JPH08236508A - Method and device for substrate processing - Google Patents

Method and device for substrate processing

Info

Publication number
JPH08236508A
JPH08236508A JP7292897A JP29289795A JPH08236508A JP H08236508 A JPH08236508 A JP H08236508A JP 7292897 A JP7292897 A JP 7292897A JP 29289795 A JP29289795 A JP 29289795A JP H08236508 A JPH08236508 A JP H08236508A
Authority
JP
Japan
Prior art keywords
substrate
insulating film
gas
heat transfer
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7292897A
Other languages
Japanese (ja)
Other versions
JP2951876B2 (en
Inventor
Minoru Noguchi
稔 野口
Toru Otsubo
徹 大坪
Susumu Aiuchi
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17787812&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08236508(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7292897A priority Critical patent/JP2951876B2/en
Publication of JPH08236508A publication Critical patent/JPH08236508A/en
Application granted granted Critical
Publication of JP2951876B2 publication Critical patent/JP2951876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To provide a substrate processing method which is capable of controlling effectively a substrate temperature under processing and a substrate processing device in etching, film formation and baking process during the manufacture of a semiconductor device. CONSTITUTION: During the processing of a substrate 19 by generating plasma in a processing chamber 12 exhausted in a specified pressure, the substrate 19 is mechanically placed in contact with the surface of a support mount 17 whose surface is covered with an insulation film and placed under temperature control, thereby supporting the substrate 19 with the support mount 17 and interposing a heat transfer gas between the surface of the insulation film and the substrate 19. While heat transfer is being conducted between the support mount 17 and the substrate 19, plasma is generated in the chamber 12 and the substrate is processed with the plasma.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、半導体ウエハ
などの基板に、ドライエッチングあるいは、蒸着、スパ
ッタリングなどの成膜処理を施す基板処理方法および基
板処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate processing method and a substrate processing apparatus for subjecting a substrate such as a semiconductor wafer to a film forming process such as dry etching or vapor deposition or sputtering.

【0002】[0002]

【従来の技術】現在、半導体装置製造において、成膜手
段として蒸着あるいはスパッタリングを行う際、粒径,
反射率,比抵抗及び硬度が適切である良好な膜質を得る
ためには、基板のベーキング中、及び、成膜中の基板温
度を効果的に制御する必要がある。特に粒径,反射率
は、基板温度の影響が大きい。また、上記膜上に露光現
像によりレジストパターンを形成し、ドライエッチング
により上記膜をレジストパターン通りに食刻する際にも
基板温度の制御が必要である。これは、基板温度を制御
することで、レジストが耐熱性に乏しいことから生じる
レジストの熱的損傷を防ぎ、忠実なパターンを食刻する
ことが可能になるからである。
2. Description of the Related Art At present, in the manufacture of semiconductor devices, when vapor deposition or sputtering is performed as a film forming means,
In order to obtain a good film quality with appropriate reflectance, resistivity and hardness, it is necessary to effectively control the substrate temperature during baking of the substrate and during film formation. In particular, the grain size and reflectance are greatly affected by the substrate temperature. In addition, it is necessary to control the substrate temperature also when a resist pattern is formed on the film by exposure and development and the film is etched according to the resist pattern by dry etching. This is because by controlling the substrate temperature, it is possible to prevent thermal damage to the resist caused by the poor heat resistance of the resist and to etch a faithful pattern.

【0003】しかしながら、真空中で基板の温度制御を
することは難しい。温度制御された基板支持台と同じ温
度に基板の温度をするための制御をしても、真空中では
基板と支持台との熱的接触が十分ではないからである。
However, it is difficult to control the temperature of the substrate in a vacuum. This is because even if the temperature of the substrate is controlled to the same temperature as that of the temperature-controlled substrate support, the thermal contact between the substrate and the support is insufficient in vacuum.

【0004】そこで、従来から基板と基板支持台との2
面間の熱的接触を大きくするために、基板を支持台に機
械的に押えつけるか、あるいは、静電的な力により基板
を支持台に吸着させるかなどの方法が提案されている。
しかし、このような方法によっても十分な効果は得られ
ていない。すなわち、固体2面間の熱的接触は、2面間
に介在する気体分子によるところが大きく、純粋な固体
間での熱のやりとりは、上記の押え付け圧力程度では気
体分子による熱のやりとりに比べて無視できる程度に小
さいからである。
Therefore, conventionally, the two of the substrate and the substrate support are provided.
In order to increase the thermal contact between the surfaces, a method has been proposed in which the substrate is mechanically pressed against the support base, or the substrate is attracted to the support base by electrostatic force.
However, even with such a method, a sufficient effect has not been obtained. That is, the thermal contact between the two surfaces of the solid is largely due to the gas molecules interposed between the two surfaces, and the heat exchange between the pure solids is about the above-mentioned pressing pressure as compared with the heat exchange between the gas molecules. It is so small that it can be ignored.

【0005】そこで、気体分子を基板と支持台との間に
介在させることにより、熱的接触を大きくしようとする
装置が提案され、特開昭56−103442に開示され
ている。
Therefore, there has been proposed a device for increasing thermal contact by interposing gas molecules between the substrate and the support, which is disclosed in JP-A-56-103442.

【0006】この装置の基板温度制御部を図6に示す。
基板3が、数個のクリップ4によりスペーサ9を介して
支持台5に接近させて支持されている。支持台5上に
は、冷却もしくは加熱機構をそなえた温度制御装置6が
設けられている。処理室1は排気口2より排気される。
同時に、気体導入口7よりアルゴンが導入され、このガ
スは温度制御装置6と基板3の間を流れ8のように処理
室1内に入る。この時、基板3と温度制御装置6との空
間10内の圧力は、10〜100Paになるように制御
され、処理室1内の圧力は、1Pa程度になるよう排気
される。
FIG. 6 shows the substrate temperature control unit of this apparatus.
The substrate 3 is supported by several clips 4 in close proximity to the support 5 via a spacer 9. A temperature control device 6 having a cooling or heating mechanism is provided on the support base 5. The processing chamber 1 is exhausted from the exhaust port 2.
At the same time, argon is introduced from the gas introduction port 7, and this gas enters the processing chamber 1 as a flow 8 between the temperature control device 6 and the substrate 3. At this time, the pressure in the space 10 between the substrate 3 and the temperature control device 6 is controlled to be 10 to 100 Pa, and the pressure in the processing chamber 1 is exhausted to be about 1 Pa.

【0007】従って、基板3は、100Pa程度の圧力
を持つ介在ガスの熱伝達に助けられ温度制御装置6によ
り温度制御される。
Therefore, the temperature of the substrate 3 is controlled by the temperature control device 6 by the heat transfer of the intervening gas having a pressure of about 100 Pa.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この種
の装置においても、基板3の温度制御は十分でない。た
とえば、直径100mm、厚さ0.45mmのシリコン
基板を温度制御する場合、その時定数は20秒程度にも
なる。このような状況で、印加電力500Wのドライエ
ッチングを行なうと、温度制御装置との温度差は130
°Cにもなり、レジストが熱的損傷を受ける。従って、
500W程度以上の電力を印加することはできない。ま
た、熱伝達用ガスを漏れさせることにより処理ガスとし
ても用いる機構になっているため、熱伝達用ガス以外の
処理ガスを、別の流路で導入したい場合、熱伝達用ガス
の漏れをなくすことができない。
However, even in this type of device, the temperature control of the substrate 3 is not sufficient. For example, when controlling the temperature of a silicon substrate having a diameter of 100 mm and a thickness of 0.45 mm, the time constant becomes about 20 seconds. When dry etching with an applied power of 500 W is performed in such a situation, the temperature difference with the temperature controller is 130.
The temperature also reaches ° C, and the resist is thermally damaged. Therefore,
It is impossible to apply power of about 500 W or more. In addition, since the mechanism is also used as a processing gas by leaking the heat transfer gas, if you want to introduce a process gas other than the heat transfer gas into another flow path, eliminate the leakage of the heat transfer gas. I can't.

