in FIG. .

【0038】以上のような装着位置補正方法によると、
プリント基板3上の、フィデューシャルマーク40が付
された4点の被測定点が検出され、その各被測定点の理
論位置及び実測位置と部品装着箇所の理論位置とから、
部品装着箇所の補正位置が求められるため、プリント基
板にゆがみ等が生じている場合でも、部品の装着が精度
良く行われる。この作用を、被測定点(フィデューシャ
ルマーク)が1点、2点、3点の各場合と比較して次に
詳しく説明する。
According to the mounting position correction method as described above,
Four measured points with the fiducial mark 40 on the printed circuit board 3 are detected, and from the theoretical position and measured position of each measured point and the theoretical position of the component mounting position,
Since the corrected position of the component mounting position is required, the component can be mounted with high accuracy even when the printed circuit board is distorted or the like. This action will be described in detail below in comparison with the case where the measured points (fiducial marks) are 1, 2, and 3.

【0039】部品装着位置のずれを生じるプリント基板
側の要因としては、基板のX,Y方向のずれ、傾き(回
転方向の変位)、伸縮、基板の2次元平面のゆがみ、ひ
ずみ等があり、とくに基板の材質が比較的変形し易いも
の、例えばガラエボ、セラミック、フレキシブル基板等
であれば、位置ずれや傾きに加えて伸縮、ゆがみ等を生
じ易い。
Factors on the printed circuit board side that cause the displacement of the component mounting position include displacement in the X and Y directions of the substrate, inclination (displacement in the rotational direction), expansion and contraction, distortion of the two-dimensional plane of the substrate, distortion, etc. In particular, if the material of the substrate is relatively easily deformed, such as glass evo, ceramics, flexible substrate, etc., expansion and contraction, distortion, etc. are likely to occur in addition to the positional displacement and inclination.

【0040】そして、被測定点が1点の場合は、その点
の実測位置のX,Y座標を理論位置の座標と比較するこ
とで基板のX,Y方向のずれだけは知ることができる
が、それ以外の要因による装着位置のずれを知ることは
できない。
When the number of points to be measured is one, it is possible to know only the displacement in the X and Y directions of the substrate by comparing the X and Y coordinates of the actually measured position of that point with the coordinates of the theoretical position. However, it is impossible to know the displacement of the mounting position due to other factors.

【0041】被測定点が2点の場合は、2点の各X,Y
座標からなる4つの測定データが得られるので、これら
と理論位置との比較に基づき、基板のX,Y方向のず
れ、傾き及び伸びを知ることができるが、それ以外の要
因による装着位置のずれを知ることはできない。
When the number of points to be measured is two, each of the two points X and Y
Since four measurement data consisting of coordinates are obtained, it is possible to know the displacement, inclination, and elongation of the board in the X and Y directions based on the comparison between these and theoretical positions, but the displacement of the mounting position due to other factors. Can't know.

【0042】また、被測定点が3点の場合は、3点の各
X,Y座標からなる6つの測定データが得られるので、
これらと理論位置との比較に基づき、基板のX,Y方向
のずれと、X軸及びY軸の各傾きと、X方向及びY方向
の各伸びとを知ることができる。つまり、基板の位置ず
れのほかに、長方形基板が平行四辺形状に変形するとい
うような特定の変形に限ってはこれを知ることができる
が、一般的な基板のゆがみによる装着位置のずれを知る
ことはできない。
If there are three points to be measured, six measurement data consisting of the X and Y coordinates of the three points can be obtained.
Based on the comparison between these and the theoretical position, it is possible to know the displacement of the substrate in the X and Y directions, the inclinations of the X axis and the Y axis, and the elongations in the X direction and the Y direction. In other words, in addition to the displacement of the substrate, this can be known only for a specific deformation such as the rectangular substrate deforming into a parallelogram, but the displacement of the mounting position due to the general distortion of the substrate is known. It is not possible.

【0043】従って、これらの場合はいずれも、基板の
2次元平面のゆがみ、ひずみ等が生じている場合に、部
品装着位置を精度良く補正することができない。
Therefore, in any of these cases, the component mounting position cannot be accurately corrected when the two-dimensional plane of the substrate is distorted or distorted.