【0009】本発明は、半導体装置製造時の食刻、成
膜、ベーキング処理において、処理中の基板温度を効果
的に制御して、良好な処理が行えるようにした基板処理
方法および基板処理装置を提供することを目的とする。
The present invention is directed to a substrate processing method and a substrate processing apparatus capable of effectively controlling the substrate temperature during the etching, film forming and baking processes during the manufacture of a semiconductor device so that good processing can be performed. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】上記問題を解決すべく本
発明者は鋭意工夫を重ねたところ次の知見を得た。ま
ず、基板と支持台との温度差を小さくし、基板温度制御
の応答速度を速くするためには、基板と支持台との間を
単位時間、単位温度差当りに流れる熱量(以下単位熱流
量と言う。)を大きくする必要がある。単位熱流量を大
きくするには、圧力を上げ、同時に、2面間の距離をそ
の圧力下でのその気体の平均自由行程以下にする必要が
ある。
Means for Solving the Problems The inventors of the present invention have made the following efforts to solve the above problems and obtained the following findings. First, in order to reduce the temperature difference between the substrate and the support table and increase the response speed of the substrate temperature control, the amount of heat that flows between the substrate and the support table per unit time per unit temperature difference (hereinafter unit heat flow rate). It is necessary to increase. To increase the unit heat flow, it is necessary to increase the pressure and, at the same time, make the distance between the two surfaces equal to or less than the mean free path of the gas under the pressure.

【0011】処理中の基板温度は次の式に従って経時変
化する。 (1)Tw=(1−exp(−kt/C))Qi/k+To ここで、Twは基板温度、Cは基板の熱容量、kは単位
熱流量、Qiは処理時に単位時間当り基板に与えられる
一定熱量、Toは支持台の温度、tは時間であり、t=
0においてTw=Toとしている。
The substrate temperature during processing changes with time according to the following equation. (1) Tw = (1-exp (-kt / C)) Qi / k + To where Tw is the substrate temperature, C is the heat capacity of the substrate, k is the unit heat flow rate, and Qi is given to the substrate per unit time during processing. Constant heat quantity, To is the temperature of the support, t is time, and t =
At 0, Tw = To.

【0012】また、支持台の温度が定常値Toにあり、
基板の初期温度Two≠Toの時は次の式に従う。 (2)Tw=(Two−To)exp(−kt/C)+To 以上、いずれの場合も、基板温度制御の応答速度は、基
板の熱容量Cと、2面間の単位熱流量kにのみ依存す
る。Cの値は基板固有の値で、たとえば、直径100m
m、厚さ0.45mmのシリコン基板では約6.2J・
K~1である。従って、基板と支持台の温度差を小さく
し、基板温度制御の応答速度を速くするには、単位熱流
量を大きくする必要がある。
Further, the temperature of the support is at a steady value To,
When the initial temperature Two ≠ To of the substrate, the following equation is obeyed. (2) Tw = (Two−To) exp (−kt / C) + To In any of the above cases, the response speed of the substrate temperature control depends only on the heat capacity C of the substrate and the unit heat flow rate k between the two surfaces. To do. The value of C is a value peculiar to the substrate. For example, the diameter is 100 m.
m, 0.45 mm thick silicon substrate is about 6.2 J.
It is K ~ 1 . Therefore, in order to reduce the temperature difference between the substrate and the support and increase the response speed of the substrate temperature control, it is necessary to increase the unit heat flow rate.

【0013】ところで、2面間に窒素を介在させ、その
圧力を変えた時、単位熱流量がどう変化するかを示す実
測値を図5に示す。基板はシリコンで表面は薄い酸化シ
リコンで覆い、支持材としては研摩したアルミニウムを
用いた。表面は十分に洗浄して2面間には直径100m
m当り1kgの荷重をかけた。
By the way, FIG. 5 shows measured values showing how the unit heat flow rate changes when nitrogen is interposed between the two surfaces and the pressure thereof is changed. The substrate was covered with silicon and the surface was covered with thin silicon oxide, and polished aluminum was used as a supporting material. The surface is thoroughly cleaned and the diameter between the two surfaces is 100m.
A load of 1 kg per m was applied.

【0014】曲線が、原点を通る直線に近く、この条件
下では純粋に固体間だけの熱伝達は無視できることが証
明される。すなわち、固体2面間に力学的な接触があっ
ても、熱的な接触の大部分は2面間に介在する気体によ
るものである。また、介在気体の圧力を従来装置におけ
る値100Paより大きくすると単位熱流量が増すこと
がわかる。
The curve is close to a straight line passing through the origin, which proves that under these conditions the heat transfer between purely solids is negligible. That is, even if there is mechanical contact between the two surfaces of the solid, most of the thermal contact is due to the gas interposed between the two surfaces. Further, it can be seen that if the pressure of the intervening gas is made larger than the value of 100 Pa in the conventional device, the unit heat flow rate increases.

【0015】以上の実測値は、以下の理論式に従うもの
である。すなわち、2面間を単位時間当りに通過する熱
量「dQ/dt」は次の式に従う。 (3)dQ/dt=k1 (Tw−To)p(e≪λ) (4)dQ/dt=k2 (Tw−To)e(e≫λ) ここで、k1 ,k2 は定数、Tw、Toはそれぞれ基
板、基板支持台の温度、eは2面間の距離、pは介在気
体の圧力、λはその圧力下での平均自由行程である。こ
の式は、圧力が低く平均自由行程が十分長い条件下で
は、「dQ/dt」はpに比例し、圧力が高く平均自由
行程が十分短くなると「dQ/dt」はeに比例するこ
とを示している。
The above measured values are based on the following theoretical formula. That is, the amount of heat “dQ / dt” that passes between the two surfaces per unit time complies with the following equation. (3) dQ / dt = k 1 (Tw-To) p (e << λ) (4) dQ / dt = k 2 (Tw-To) e (e >> λ) where k 1 and k 2 are constants. , Tw, and To are the temperatures of the substrate and the substrate support, respectively, e is the distance between the two surfaces, p is the pressure of the intervening gas, and λ is the mean free path under that pressure. This formula shows that "dQ / dt" is proportional to p under conditions where the pressure is low and the mean free path is sufficiently long, and that "dQ / dt" is proportional to e when the pressure is high and the mean free path is sufficiently short. Shows.

【0016】従って、2面間に介在する気体の圧力を上
げ、かつ、2面間の距離をその圧力下での平均自由行程
程度以下にする機構を設けることによって、単位熱流量
は大きくできる。
Therefore, the unit heat flow rate can be increased by increasing the pressure of the gas interposed between the two surfaces and by providing a mechanism for making the distance between the two surfaces equal to or less than the mean free path under the pressure.

【0017】ところで、従来の装置においては、pは1
00Pa程度であるからArの平均自由行程λは約50
μmである。したがって、間隔は50μm程度まで小さ
くすることが望ましいのだが、この装置によっては不可
能である。すなわち、基板3は100Paの圧力差によ
り図6の符号11のごとく中央部が膨らむからである。
例えば、直径100mm厚さ0.45mmのシリコンウ
エハにおいては、100Paの圧力差により中央部の膨
らみ量は150μmに達する。従って、すでに、平均自
由行程である50μmを越えていて、さらに圧力を上げ
ても単位熱流量を増すことはできない。
In the conventional device, p is 1
Since it is about 00 Pa, the mean free path λ of Ar is about 50.
μm. Therefore, it is desirable to reduce the spacing to about 50 μm, but this is not possible with this device. That is, the central portion of the substrate 3 swells as indicated by reference numeral 11 in FIG. 6 due to the pressure difference of 100 Pa.
For example, in a silicon wafer having a diameter of 100 mm and a thickness of 0.45 mm, the bulge amount at the central portion reaches 150 μm due to the pressure difference of 100 Pa. Therefore, the average free path has already exceeded 50 μm, and the unit heat flow rate cannot be increased even if the pressure is further increased.

【0018】このような知見に基づいて、本発明におい
ては、所定の圧力に排気された処理室内でプラズマを発
生させて基板を処理する基板処理方法であって、表面を
絶縁膜で被覆して温度制御された支持台の前記絶縁膜表
面に、静電気力により前記基板を機械的に接触させるこ
とにより前記支持台で前記基板を支持する工程と、前記
絶縁膜表面と前記基板との間に熱伝達用のガスを介在さ
せる工程と、前記処理室内にプラズマを発生させて該プ
ラズマにより前記基板の処理を行う工程とを有し、前記
絶縁膜表面と前記支持台で支持された基板との間に介在
させた前記熱伝達用のガスにより前記支持台と前記基板
との間の熱伝達を行うことを特徴とする。
Based on such knowledge, the present invention is a substrate processing method for processing a substrate by generating plasma in a processing chamber evacuated to a predetermined pressure, the surface of which is covered with an insulating film. A step of supporting the substrate by the supporting table by mechanically bringing the substrate into contact with the insulating film surface of the temperature controlled supporting table by an electrostatic force; heat between the insulating film surface and the substrate; A step of interposing a gas for transmission, and a step of generating plasma in the processing chamber to process the substrate by the plasma, and between the insulating film surface and the substrate supported by the support table. The heat transfer gas interposed between the support base and the substrate is used to transfer heat.

【0019】また、所定の圧力に排気された処理室内で
基板を処理する基板処理方法であって、表面を絶縁膜で
被覆した支持台の前記絶縁膜表面に、静電気力により前
記基板をほぼ全面に亘って機械的に接触させることによ
り前記支持台で前記基板を支持する工程と、前記絶縁膜
表面との間に熱伝達用ガスを介在させる工程とを有し、
前記熱伝達用ガスにより前記支持台と前記基板との間の
熱伝達を行うことを特徴とする。
Further, in the substrate processing method of processing a substrate in a processing chamber evacuated to a predetermined pressure, the substrate is almost entirely covered by an electrostatic force on the surface of the insulating film of a support having a surface coated with an insulating film. A step of supporting the substrate by the support table by mechanically contacting the substrate, and a step of interposing a heat transfer gas between the insulating film surface,
The heat transfer gas may transfer heat between the support and the substrate.

【0020】また、所定の圧力に排気された処理室内で
基板をプラズマ処理する基板処理装置であって、前記処
理室の内部にプラズマを発生させるプラズマ発生手段
と、表面を絶縁膜で被覆して内部に温度制御部を有し、
前記絶縁膜で被覆した表面に基板を載置する支持台と、
前記絶縁膜表面に静電気力を発生させる静電気力発生手
段と、前記支持台に載置した基板と前記絶縁膜で被覆し
た表面との間に熱伝達用のガスを供給するガス供給手段
とを備え、前記静電気力発生手段により発生させた静電
気力により前記絶縁膜表面に前記基板を機械的に接触さ
せて、前記熱伝達用のガスで前記支持台と前記基板との
間の熱伝達を行うことを特徴とする。
Further, there is provided a substrate processing apparatus for plasma-processing a substrate in a processing chamber evacuated to a predetermined pressure, wherein plasma generating means for generating plasma inside the processing chamber and a surface of the substrate are covered with an insulating film. It has a temperature controller inside,
A support for mounting the substrate on the surface covered with the insulating film,
An electrostatic force generation unit that generates an electrostatic force on the surface of the insulating film, and a gas supply unit that supplies a gas for heat transfer between the substrate placed on the support and the surface covered with the insulating film. , Mechanically bringing the substrate into contact with the surface of the insulating film by the electrostatic force generated by the electrostatic force generating means, and performing heat transfer between the support table and the substrate with the heat transfer gas. Is characterized by.

【0021】さらに、所定の圧力に排気された処理室内
で基板を処理する基板処理装置であって、表面を絶縁膜
で被覆して該絶縁膜で被覆した表面に前記基板を載置す
る支持台と、前記絶縁膜表面に静電気力を発生させる静
電気力発生手段と、前記支持台に載置した基板と前記絶
縁膜で被覆した表面との間に熱伝達用のガスを供給する
ガス供給手段とを備え、前記静電気力発生手段により発
生させた静電気力により前記絶縁膜の表面に前記基板を
ほぼ全面に亘って機械的に接触させて、前記熱伝達用の
ガスで前記支持台と前記基板との間の熱伝達を行うこと
を特徴とする。
Further, in the substrate processing apparatus for processing a substrate in a processing chamber evacuated to a predetermined pressure, a support base for coating the surface with an insulating film and placing the substrate on the surface coated with the insulating film. And an electrostatic force generating means for generating an electrostatic force on the surface of the insulating film, and a gas supply means for supplying a gas for heat transfer between the substrate placed on the support and the surface covered with the insulating film. And mechanically contacting the substrate over substantially the entire surface of the insulating film by the electrostatic force generated by the electrostatic force generating means, and the support table and the substrate with the heat transfer gas. It is characterized by performing heat transfer between them.

【0022】[0022]

【作用】支持台上に基板を静電気力で吸着し、前記支持
台の絶縁膜の表面に前記基板をほぼ全面に亘って機械的
に接触させて支持するとともに、前記基板と前記絶縁膜
の表面との間に熱伝達用のガスを供給することにより、
前記支持台の絶縁膜の表面と前記基板との2面間の距離
を、熱伝達用のガスの供給圧力下での平均自由行程程度
以下にすることができ、前記基板の温度を効果的に制御
することができる。
The substrate is attracted to the support by electrostatic force, and the substrate is mechanically contacted and supported on the surface of the insulating film of the support over almost the entire surface, and the surface of the substrate and the insulating film is supported. By supplying a gas for heat transfer between
The distance between the surface of the insulating film of the support and the two surfaces of the substrate can be made equal to or less than the mean free path under the supply pressure of the gas for heat transfer, and the temperature of the substrate can be effectively reduced. Can be controlled.