【0044】これに対し、当実施例では、被測定点を4
点とし、かつ、その4点の理論位置と部品装着箇所の理
論位置との相対位置関係を示すパラメータα,βを求め
て、そのパラメータα,βと各被測定点の実測位置とか
ら座標変換を行って装着箇所の補正位置を求めるように
しているので、基板の伸縮及び基板の2次元平面のゆが
み、ひずみ等が生じている場合でも、部品装着位置を精
度良く補正することができる。
On the other hand, in this embodiment, the measured point is set to 4
The parameters α and β indicating the relative positional relationship between the theoretical positions of the four points and the theoretical position of the component mounting position are obtained, and coordinate conversion is performed from the parameters α and β and the measured positions of each measured point. Since the correction position of the mounting position is obtained by performing the above, it is possible to accurately correct the component mounting position even when the substrate is expanded or contracted and the two-dimensional plane of the substrate is distorted or distorted.

【0045】なお、上記実施例ではプリント基板の4隅
の各コーナー近傍に被測定点となるフィデューシャルマ
ーク40を付しているが、フィデューシャルマーク40
の位置はこの例に限らず、任意に設定しておけばよい。
In the above embodiment, the fiducial mark 40 to be measured is provided near each of the four corners of the printed circuit board.
The position of is not limited to this example, and may be set arbitrarily.

【0046】また、被測定点(フィデューシャルマー
ク)は5点以上設定してもよく、この場合、例えば、被
測定点の4点ずつの組み合わせについてそれぞれ、その
理論位置と実測位置と部品装着箇所の理論位置とから前
記の図7に示すような方法で補正位置を求め、これらの
平均値を求めるというようにすれば、より一層精度が高
められる。
Further, the measured points (fiducial marks) may be set to five or more. In this case, for example, for each combination of four measured points, the theoretical position, the measured position, and the component mounting are respectively set. If the correction position is obtained from the theoretical position of the place by the method shown in FIG. 7 and the average value of these is obtained, the accuracy is further enhanced.

【0047】また、被測定点を検出する検出手段は、上
記実施例のような基板認識用カメラに限らず、例えばプ
リント基板に光を照射する発光部と基板で反射した光を
受光する受光部とで検出手段を構成するようにしてもよ
い。
The detecting means for detecting the point to be measured is not limited to the board recognizing camera as in the above embodiment, and for example, a light emitting section for irradiating the printed board with light and a light receiving section for receiving the light reflected by the board. You may make it comprise a detection means with.

【0048】[0048]

【発明の効果】以上のように本発明は、プリント基板に
4点以上の被測定点を設定し、これらの被測定点の位置
を計測するとともに、上記各被測定点の理論位置に対す
る部品装着箇所の理論位置の相対位置関係と各被測定点
の実測位置とに基づいて部品装着箇所の補正位置を演算
するようにしているため、プリント基板の2次元平面の
ゆがみ等が生じている場合でも、部品装着箇所の補正位
置を適正に求めることができる。従って、プリント基板
が変形し易い材質からなるものであっても、プリント基
板に対する部品の装着を精度良く行うことができるもの
である。
As described above, according to the present invention, four or more points to be measured are set on the printed board, the positions of these points to be measured are measured, and the parts are mounted at the theoretical positions of the respective points to be measured. Since the correction position of the component mounting location is calculated based on the relative positional relationship of the theoretical positions of the locations and the actual measurement location of each measured point, even when the two-dimensional plane of the printed circuit board is distorted. Therefore, it is possible to properly obtain the corrected position of the component mounting position. Therefore, even if the printed circuit board is made of a material that is easily deformed, it is possible to accurately mount the component on the printed circuit board.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る部品装着位置補正方法が適用され
る実装機を示す平面図である。
FIG. 1 is a plan view showing a mounter to which a component mounting position correcting method according to the present invention is applied.

【図2】本発明に係る部品装着位置補正方法が適用され
る実装機を示す正面図である。
FIG. 2 is a front view showing a mounter to which the component mounting position correcting method according to the present invention is applied.

【図3】実装機の制御系を示すブロック図である。FIG. 3 is a block diagram showing a control system of the mounting machine.