【0023】[0023]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。まず、実施例の骨子である基板の温度制御の原理を
図1に基づいて説明する。基板19の支持台17と、基
板19を保持するための保持手段23と、基板19と支
持台17とで形成される空間20に気体を導入するため
の気体導入手段52を有する基板温度制御装置におい
て、支持台17と基板19との距離を、導入した気体の
圧力下におけるその気体の平均自由行程以下にする機構
を設け、これにより、半導体装置製造時の食刻処理等に
おいて、処理中の基板温度を効果的に制御しうる。
Embodiments of the present invention will be described below with reference to the drawings. First, the principle of temperature control of a substrate, which is the essence of the embodiment, will be described with reference to FIG. A substrate temperature control device having a support base 17 for the substrate 19, a holding means 23 for holding the substrate 19, and a gas introducing means 52 for introducing a gas into a space 20 formed by the substrate 19 and the support base 17. In the above, a mechanism is provided for keeping the distance between the support table 17 and the substrate 19 to be equal to or less than the mean free path of the introduced gas under the pressure of the introduced gas. The substrate temperature can be effectively controlled.

【0024】このような骨子に基づく装置は、基本的に
は、処理室12、表面が研磨された凸面である下部電極
17及び上部電極16から構成される平行平板型のドラ
イエッチング装置である。本実施例においては下部電極
17が支持台となる。
An apparatus based on such a skeleton is basically a parallel plate type dry etching apparatus composed of a processing chamber 12, a lower electrode 17 and an upper electrode 16 each having a polished surface and a convex surface. In this embodiment, the lower electrode 17 serves as a support.

【0025】処理室12は、排気口13を介して真空排
気系(図示せず)に接続されている。処理室12にはガ
ス導入口24を介して反応ガスが導入される。また、処
理室12には適宜の位置に基板20を出し入れするため
の取入取出口14が設けられている。
The processing chamber 12 is connected to a vacuum exhaust system (not shown) via an exhaust port 13. A reaction gas is introduced into the processing chamber 12 through the gas introduction port 24. Further, the processing chamber 12 is provided with an inlet / outlet 14 for taking in / out the substrate 20 at an appropriate position.

【0026】上部電極16と下部電極17との間には高
周波電源25が接続されている。下部電極17には、液
体熱媒体が流れる流路48、ポンプ42、液体熱媒体の
温度制御装置43が設けられている。また、オリフィス
21、バルブ15を介して熱伝達用ガスのガスだめ26
が設けられている。ガスだめ26には、流量調節バルブ
45を介してガスボンベ44が、また流量調節バルブ4
6を介してロータリーポンプ47が接続されている。
A high frequency power supply 25 is connected between the upper electrode 16 and the lower electrode 17. The lower electrode 17 is provided with a flow path 48 through which the liquid heat medium flows, a pump 42, and a temperature control device 43 for the liquid heat medium. In addition, the gas reservoir 26 for heat transfer gas is passed through the orifice 21 and the valve 15.
Is provided. A gas cylinder 44 is provided in the gas sump 26 via a flow rate adjusting valve 45, and a flow rate adjusting valve 4 is also provided.
A rotary pump 47 is connected via 6.

【0027】基板の保持手段23はセラミックなどの絶
縁材で作成されていて、バネ39を介してボールネジ4
0及びモータ41に接続されている。基板19と下部電
極17との間にはOリング18が設けられていて、Oリ
ング18は、基板19と下部電極とで形成される空間2
0を処理室12から封止している。
The substrate holding means 23 is made of an insulating material such as ceramic and has a ball screw 4 through a spring 39.
0 and the motor 41. An O-ring 18 is provided between the substrate 19 and the lower electrode 17, and the O-ring 18 is a space 2 formed by the substrate 19 and the lower electrode.
0 is sealed from the processing chamber 12.

【0028】以上の構成において、下部電極17は、適
切な一定温度に保たれた液体熱媒体が循環されることに
より、一定温度に保たれる。液体熱媒体としては、20
℃に保たれた水を用いるが、目的に応じ、温度制御され
た水以外の流体を用いても良い。また、下部電極17
は、電気抵抗を用いて温度制御しても良い。
In the above structure, the lower electrode 17 is kept at a constant temperature by circulating the liquid heat medium kept at an appropriate constant temperature. As a liquid heat medium, 20
Although water kept at ° C is used, a fluid other than temperature-controlled water may be used depending on the purpose. In addition, the lower electrode 17
May be temperature controlled using electrical resistance.

【0029】基板19は、モータ41とボールネジ40
とによって昇降する基板保持手段23によって下部電極
17に押えつけられる。この時、バネ39は、基板19
を常に一定の加重で押える役目、すなわち機械的接触を
生じさせる機構を構成する。
The substrate 19 includes a motor 41 and a ball screw 40.
It is pressed against the lower electrode 17 by the substrate holding means 23 that moves up and down by. At this time, the spring 39 is
Is configured to always hold down with a constant weight, that is, a mechanism that causes mechanical contact.

【0030】また、ガスだめ26は、流量調節バルブ4
5,46、ガスボンベ44及びロータリーポンプ47に
より常に一定の圧力に保たれ、熱伝達用気体で満たされ
ている。空間20には、ガスだめ26からオリフィス2
1を介して熱伝達用ガスが導入される。すなわち、気体
導入手段はガスだめ26と気体導入口となるオリフィス
21とからなっている。
Further, the gas sump 26 is a flow control valve 4
5, 46, the gas cylinder 44, and the rotary pump 47 keep a constant pressure and are filled with the heat transfer gas. In the space 20, from the gas sump 26 to the orifice 2
A heat transfer gas is introduced via 1. That is, the gas introducing means is composed of the gas sump 26 and the orifice 21 serving as a gas introducing port.

【0031】次に、前記装置における処理中の基板温度
制御がどのように行なわれているか、熱伝達用ガスとし
てヘリウムを用い、基板が直径100mm厚さ0.45
mmのシリコン基板の場合を例にして説明する。
Next, how the substrate temperature is controlled during processing in the above apparatus, helium is used as a heat transfer gas, and the substrate has a diameter of 100 mm and a thickness of 0.45.
A case of a silicon substrate of mm will be described as an example.

【0032】基板19が載置された後、従来例より1桁
大きい700Pa程度の圧力のガスだめ26からヘリウ
ムガスが導入される。700Paの圧力を持つガスが導
入された時、基板19は中央が、約800μm凸状にふ
くらむ。また、基板中心から半径方向にrの距離にある
点の変化量wは、次の式に従う。
After the substrate 19 is placed, helium gas is introduced from the gas reservoir 26 at a pressure of about 700 Pa, which is one digit larger than that of the conventional example. When a gas having a pressure of 700 Pa is introduced, the center of the substrate 19 bulges to a convex shape of about 800 μm. Further, the amount of change w at a point located at a distance r from the center of the substrate in the radial direction complies with the following equation.

【0033】[0033]

【数1】 [Equation 1]

【0034】ここで、E,νはそれぞれシリコンのヤン
グ率及びポアソン比、h、aはそれぞれ基板19の厚さ
及び半径、pはガスの圧力である。
Here, E and ν are the Young's modulus and Poisson's ratio of silicon, h and a are the thickness and radius of the substrate 19, respectively, and p is the gas pressure.

【0035】そこで、下部電極17の凸面を予め上記の
式に従う形の曲面、あるいは、それ以上ふくらんだ曲面
に加工しておく。この時、基板19は基板支持具23に
より押えられているため凸面に沿って変形し応力を持
つ。
Therefore, the convex surface of the lower electrode 17 is preliminarily processed into a curved surface having a shape conforming to the above formula, or a curved surface having more bulge. At this time, since the substrate 19 is pressed by the substrate support 23, it deforms along the convex surface and has a stress.

【0036】この時、ガス圧によって基板19が受ける
力は、基板19が持っている応力と等しいかまたは小さ
いため、基板19はガス圧によりすでに持っているひず
み以上のひずみを生じることがなく下部電極17に沿っ
て機械的に接触したままである。また、下部電極17の
表面は、表面粗さ6−S以下に研磨されている。そのた
め、2面間の距離は全面にわたって700Paにおける
ヘリウムの平均自由行程30μmより十分小さく保たれ
る。
At this time, the force exerted on the substrate 19 by the gas pressure is equal to or smaller than the stress possessed by the substrate 19, so that the substrate 19 does not generate a strain greater than the strain already possessed by the gas pressure, and the lower part It remains in mechanical contact along the electrode 17. The surface of the lower electrode 17 is polished to have a surface roughness of 6-S or less. Therefore, the distance between the two surfaces is kept sufficiently smaller than the mean free path of 30 μm of helium at 700 Pa over the entire surface.

【0037】ここで、純粋に固体間の熱的接触は無視で
きることを考えると、熱的接触は全面にわたって均一で
ある。従って、十分な熱的接触が実現し、単位熱流量を
十分大きくできる。
Here, considering that the thermal contact between solids can be ignored, the thermal contact is uniform over the entire surface. Therefore, sufficient thermal contact is realized, and the unit heat flow rate can be sufficiently increased.

【0038】また、前記装置においては、空間20に熱
伝達用ガスを導入するため導入手段として、オリフィス
21を設けている。このオリフィス21は、ヘリウムに
対するコンダクタンスが約1×10~63/secにな
るように、直径を約40μmにしてある。基板17が載
置されていない場合に、ガスだめ26からこのオリフィ
スを通して圧力差700Paの処理室12に流出するガ
ス量は、7×10~4Pa・m3/sec程度である。こ
れは、反応ガス導入口24から導入される反応ガス導入
量8×10~2Pa・m3/secに対し十分小さい。し
たがって、空間20と処理室12との封止に洩れが発生
しても、処理に対し悪影響を及ぼすことがないため、本
実施例による温度制御機構の信頼性が向上することにな
る。また、このオリフィスをつけることで、Oリング1
8による封止をなくすことも可能であり、同時に、基板
19の搬入,搬出を処理室12の真空を破壊しないで行
う場合でもバルブ15が不必要になる。
Further, in the above apparatus, an orifice 21 is provided as an introducing means for introducing the heat transfer gas into the space 20. The orifice 21 has a diameter of about 40 μm so that the conductance with respect to helium is about 1 × 10 6 to 6 m 3 / sec. When the substrate 17 is not placed, the amount of gas flowing from the gas reservoir 26 into the processing chamber 12 having a pressure difference of 700 Pa through this orifice is about 7 × 10 4 Pa · m 3 / sec. This is sufficiently small with respect to the reaction gas introduction amount of 8 × 10 2 Pa · m 3 / sec introduced from the reaction gas introduction port 24. Therefore, even if leakage occurs in the sealing between the space 20 and the processing chamber 12, the processing is not adversely affected, and the reliability of the temperature control mechanism according to the present embodiment is improved. Also, by attaching this orifice, the O-ring 1
It is possible to eliminate the sealing by 8, and at the same time, the valve 15 is unnecessary even when the substrate 19 is loaded and unloaded without breaking the vacuum of the processing chamber 12.

【0039】ここで、基板19が載置された後、空間2
0がガスだめ26と同じ圧力になるまでに要する時間が
十分短い必要がある。空間20の体積をV、オリフィス
のコンダクタンスをC、ガスだめ26内の圧力をPoと
した時、空間20の圧力pは次の式に従う。
Here, after the substrate 19 is placed, the space 2
The time required for 0 to reach the same pressure as the gas sump 26 must be sufficiently short. When the volume of the space 20 is V, the conductance of the orifice is C, and the pressure in the gas reservoir 26 is Po, the pressure p of the space 20 follows the following equation.

【0040】 (6)p=Po(1−exp(−Ct/V)) ここで、空間20は、大きくても厚さ100μmの円筒
であるため、V=7.8×10~73 であるからpの応
答の時定数は約1secとなり、十分早い応答となる。
(6) p = Po (1-exp (-Ct / V)) Since the space 20 is a cylinder having a thickness of 100 μm at the maximum, V = 7.8 × 10 to 7 m 3 Therefore, the time constant of the response of p is about 1 sec, which is a sufficiently fast response.

【0041】前記の装置構成において、200W〜50
0Wの高周波電力を印加した時にプラズマから受ける熱
量によって昇温する基板19の昇温曲線を図2に示す。
ここで、応答速度の時定数は約3secとなり十分良好
な制御特性を示す。また、下部電極17との温度差もそ
れぞれ8°C,20°Cにおさえられている。
In the above apparatus configuration, 200 W-50
FIG. 2 shows a temperature rise curve of the substrate 19 which is heated by the amount of heat received from the plasma when a high frequency power of 0 W is applied.
Here, the time constant of the response speed is about 3 seconds, which shows a sufficiently good control characteristic. Further, the temperature difference with the lower electrode 17 is suppressed to 8 ° C and 20 ° C, respectively.

【0042】また、レジストの耐熱温度が約120°C
であるから、この装置では、付加高周波電力を2.5K
Wまで大きくすることが可能ということになる。
The heat resistant temperature of the resist is about 120 ° C.
Therefore, in this device, the additional high frequency power is 2.5K.
It means that it can be increased to W.

【0043】本発明の実施例を図3に基づいて説明す
る。この実施例においては、特公昭57−44747号
公報に開示された静電気力による吸引を利用して基板1
9の支持を行っている点、及び、熱伝達用ガスに、液体
固体だめ27内の液体あるいは固体37の蒸気を利用し
ている点に特徴がある。
An embodiment of the present invention will be described with reference to FIG. In this embodiment, the substrate 1 using the attraction by electrostatic force disclosed in JP-B-57-44747 is used.
9 is supported, and the vapor in the liquid or solid 37 in the liquid / solid reservoir 27 is used as the heat transfer gas.