【図4】プリント基板のフィデューシャルマークを示す
平面図である。
FIG. 4 is a plan view showing a fiducial mark on a printed circuit board.

【図5】4点のフィデューシャルマークの理論位置及び
部品装着箇所の理論位置を示す図である。
FIG. 5 is a diagram showing theoretical positions of four fiducial marks and theoretical positions of component mounting positions.

【図6】4点のフィデューシャルマークの実測位置を示
す図である。
FIG. 6 is a diagram showing measured positions of four fiducial marks.

【図7】(a)(b)は部品装着箇所の補正位置を求め
る手法を示す図である。
7A and 7B are diagrams showing a method of obtaining a correction position of a component mounting position.

【図8】装着位置補正のための制御、演算等の処理を示
すフローチャートである。
FIG. 8 is a flowchart showing processing such as control and calculation for mounting position correction.

【符号の説明】[Explanation of symbols]

3 プリント基板 5 ヘッドユニット 40 フィデューシャルマーク A,B,C,D 被測定点の理論位置 M 部品装着箇所の理論位置 a,b,c,d 被測定点の実測位置 m 部品装着箇所の補正位置 3 Printed circuit board 5 Head unit 40 Fiducial mark A, B, C, D Theoretical position of measured point M Theoretical position of component mounting location a, b, c, d Actual measured position of measured point m Correction of component mounting location position

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 部品装着用ヘッドにより部品供給部から
部品を吸着して、プリント基板の部品装着箇所に装着す
る実装機において、上記プリント基板に4点以上の被測
定点を設定し、この各被測定点の理論位置と上記部品装
着箇所の理論位置とを予め記憶し、上記部品装着用ヘッ
ドに設けた検出手段により上記各被測定点を検出してこ
れらの位置を測定した後、上記各被測定点の理論位置に
対する上記部品装着箇所の理論位置の相対的な位置関係
から求めたパラメータと、上記検出手段によって測定さ
れた各被測定点の実測位置とに基づいて、上記部品装着
箇所の補正位置を演算することを特徴とする実装機の装
着位置補正方法。
1. A mounting machine for picking up a component from a component supply unit by a component mounting head and mounting the component at a component mounting location on a printed circuit board, wherein four or more measured points are set on the printed circuit board. The theoretical position of the point to be measured and the theoretical position of the component mounting location are stored in advance, and each of the points to be measured is detected by the detecting means provided in the component mounting head to measure these positions. Based on the parameters obtained from the relative positional relationship of the theoretical position of the component mounting position with respect to the theoretical position of the measured point, and the measured position of each measured point measured by the detecting means, A mounting position correction method for a mounting machine, which comprises calculating a correction position.
【請求項2】 プリント基板の4箇所以上の被測定点に
付されたフィデューシャルマークを、部品装着用ヘッド
に具備された撮像手段によって撮像することにより、上
記各被測定点の位置の測定を行うことを特徴とする請求
項1記載の実装機の装着位置補正方法。
2. The position of each of the measured points is measured by imaging the fiducial marks attached to the measured points of four or more locations on the printed circuit board by the imaging means provided in the component mounting head. The mounting position correction method for a mounting machine according to claim 1, wherein
JP04155495A 1995-03-01 1995-03-01 Mounting position correction method for mounting machine Expired - Lifetime JP3286105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04155495A JP3286105B2 (en) 1995-03-01 1995-03-01 Mounting position correction method for mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04155495A JP3286105B2 (en) 1995-03-01 1995-03-01 Mounting position correction method for mounting machine

Publications (2)

Publication Number Publication Date
JPH08236997A true JPH08236997A (en) 1996-09-13
JP3286105B2 JP3286105B2 (en) 2002-05-27

Family

ID=12611653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04155495A Expired - Lifetime JP3286105B2 (en) 1995-03-01 1995-03-01 Mounting position correction method for mounting machine

Country Status (1)