【0044】静電気による吸引力を利用した装置は、絶
縁された2つの電極33,36間に直流電源38から直
流電圧が付加できる機構を有する。この静電気による吸
引力のために、基板19は全面にわたって約10gcm
~2の力で吸引され、全面にわたって絶縁材30との間に
機械的な接触が生じる。この時、基板19と下部電極2
9上の絶縁材30との間にできた空間20と処理室12
とを封止するためのOリング18が設けられているこ
と、及び、空間20への気体の導入手段としてオリフィ
ス21が設けられていることは前記骨子で説明した装置
と同じである。本実施例では絶縁材30が支持台とな
る。
The device utilizing the attraction force due to static electricity has a mechanism capable of applying a DC voltage from a DC power supply 38 between the two insulated electrodes 33 and 36. Due to the attractive force of this static electricity, the substrate 19 is approximately 10 gcm over the entire surface.
It is sucked with a force of ~ 2 and mechanical contact occurs with the insulating material 30 over the entire surface. At this time, the substrate 19 and the lower electrode 2
The space 20 formed between the insulating material 30 and the processing chamber 12
It is the same as the device described in the above skeleton in that an O-ring 18 for sealing and is provided and an orifice 21 is provided as a means for introducing gas into the space 20. In this embodiment, the insulating material 30 serves as a support.

【0045】ここで、熱伝達用ガスを発生する気体ある
いは固体の蒸気圧が、温度制御された下部電極29と等
温の時、700Pa程度の圧になるよう液体あるいは固
体を選ぶ。
Here, the liquid or solid is selected so that the vapor pressure of the gas or solid for generating the heat transfer gas is about 700 Pa when it is isothermal with the temperature-controlled lower electrode 29.

【0046】本実施例においては、熱伝達用のガスとし
て、1,1,2,2−テトラクロルエタンを用いている
ため、常温で700Pa程度になる。ここで、使用する
液体・固体は1,1,2,2−テトラクロルエタンに限
らず他の蒸気圧を持った液体固体であっても良い。
In this embodiment, since 1,1,2,2-tetrachloroethane is used as the heat transfer gas, the pressure is about 700 Pa at room temperature. Here, the liquid / solid used is not limited to 1,1,2,2-tetrachloroethane, but may be a liquid solid having another vapor pressure.

【0047】この時の平均自由行程は3μmとなるの
で、絶縁物30の表面は0.8S以下に研磨しておく必
要がある。また、絶縁材30に軟質の有機化合物を用
い、基板19の下面の形状に沿って柔軟に変形させるこ
とによっても、2面間を平均自由行程より小さくでき
る。
Since the mean free path at this time is 3 μm, the surface of the insulator 30 needs to be polished to 0.8 S or less. Further, by using a soft organic compound for the insulating material 30 and flexibly deforming along the shape of the lower surface of the substrate 19, the distance between the two surfaces can be made smaller than the mean free path.

【0048】この時、機械的には接触している2面間に
は、気化したガスが介在し、2面間の距離はこの時のガ
スの平均自由行程である3μmよりも十分小さくなる。
その結果、2面間の熱的接触は十分大きくなり、単位熱
流量も大きくなる。
At this time, the vaporized gas is present between the two surfaces that are mechanically in contact with each other, and the distance between the two surfaces is sufficiently smaller than the mean free path of 3 μm of the gas at this time.
As a result, the thermal contact between the two surfaces is sufficiently large, and the unit heat flow rate is also large.

【0049】また、空間20内を1sec程度で700
Paにするために、オリフィス21の1,1,2,2−
テトラクロルエタンに対するコンダクタンスが1×10
~63/secになるよう直径90μmにしてある。
Further, the space 20 is 700 in about 1 sec.
In order to achieve Pa, the orifices 1, 1, 2, 2-
Conductance of 1 × 10 for tetrachloroethane
The diameter is set to 90 μm so as to be about 6 m 3 / sec.

【0050】以上の装置における基板19の昇温曲線を
図4に示す。300Wの高周波電力を付加してドライエ
ッチングを行った場合の例である。時定数は5secと
なり十分な値となっている。またこの装置においては熱
伝達用ガスのガス流およびガス圧の制御をする必要がな
く、構造が簡単になるという利点がある。
FIG. 4 shows a temperature rising curve of the substrate 19 in the above apparatus. This is an example when dry etching is performed by adding high-frequency power of 300 W. The time constant is 5 seconds, which is a sufficient value. Further, in this device, there is no need to control the gas flow and gas pressure of the heat transfer gas, and there is an advantage that the structure is simple.

【0051】また、基板19と支持台との距離を小さく
するための装置として特開昭56−131930号公報
に開示された、ウエハ温度コントロール装置を用いても
同様の効果が期待できる。
The same effect can be expected by using the wafer temperature control device disclosed in Japanese Patent Laid-Open No. 56-131930 as a device for reducing the distance between the substrate 19 and the support.

【0052】また、支持台もしくは支持台表面を軟質の
有機化合物で構成することは、2面間の距離を小さくす
る上で大きな効果がある。
Further, forming the support base or the surface of the support base from a soft organic compound is very effective in reducing the distance between the two surfaces.

【0053】以上の2つの例は、いずれも本発明をドラ
イエッチング装置に適用した例であるが、スパッタリン
グ、蒸着などの成膜装置あるいは、基板のベーキング装
置に適用しても同等の効果が期待でき、その他の基板温
度制御を必要とする真空装置にも適用できることは容易
に類推できる。
The above two examples are examples in which the present invention is applied to a dry etching apparatus, but the same effect is expected when applied to a film forming apparatus such as sputtering or vapor deposition, or a substrate baking apparatus. It can be easily inferred that it can be applied to other vacuum devices that require substrate temperature control.

【0054】以上の実施例によれば、基板と支持台との
間に介在するガス圧を十分上げた上で、2面間の距離
を、そのガス圧でのガスの平均自由行程より小さくでき
るので、2面間の単位時間、単位面積、単位温度差当り
の熱流量を、従来の50W・K~1・m~2から250W・
K~1・m~2に向上することができる。その結果、処理時
の基板と支持台との温度差と、基板温度制御の時定数
を、それぞれ、従来の値の5分の1程度に小さくするこ
とができる。
According to the above-described embodiment, the gas pressure interposed between the substrate and the support can be raised sufficiently, and the distance between the two surfaces can be made smaller than the mean free path of the gas at that gas pressure. Therefore, the unit time, unit area, and heat flow rate per unit temperature difference between two surfaces can be reduced from the conventional 50W ・ K ~ 1・ m ~ 2 to 250W ・
It can be improved to K ~ 1 · m ~ 2 . As a result, the temperature difference between the substrate and the support during processing and the time constant for substrate temperature control can be reduced to about one fifth of the conventional values.

【0055】なお当然のことではあるが本発明範囲は以
上の実施例に限定されるものではない。
Of course, the scope of the present invention is not limited to the above embodiments.

【0056】[0056]

【発明の効果】本発明によれば、半導体装置の食刻,成
膜,ベーキング処理等において、処理中の基板温度を効
果的に制御することができ、レジストのパターンに忠実
な食刻、あるいは良好な膜質の成膜、または、良好なベ
ーキングを行うことができる。
According to the present invention, the substrate temperature during processing can be effectively controlled in etching, film formation, baking processing, etc. of a semiconductor device, and etching that is faithful to the resist pattern, or It is possible to perform film formation with good film quality or good baking.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による基板処理装置の縦断面図FIG. 1 is a vertical sectional view of a substrate processing apparatus according to the present invention.

【図2】図1に示す基板処理装置における基板の昇温曲
線を示した特性図
FIG. 2 is a characteristic diagram showing a temperature rise curve of a substrate in the substrate processing apparatus shown in FIG.

【図3】本発明による基板処理装置の他の形態を示す縦
断面図
FIG. 3 is a vertical sectional view showing another embodiment of the substrate processing apparatus according to the present invention.

【図4】図3に示す基板処理装置における基板の昇温曲
線を示した特性図
4 is a characteristic diagram showing a temperature rise curve of a substrate in the substrate processing apparatus shown in FIG.

【図5】2面間を流れる熱量と介在気体圧力の関係を示
した特性図
FIG. 5 is a characteristic diagram showing the relationship between the amount of heat flowing between two surfaces and the pressure of intervening gas.

【図6】従来の基板温度制御装置の縦断面図FIG. 6 is a vertical sectional view of a conventional substrate temperature control device.

【符号の説明】[Explanation of symbols]

1…処理室、3…基板、4…クリップ、5…支持台、6
…温度制御装置、7…気体導入口、8…流れ、9…スペ
ーサ、10…空間、12…処理室、17…支持台(下部
電極)、18…Oリング、19…基板、20…空間、2
1…気体導入口(オリフィス)23…保持手段、26…
ガスだめ、27…液体固体だめ。
1 ... Processing chamber, 3 ... Substrate, 4 ... Clip, 5 ... Support base, 6
... Temperature control device, 7 ... Gas inlet, 8 ... Flow, 9 ... Spacer, 10 ... Space, 12 ... Processing chamber, 17 ... Support base (lower electrode), 18 ... O ring, 19 ... Substrate, 20 ... Space, Two
1 ... Gas inlet (orifice) 23 ... Holding means, 26 ...
No gas, 27 ... No liquid solid.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】所定の圧力に排気された処理室内でプラズ
マを発生させて基板を処理する基板処理方法であって、
表面を絶縁膜で被覆して温度制御された支持台の前記絶
縁膜表面に、静電気力により前記基板を機械的に接触さ
せることにより前記支持台で前記基板を支持する工程
と、前記絶縁膜表面と前記基板との間に熱伝導用のガス
を介在させる工程と、前記処理室内にプラズマを発生さ
せて該プラズマにより前記基板の処理を行う工程とを有
し、前記絶縁膜表面と前記支持台で支持された基板との
間に介在させた前記熱伝達用のガスにより前記支持台と
前記基板との間の熱伝導を行うことを特徴とする基板処
理方法。
1. A substrate processing method for processing a substrate by generating plasma in a processing chamber evacuated to a predetermined pressure,
A step of supporting the substrate with the support by mechanically bringing the substrate into contact with the insulation film surface of a temperature-controlled support base by coating the surface with the insulation film, and the insulating film surface A step of interposing a gas for heat conduction between the substrate and the substrate, and a step of generating plasma in the processing chamber and treating the substrate with the plasma, the insulating film surface and the support base. 2. A substrate processing method, wherein heat transfer between the support and the substrate is performed by the heat transfer gas interposed between the substrate supported by and.
【請求項2】前記絶縁膜表面と前記基板との間に介在さ
せる熱伝達用のガスの圧力が、700Pa以上であるこ
とを特徴とする請求項1に記載の基板処理方法。
2. The substrate processing method according to claim 1, wherein the pressure of the gas for heat transfer interposed between the surface of the insulating film and the substrate is 700 Pa or more.
【請求項3】前記基板の処理を行う工程を、前記支持台
で前記基板を支持する工程と前記絶縁膜表面と前記基板
との間に熱伝達用のガスを介在させる工程との後に行う
ことを特徴とする請求項1に記載の基板処理方法。
3. The step of treating the substrate is performed after the step of supporting the substrate with the support and the step of interposing a heat transfer gas between the insulating film surface and the substrate. The substrate processing method according to claim 1, wherein:
【請求項4】前記基板の処理が、プラズマによるエッチ
ング処理であることを特徴とする請求項1に記載の基板
処理方法。
4. The substrate processing method according to claim 1, wherein the processing of the substrate is etching processing by plasma.
【請求項5】所定の圧力に排気された処理室内で基板を
処理する基板処理方法であって、表面を絶縁膜で被覆し
た支持台の前記絶縁膜表面に、静電気力により前記基板
をほぼ全面に亘って機械的に接触させることにより前記
支持台で前記基板を支持する工程と、前記絶縁膜表面と
の間に熱伝達用ガスを介在させる工程とを有し、前記熱
伝達用ガスにより前記支持台と前記基板との間の熱伝達
を行うことを特徴とする基板処理方法。
5. A substrate processing method for processing a substrate in a processing chamber evacuated to a predetermined pressure, wherein substantially the entire surface of the substrate is covered with an electrostatic force on the surface of the insulating film of a supporting base whose surface is coated with an insulating film. The step of supporting the substrate with the support table by mechanically contacting the substrate and the step of interposing a heat transfer gas between the insulating film surface and the heat transfer gas. A substrate processing method, wherein heat is transferred between a support and the substrate.
【請求項6】前記絶縁膜表面と前記基板との間に介在さ
せる熱伝達用ガスの圧力が、700Pa以上であること
を特徴とする請求項5に記載の基板処理方法。
6. The substrate processing method according to claim 5, wherein the pressure of the heat transfer gas interposed between the surface of the insulating film and the substrate is 700 Pa or more.
【請求項7】前記支持台が、温度制御されていることを
特徴とする請求項5に記載の基板処理方法。
7. The substrate processing method according to claim 5, wherein the support base is temperature-controlled.
【請求項8】所定の圧力に排気された処理室内で基板を
プラズマ処理する基板処理装置であって、前記処理室の
内部にプラズマを発生させるプラズマ発生手段と、表面
を絶縁膜で被覆して内部に温度制御部を有し、前記絶縁
膜で被覆した表面に基板を載置する支持台と、前記絶縁
膜表面に静電気力を発生させる静電気力発生手段と、前
記支持台に載置した基板と前記絶縁膜で被覆した表面と
の間に熱伝達用のガスを供給するガス供給手段とを備
え、前記静電気力発生手段により発生させた静電気力に
より前記絶縁膜表面に前記基板を機械的に接触させて、
前記熱伝達用のガスで前記支持台と前記基板との間の熱
伝達を行うことを特徴とする基板処理装置。
8. A substrate processing apparatus for plasma-processing a substrate in a processing chamber evacuated to a predetermined pressure, wherein plasma generating means for generating plasma inside the processing chamber and a surface of the substrate are covered with an insulating film. A support having an internal temperature control unit for mounting a substrate on the surface covered with the insulating film, an electrostatic force generating unit for generating electrostatic force on the surface of the insulating film, and a substrate mounted on the supporting base. And a gas supply means for supplying a gas for heat transfer between the surface covered with the insulating film, and the substrate is mechanically attached to the surface of the insulating film by the electrostatic force generated by the electrostatic force generating means. Contact them,
A substrate processing apparatus, wherein heat transfer gas is used to transfer heat between the support and the substrate.
【請求項9】前記ガス供給手段は、前記絶縁膜表面と前
記基板との間に、前記熱伝達用のガスを700Pa以上
の圧力で介在させることを特徴とする請求項8に記載の
基板処理装置。
9. The substrate processing according to claim 8, wherein the gas supply means interposes the heat transfer gas at a pressure of 700 Pa or more between the surface of the insulating film and the substrate. apparatus.
【請求項10】前記プラズマ発生手段は、前記静電気力
発生手段により発生させた静電気力により前記絶縁膜表
面に機械的に接触させた前記基板の全面にプラズマを発
生させることを特徴とする請求項8に記載の基板処理装
置。
10. The plasma generating means generates plasma on the entire surface of the substrate mechanically brought into contact with the surface of the insulating film by the electrostatic force generated by the electrostatic force generating means. 8. The substrate processing apparatus according to item 8.
【請求項11】前記プラズマ発生手段は、前記基板の全
面に発生させたプラズマにより、前記基板をエッチング
することを特徴とする請求項8に記載の基板処理装置。
11. The substrate processing apparatus according to claim 8, wherein the plasma generating means etches the substrate with plasma generated on the entire surface of the substrate.
【請求項12】所定の圧力に排気された処理室内で基板
を処理する基板処理装置であって、表面を絶縁膜で被覆
して該絶縁膜で被覆した表面に前記基板を載置する支持
台と、前記絶縁膜表面に静電気力を発生させる静電気力
発生手段と、前記支持台に載置した基板と前記絶縁膜で
被覆した表面との間に熱伝達用のガスを供給するガス供
給手段とを備え、前記静電気力発生手段により発生させ
た静電気力により前記絶縁膜の表面に前記基板をほぼ全
面に亘って機械的に接触させて前記熱伝達用のガスで前
記支持台と前記基板との間の熱伝達を行うことを特徴と
する基板処理装置。
12. A substrate processing apparatus for processing a substrate in a processing chamber evacuated to a predetermined pressure, the support base having a surface coated with an insulating film and placing the substrate on the surface coated with the insulating film. And an electrostatic force generating means for generating an electrostatic force on the surface of the insulating film, and a gas supply means for supplying a gas for heat transfer between the substrate placed on the support and the surface covered with the insulating film. The substrate is mechanically brought into contact with the surface of the insulating film over substantially the entire surface by the electrostatic force generated by the electrostatic force generating means, and the gas for heat transfer is used to separate the support base and the substrate. A substrate processing apparatus, characterized in that heat is transferred between them.
【請求項13】前記ガス供給手段は、前記絶縁膜表面と
前記基板との間に、前記熱伝達用のガスを700Pa以
上の圧力で介在させることを特徴とする請求項12に記
載の基板処理装置。
13. The substrate processing according to claim 12, wherein the gas supply means interposes the heat transfer gas at a pressure of 700 Pa or more between the surface of the insulating film and the substrate. apparatus.
JP7292897A 1995-11-10 1995-11-10 Substrate processing method and substrate processing apparatus Expired - Lifetime JP2951876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7292897A JP2951876B2 (en) 1995-11-10 1995-11-10 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7292897A JP2951876B2 (en) 1995-11-10 1995-11-10 Substrate processing method and substrate processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58208957A Division JPH0693446B2 (en) 1983-11-09 1983-11-09 Processor