Country Link
JP (1) JP3286105B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024293A1 (en) * 1996-11-27 1998-06-04 Daewoo Electronics Co., Ltd. Mounting coordinate input method and apparatus for surface mount device
KR100275374B1 (en) * 1997-02-27 2000-12-15 이중구 Method for searching the mounting location in the chip mounter
EP1077594A2 (en) * 1999-08-18 2001-02-21 FUJI MACHINE Mfg. Co., Ltd. Method and apparatus for correcting electric-component-mount position
JP2002288632A (en) * 2001-03-26 2002-10-04 Sony Corp Standard mark recognition method for work
JP2006128253A (en) * 2004-10-27 2006-05-18 Kyocera Corp Method of mounting electronic component element and method of manufacturing electronic device
JP2007242756A (en) * 2006-03-07 2007-09-20 Yamagata Casio Co Ltd Component mounting apparatus, and substrate mark recognition method
JP2014036053A (en) * 2012-08-07 2014-02-24 Towa Corp Storage device for individual piece and storage method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024293A1 (en) * 1996-11-27 1998-06-04 Daewoo Electronics Co., Ltd. Mounting coordinate input method and apparatus for surface mount device
US6064758A (en) * 1996-11-27 2000-05-16 Daewoo Electronics Co., Ltd. Mounting coordinate input method and apparatus for surface mount device
KR100275374B1 (en) * 1997-02-27 2000-12-15 이중구 Method for searching the mounting location in the chip mounter
EP1077594A2 (en) * 1999-08-18 2001-02-21 FUJI MACHINE Mfg. Co., Ltd. Method and apparatus for correcting electric-component-mount position
EP1077594A3 (en) * 1999-08-18 2002-01-02 FUJI MACHINE Mfg. Co., Ltd. Method and apparatus for correcting electric-component-mount position
US6591219B1 (en) 1999-08-18 2003-07-08 Fuji Machine Mfg. Co., Ltd. Method and apparatus for correcting electric-component-mount position
JP2002288632A (en) * 2001-03-26 2002-10-04 Sony Corp Standard mark recognition method for work
JP2006128253A (en) * 2004-10-27 2006-05-18 Kyocera Corp Method of mounting electronic component element and method of manufacturing electronic device
JP4522226B2 (en) * 2004-10-27 2010-08-11 京セラ株式会社 Electronic component element mounting method and electronic device manufacturing method
JP2007242756A (en) * 2006-03-07 2007-09-20 Yamagata Casio Co Ltd Component mounting apparatus, and substrate mark recognition method
JP2014036053A (en) * 2012-08-07 2014-02-24 Towa Corp Storage device for individual piece and storage method

Also Published As

Publication number Publication date
JP3286105B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
KR101472434B1 (en) Electronic component mounting apparatus and mounting position correction data creating method
EP0886465B1 (en) Electronic components mounting method and apparatus
KR20080012764A (en) Screen printer and image sensor position alignment method
JPH0448698A (en) Electronic component mounting device
WO2001095370A2 (en) Calibration methods for placement machines incorporating on-head linescan sensing
US6563530B1 (en) Camera position-correcting method and system and dummy component for use in camera position correction
US6647138B1 (en) Electronic component mounting method and mounting apparatus
JP6889778B2 (en) Component mounting device
KR20170107879A (en) Component loading method and component mounting apparatus
JP5457665B2 (en) Electronic component mounting device
JP4494922B2 (en) Method and apparatus for detecting mounting error of electronic component mounting apparatus
JP3286105B2 (en) Mounting position correction method for mounting machine
JP2003234598A (en) Component-mounting method and component-mounting equipment
JP5572247B2 (en) Image distortion correction method
JP2004288824A (en) Method for calibrating electronic-part mounting device and device using its method
JP3499316B2 (en) Calibration data detection method for mounting machine and mounting machine
JP3891825B2 (en) Electronic component mounting equipment
JP3142720B2 (en) Positioning method and device for mounting machine
JP4381568B2 (en) Board recognition method and apparatus for component mounting system
JP3564191B2 (en) Positioning method and device for mounting machine
JP2000258121A (en) Master substrate for calibrating a plurality of cameras and calibration method for image recognition camera
JP4860366B2 (en) Surface mount equipment
JP3247703B2 (en) Printed circuit board working device and its feeding device error detecting device
JP3112574B2 (en) Scale adjustment method for component mounting device and device
JP2002076696A (en) Substrate recognizing apparatus for mounting apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term