Publications (2)

Publication Number Publication Date
JPH08236508A true JPH08236508A (en) 1996-09-13
JP2951876B2 JP2951876B2 (en) 1999-09-20

Family

ID=17787812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7292897A Expired - Lifetime JP2951876B2 (en) 1995-11-10 1995-11-10 Substrate processing method and substrate processing apparatus

Country Status (1)

Country Link
JP (1) JP2951876B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367964A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Plasma processing equipment
JP2008180581A (en) * 2007-01-24 2008-08-07 Mitsubishi Electric Corp Gas analysis method
JP2012129547A (en) * 2012-02-25 2012-07-05 Tokyo Electron Ltd Substrate mounting table, substrate processing apparatus, and temperature control method
JP2013519532A (en) * 2010-02-10 2013-05-30 エスアールアイ インターナショナル Electrostatic adhesion gripping
CN111508869A (en) * 2019-01-31 2020-08-07 东京毅力科创株式会社 Control method of substrate processing apparatus and substrate processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163272A (en) * 1980-05-20 1981-12-15 Toshiba Corp Plasma etching device
JPS5832410A (en) * 1981-08-06 1983-02-25 ザ・パ−キン−エルマ−・コ−ポレイシヨン Method and device for treating structure under gas reduced pressure environment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163272A (en) * 1980-05-20 1981-12-15 Toshiba Corp Plasma etching device
JPS5832410A (en) * 1981-08-06 1983-02-25 ザ・パ−キン−エルマ−・コ−ポレイシヨン Method and device for treating structure under gas reduced pressure environment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367964A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Plasma processing equipment
JP2008180581A (en) * 2007-01-24 2008-08-07 Mitsubishi Electric Corp Gas analysis method
JP2013519532A (en) * 2010-02-10 2013-05-30 エスアールアイ インターナショナル Electrostatic adhesion gripping
JP2012129547A (en) * 2012-02-25 2012-07-05 Tokyo Electron Ltd Substrate mounting table, substrate processing apparatus, and temperature control method
CN111508869A (en) * 2019-01-31 2020-08-07 东京毅力科创株式会社 Control method of substrate processing apparatus and substrate processing apparatus
JP2020122206A (en) * 2019-01-31 2020-08-13 東京エレクトロン株式会社 Control method of substrate treatment apparatus and substrate treatment apparatus
CN111508869B (en) * 2019-01-31 2023-11-07 东京毅力科创株式会社 Control method of substrate processing apparatus and substrate processing apparatus

Also Published As

Publication number Publication date
JP2951876B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
TWI702685B (en) Extreme uniformity heated substrate support assembly
JP3176305B2 (en) Substrate cooling device, chemical vapor reaction device, and substrate temperature control control method
US5730803A (en) Apparatus and method for transferring heat from a hot electrostatic chuck to an underlying cold body
US5735339A (en) Semiconductor processing apparatus for promoting heat transfer between isolated volumes
TWI415213B (en) High temperature electrostatic chuck and method of using
JP4067858B2 (en) ALD film forming apparatus and ALD film forming method
CN1555424B (en) For controlling technique and the product produced thereby of uniformity of film
JP2009239300A (en) Anodized substrate support
JP3699349B2 (en) Wafer adsorption heating device
JP2951903B2 (en) Processing equipment
JP2000299288A (en) Plasma treatment apparatus
JP2001502116A (en) Variable high-temperature chuck for chemical vapor deposition of high-density plasma
JPH0614520B2 (en) Processing equipment in low-pressure atmosphere
JP3077582B2 (en) Plasma CVD apparatus and cleaning method therefor
JP4578701B2 (en) Substrate processing method
JP2951876B2 (en) Substrate processing method and substrate processing apparatus
JPH05129210A (en) Hot plate
JP2000252261A (en) Plasma process equipment
JP2728381B2 (en) Substrate processing method and substrate processing apparatus
JPH0945756A (en) Semiconductor manufacturing device and manufacturing method
JPH0693446B2 (en) Processor
JP4602528B2 (en) Plasma processing equipment
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JP3438496B2 (en) Wafer stage, manufacturing method thereof and dry etching apparatus
JP3736103B2 (en) Plasma processing apparatus and processing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees