JPH08236273A - Organic el element and its manufacture - Google Patents

Organic el element and its manufacture

Info

Publication number
JPH08236273A
JPH08236273A JP7039731A JP3973195A JPH08236273A JP H08236273 A JPH08236273 A JP H08236273A JP 7039731 A JP7039731 A JP 7039731A JP 3973195 A JP3973195 A JP 3973195A JP H08236273 A JPH08236273 A JP H08236273A
Authority
JP
Japan
Prior art keywords
organic
electrode substrate
electrode
substrate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7039731A
Other languages
Japanese (ja)
Inventor
Akio Miyata
昭雄 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7039731A priority Critical patent/JPH08236273A/en
Publication of JPH08236273A publication Critical patent/JPH08236273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE: To provide an organic EL element which has high luminance and a long luminescent life by heating an organic layer composed of an organic mixture containing an organic material having an electroluminescent function at the temperature of not less than the melting point of the organic mixture, while holding it between electrode substrates. CONSTITUTION: This organic EL element has such a constitution that an organic layer 4 composed of an organic mixture containing an organic material having an electroluminescent function is heated at the temperature of not less than the melting point of the organic mixture in high vacuum and at the same time held between a transparent electrode substrate 5 and an electrode substrate 6 while a pressure is applied thereto. The transparent electrode substrate 5 is formed by the vacuum evaporation of an ITO film 2 on a glass substrate 1, and the electrode substrate 6 is formed by the co-evaporation of an alloy film 3 of silver and magnesium on the glass substrate 1. Therefore, it can be used for the back light of a liquid crystal display, a luminaire, an interior luminaire and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶フラットパネルデ
ィスプレイ用バックライト、照明器具等の光源として用
いることができる有機EL素子に関し、さらに詳しくは
高輝度で長寿命な有機EL素子及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL element which can be used as a light source for backlights for liquid crystal flat panel displays, lighting equipment and the like, and more specifically to an organic EL element having high brightness and long life and a method for producing the same. Regarding

【0002】[0002]

【従来の技術】有機エレクトロルミネセンス素子(以
下、有機EL素子とする)の原型は、半導体発光素子と
して実用化されている発光ダイオード(LED)にあ
る。そのため、有機EL素子は、有機発光ダイオードあ
るいは注入形EL素子と呼ばれることがある。特に、直
流低電圧により高輝度の3原色発光が得られていること
や、面発光であることなどから、ディスプレイとしての
理想的な特性を備えている。有機EL素子は無機LED
や無機EL素子等の既存の発光素子に匹敵、あるいはそ
れらを越える特性を持っている。
2. Description of the Related Art A prototype of an organic electroluminescence device (hereinafter referred to as an organic EL device) is a light emitting diode (LED) which is practically used as a semiconductor light emitting device. Therefore, the organic EL element is sometimes called an organic light emitting diode or an injection type EL element. In particular, it has ideal characteristics as a display because high-luminance three-primary-color light emission is obtained by direct current low voltage and surface emission is performed. Organic EL element is an inorganic LED
It has characteristics comparable to or exceeding existing light emitting elements such as and inorganic EL elements.

【0003】1966年にHelfrichらはアントラセン単
結晶にキャリアを注入することに成功し、アントラセン
単結晶からの蛍光スペクトルに一致する電界発光(以
下、ELとする)を観測した。1986年に斎藤らは、
金表面を電界重合法によりポリ(3−メチルチオフェ
ン)薄膜で覆い、その膜上にペリレン蒸着膜、アルミニ
ウム電極を形成した素子を作製し、昼の室内で肉眼で認
められるELが観測された。1987年にイーストマン
コダック社は、キノリニウムA1錯体蒸着膜で発光層を
形成し、該発光層と正孔注入側のITO電極との間に正
孔輸送能を有する有機半導体として知られているトリフ
ェニルアミン誘導体の蒸着膜を挿入し、1000 cd
/m2に達する高輝度EL素子を得た(C.W.Tang, S.A.V
anSlyke:Appl.Phys.Lett.,51,913(1987))。この素子の
駆動電圧は10V程度である。これらの研究成果が発端
となり、高効率化のための材料開発が行われ、特に青〜
緑色の領域で高輝度、低電圧駆動で、プラスチック基板
を用いたフレキシブルな有機EL素子の可能性が検討さ
れた。
In 1966, Helfrich et al. Succeeded in injecting carriers into the anthracene single crystal, and observed electroluminescence (hereinafter referred to as EL) that matches the fluorescence spectrum from the anthracene single crystal. In 1986, Saito et al.
An EL element was observed by covering the gold surface with a poly (3-methylthiophene) thin film by an electric field polymerization method, and forming a perylene vapor deposition film and an aluminum electrode on the film, and observing the EL visually observed in a room in the daytime. In 1987, Eastman Kodak Company, known as an organic semiconductor known as an organic semiconductor having a hole transporting ability between a light emitting layer and an ITO electrode on the hole injecting side by forming a light emitting layer with a quinolinium A1 complex vapor deposition film. Insert a vapor-deposited film of phenylamine derivative, 1000 cd
A high-brightness EL element reaching up to / m 2 was obtained (CWTang, SAV
anSlyke: Appl.Phys.Lett., 51, 913 (1987)). The drive voltage of this element is about 10V. With these research results as a starting point, material development for higher efficiency was carried out, especially blue-
The possibility of a flexible organic EL device using a plastic substrate with high brightness and low voltage driving in the green region was examined.

【0004】このように、有機低分子材料を用いた有機
EL素子の研究が盛んに行われており、例えば、脇本ら
は、ホール輸送材料にスターバーストアミン、発光物質
にキナクリドン誘導体を用いた有機EL素子を作製し、
最高104000 cd/m2、発光効率10.8 lm
/W(300 cd/m2時)という高輝度、高効率で緑
色の発光を得ている(平成5年春季応用物理学会予稿
集、30a−SZK−14)。これは、キナクリドン分
子が孤立分子として非常に高い蛍光量子収率を有し、し
かもアルミキノリンよりも低い励起エネルギーをもつこ
とを利用して、アルミキノリノール錯体ホスト分子の励
起子からも効果的に励起エネルギーを奪って第二の発光
中心を作ることを意図した試みである。
As described above, researches on organic EL devices using organic low molecular weight materials have been actively conducted. For example, Wakimoto et al. Describe organic compounds using starburst amine as a hole transport material and a quinacridone derivative as a light emitting material. Fabricate EL element,
Maximum 104,000 cd / m 2 , luminous efficiency 10.8 lm
/ W (300 cd / m 2 o'clock) with high brightness and high efficiency, green light emission is obtained (1993 Spring Society of Applied Physics Proceedings, 30a-SZK-14). This is because the quinacridone molecule has a very high fluorescence quantum yield as an isolated molecule and has a lower excitation energy than that of aluminum quinoline, and it is effectively excited also by the exciton of the aluminum quinolinol complex host molecule. This is an attempt to take away energy and create a second emission center.

【0005】キナクリドンが添加されたEL素子のEL
スペクトルはキナクリドン溶液の蛍光スペクトルと一致
することが確認され、EL素子の発光はキナクリドン励
起子からであることが確かめられている。この有機EL
素子では、CRTに用いられている緑色蛍光体よりも向
上している。スターバーストアミン材料は、大阪大学の
城田らが開発した材料であり、安定なアモルファス膜を
形成することができる。また、松浦らは、高輝度青色発
光を得ることを目的としてディスティルアリレン誘導体
材料を合成し、7000 cd/m2(16V以下のDC
駆動、N2ガス雰囲気)の発光を得ている(平成5年春
季応用物理学会予稿集、30a−SZK−13)。
EL of EL element to which quinacridone is added
It was confirmed that the spectrum was in agreement with the fluorescence spectrum of the quinacridone solution, and it was confirmed that the emission of the EL device was from the quinacridone excitons. This organic EL
In the device, it is more improved than the green phosphor used in the CRT. The starburst amine material is a material developed by Shirota et al. Of Osaka University and can form a stable amorphous film. In addition, Matsuura et al. Synthesized a distilarylene derivative material for the purpose of obtaining high-intensity blue light emission, and measured 7,000 cd / m 2 (DC of 16 V or less).
Driving (N 2 gas atmosphere) is obtained (1993 Spring Applied Physics Society Proceedings, 30a-SZK-13).

【0006】有機高分子を用いた有機EL素子に関して
は、英国ケンブリッジ大学の研究グループが中心となっ
て、スピンコーティング法等の湿式法で作製した有機薄
膜と共に、ホール輸送性及び青色の蛍光を有するポリビ
ニルカルバゾール(PVK)と電子輸送層とを組み合わ
せた積層型EL素子の研究が行われている。PVK層か
ら700 cd/m2を越える高輝度青色発光が得られて
いる。さらに、ポリマー樹脂に青、緑、赤の三種類の色
素を分散することにより、蛍光灯並の高輝度白色発光が
得られている(J.kido et al, Appl.Phys.Lett., 64(19
94)815.)。また、ポリフェニレンビニレン(PPV)を
用いて、曲げても発光しつづけるフレキシブルな有機E
L素子も試作されている(G.Gustafsson, Nature,356,47
(1992).)。この有機EL素子は、基板にポリエチレン
テレフタレート、陽極にポリアニリンを使用し、陰極を
除いた全ての材料がポリマーで構成されている。
Regarding an organic EL device using an organic polymer, a research group at the University of Cambridge, UK, plays a central role, and has an organic thin film prepared by a wet method such as a spin coating method and has a hole transporting property and blue fluorescence. Research on a stacked EL device in which polyvinylcarbazole (PVK) and an electron transport layer are combined has been conducted. High brightness blue light emission exceeding 700 cd / m 2 was obtained from the PVK layer. Furthermore, by dispersing three types of dyes of blue, green, and red in a polymer resin, high-luminance white light emission equivalent to that of a fluorescent lamp has been obtained (J.kido et al, Appl.Phys.Lett., 64 ( 19
94) 815.). In addition, a flexible organic E that uses polyphenylene vinylene (PPV) and continues to emit light even when bent
An L element has also been prototyped (G. Gustafsson, Nature, 356, 47
(1992).). In this organic EL device, polyethylene terephthalate is used for the substrate, polyaniline is used for the anode, and all the materials except the cathode are made of polymer.

【0007】[0007]

【発明が解決しようとする課題】上記積層型EL素子の
提案は、発光層材料の選択の幅を広げ、フルカラー・フ
ラットパネル・ディスプレイの開発を現実のものとし、
発光色、発光輝度及び駆動電圧の点でほぼ満足のいくも
のが得られるようになったが、長期の使用に耐えられな
い、すなわち発光寿命が短いという問題点がある。本発
明は、上記問題点を解決するためになされたものであ
り、高輝度で発光寿命が長い有機EL素子及びその製造
方法を提供することを目的とする。
The above-mentioned proposal of the laminated EL device expands the selection range of the light emitting layer material, and makes the development of a full color flat panel display a reality.
Although almost satisfactory emission colors, emission luminances, and driving voltages have been obtained, there is a problem that they cannot withstand long-term use, that is, the emission life is short. The present invention has been made to solve the above problems, and an object of the present invention is to provide an organic EL device having high brightness and a long emission life, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明者は、従来の有機
EL素子の発光寿命が短い原因は、残留した酸素や水に
よる電極と有機薄膜との界面劣化、有機層の結晶化にあ
るということを見出し、この知見に基づいて本発明を完
成したのである。
The inventors of the present invention have pointed out that the cause of the short emission life of the conventional organic EL element is the deterioration of the interface between the electrode and the organic thin film due to residual oxygen or water and the crystallization of the organic layer. Based on this finding, the present invention has been completed.

【0009】すなわち、本発明は、電界発光機能を有す
る有機材料を含有する有機混合物からなる有機層が、高
真空度の下で前記有機混合物が溶融する温度以上に加熱
すると共に圧力を加えながら、少なくとも一方が透明も
しくは半透明な二枚の電極基板で挟着されたことを特徴
とする有機EL素子に関する。
That is, according to the present invention, an organic layer made of an organic mixture containing an organic material having an electroluminescence function is heated to a temperature at which the organic mixture is melted under a high vacuum degree and a pressure is applied, The present invention relates to an organic EL device, wherein at least one is sandwiched between two transparent or semitransparent electrode substrates.

【0010】また、本発明は、電界発光機能を有する有
機材料を含有する有機混合物を高真空度の下で該有機混
合物が溶融する温度以上で加熱し、さらに溶融状態の有
機混合物を少なくとも一方が透明もしくは半透明な二枚
の電極基板で圧力を加えながら挟着させて有機層を形成
したことを特徴とする有機EL素子の製造方法に関す
る。
Further, according to the present invention, an organic mixture containing an organic material having an electroluminescence function is heated under a high vacuum at a temperature at which the organic mixture is melted or higher, and at least one of the molten organic mixture is heated. The present invention relates to a method for manufacturing an organic EL element, which comprises forming an organic layer by sandwiching two transparent or semitransparent electrode substrates while applying pressure.

【0011】一般に、有機EL素子は、ホール輸送材
料、電子輸送材料及び電界発光材料を含有する有機混合
物からなる有機層が電子注入電極と正孔注入電極とで挟
着された有機EL素子と、電界発光物質を用いずにホー
ル輸送材料及び電子輸送材料含有する有機混合物からな
る有機層が電子注入電極と正孔注入電極とで挟着された
有機EL素子とに分類される。すなわち、後者の場合は
ホール輸送材料あるいは電子輸送材料が強い蛍光を示し
て、電界発光材料を兼ねるのである。
Generally, an organic EL element is an organic EL element in which an organic layer made of an organic mixture containing a hole transport material, an electron transport material and an electroluminescent material is sandwiched between an electron injection electrode and a hole injection electrode, An organic EL element in which an organic layer made of an organic mixture containing a hole transport material and an electron transport material without using an electroluminescent substance is sandwiched between an electron injection electrode and a hole injection electrode is classified. That is, in the latter case, the hole-transporting material or the electron-transporting material exhibits strong fluorescence and serves also as an electroluminescent material.

【0012】本発明の有機EL素子においては、電界発
光機能を有する有機材料を含有する有機混合物からなる
有機層が、高真空度の下で二枚の電極基板に挟着され
る。したがって、素子劣化の原因となる有機混合物に含
まれる酸素等の残留ガスや水分を取り除くことができる
ので、真空度は高いほど良いが、製造コスト面等を考慮
すれば、真空度が10-7〜10-10 Torr、好ましく
は10-9〜10-10 Torrである。また、上記有機層
を二枚の電極基板で圧縮加圧しているが、実用上の観点
から該圧力は3〜10 kg/cm2の範囲であることが
望ましい。
In the organic EL device of the present invention, an organic layer made of an organic mixture containing an organic material having an electroluminescent function is sandwiched between two electrode substrates under a high degree of vacuum. Therefore, it is possible to remove the residual gas such as oxygen and water contained in the organic mixture that causes the element deterioration, so the higher the degree of vacuum is, the better. However, considering the manufacturing cost, etc., the degree of vacuum is 10 −7. It is 10 -10 -10 Torr, preferably 10 -9 -10 -10 Torr. Further, although the above organic layer is compressed and pressed by two electrode substrates, the pressure is preferably in the range of 3 to 10 kg / cm 2 from a practical viewpoint.

【0013】さらに、本発明の有機EL素子において
は、二枚の電極基板で挟着された有機層の周囲が封止剤
で封止される。この封止により、大気中の酸素の影響か
ら有機層を保護し、発光寿命が改良される。封止剤とし
ては、例えば紫外線硬化性樹脂、ポリエチレン、ポリプ
ロピレン、ポリスチレン、エポキシ樹脂、シリコーン樹
脂、エポキシシリコン樹脂、フッ素樹脂等が挙げられ
る。
Further, in the organic EL device of the present invention, the periphery of the organic layer sandwiched between the two electrode substrates is sealed with a sealant. This encapsulation protects the organic layer from the effects of atmospheric oxygen and improves the emission lifetime. Examples of the sealing agent include ultraviolet curable resin, polyethylene, polypropylene, polystyrene, epoxy resin, silicone resin, epoxy silicon resin, fluororesin and the like.

【0014】本発明においては、上記透明もしくは半透
明な電極基板が基板と電極膜との間に誘電体多層膜ミラ
ーを備えている。これにより、ファブリーペロー型光共
振器構造が形成され、電界発光は該ミラーで閉じ込めら
れ、その結果、半値幅が極めて狭い発光スペクトルが得
られる。
In the present invention, the transparent or semi-transparent electrode substrate is provided with a dielectric multilayer mirror between the substrate and the electrode film. Thereby, a Fabry-Perot type optical resonator structure is formed, and electroluminescence is confined by the mirror, and as a result, an emission spectrum having an extremely narrow half width is obtained.

【0015】[0015]

【作用】本発明によれば、高真空度の下で電界発光機能
を有する有機材料を含有する有機混合物を加熱して溶融
させるので、有機混合物中に含まれている残留酸素や水
等が除去される。また、高真空中で溶融した有機混合物
は電極基板で圧縮加圧され、さらに得られた有機層の周
囲は封止剤で封止されるので外気との接触が遮断され
る。
According to the present invention, since an organic mixture containing an organic material having an electroluminescent function is heated and melted under a high vacuum degree, residual oxygen and water contained in the organic mixture are removed. To be done. Further, the organic mixture melted in a high vacuum is compressed and pressed by the electrode substrate, and the periphery of the obtained organic layer is sealed with a sealant, so that the contact with the outside air is blocked.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は、本発明にかかる有機EL素子の第
一実施例を示す構成図である。図1に示すように、電界
発光機能を有する有機材料を含有する有機混合物からな
る有機層4は、透明なガラス基板1上にITO膜2を真
空蒸着により形成してなる透明電極基板5と、透明なガ
ラス基板1上に銀・マグネシウム合金膜3を共蒸着によ
り形成してなる電極基板6とによって挟み込まれてい
る。なお、ガラス基板の代わりにポリカーボネート、ポ
リイミド、ポリメチルメタクリレート等の高分子樹脂基
板を用いれば、有機EL素子の軽量化を図ることができ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram showing a first embodiment of an organic EL element according to the present invention. As shown in FIG. 1, an organic layer 4 made of an organic mixture containing an organic material having an electroluminescence function is a transparent electrode substrate 5 formed by vacuum-depositing an ITO film 2 on a transparent glass substrate 1. It is sandwiched by an electrode substrate 6 formed by co-evaporating a silver-magnesium alloy film 3 on a transparent glass substrate 1. If a polymer resin substrate made of polycarbonate, polyimide, polymethylmethacrylate or the like is used instead of the glass substrate, the weight of the organic EL element can be reduced.

【0017】また、上述したように電子注入電極に銀・
マグネシウム合金の蒸着膜が用いられているが、仕事関
数が低い金属の蒸着膜であればよく、例えば銀、金、カ
ルシウム、マグネシウム、インジウム・銀合金、リチウ
ム・銀合金等の蒸着膜を電極に用いても構わない。特
に、仕事関数の小さい金属電極を用いるほうがよい。な
お、本発明においては、不安定な仕事関数の小さい金属
蒸着膜をチャンバー内で形成し、真空を切らない状態
で、別のチャンバーで有機層を二枚の電極基板で挟み込
む操作により、金属蒸着膜を常に酸素から隔離すること
ができる。
Further, as described above, silver
Although a vapor deposited film of a magnesium alloy is used, a vapor deposited film of a metal having a low work function may be used. For example, a vapor deposited film of silver, gold, calcium, magnesium, indium / silver alloy, lithium / silver alloy, or the like is used as an electrode. You can use it. In particular, it is better to use a metal electrode having a low work function. In the present invention, an unstable metal work film having a small work function is formed in a chamber, and an organic layer is sandwiched between two electrode substrates in another chamber while the vacuum is not turned off. The membrane can always be isolated from oxygen.

【0018】図2は、本発明にかかる有機EL素子の第
二実施例を示す構成図である。図2に示された有機EL
素子は、上記電極基板5及び6により挟着された有機層
4の周囲が紫外線硬化性樹脂等の封止剤7で封止されて
いる点で、図1の有機EL素子と異なる。蛍光色素や有
機半導体の膜表面は大気に触れると直ちに酸素を吸着
し、その電子状態が変化するが、図2に示すような構造
とすることにより外部からの影響を取り除くことができ
る。
FIG. 2 is a constitutional view showing a second embodiment of the organic EL element according to the present invention. Organic EL shown in FIG.
The element is different from the organic EL element of FIG. 1 in that the periphery of the organic layer 4 sandwiched by the electrode substrates 5 and 6 is sealed with a sealant 7 such as an ultraviolet curable resin. The film surface of the fluorescent dye or the organic semiconductor adsorbs oxygen immediately when it comes into contact with the atmosphere, and its electronic state changes. However, the structure as shown in FIG. 2 can remove the influence from the outside.

【0019】図3は、本発明にかかる有機EL素子の第
三実施例を示す構成図である。図3に示された有機EL
素子は、ガラス基板1上に誘電体多層膜ミラー8を形成
し、さらにその上にITO膜2を形成してなる電極基板
9と、上記電極基板6とにより有機層4を挟着している
点で、図2の有機EL素子と異なる。
FIG. 3 is a constitutional view showing a third embodiment of the organic EL element according to the present invention. Organic EL shown in FIG.
In the element, an organic layer 4 is sandwiched by an electrode substrate 9 formed by forming a dielectric multilayer film mirror 8 on a glass substrate 1 and further forming an ITO film 2 thereon, and the electrode substrate 6. This is different from the organic EL device of FIG.

【0020】以下、種々の有機EL素子を作製し、さら
に具体的に本発明の有機EL素子について説明する。 実施例1 ホール輸送材料として下記構造式(I)
Various organic EL devices will be produced below, and the organic EL device of the present invention will be described more specifically. Example 1 The following structural formula (I) is used as a hole transport material.

【化1】 で示されるポリビニルカルバゾール(PVK、分子量1
0000)3g、電子輸送材料として下記構造式(II)
Embedded image Polyvinylcarbazole (PVK, molecular weight 1
0000) 3 g, the following structural formula (II) as an electron transport material

【化2】 で示されるフェニルオキサジアゾール(OXD−7)5
00mg及び発光物質として下記構造式(III)
Embedded image Phenyloxadiazole (OXD-7) 5 represented by
00 mg and the following structural formula (III) as a luminescent substance

【化3】 で示されるキナクリドン誘導体(Qd)20 mgを一
緒にメノウ乳鉢に投入して粉砕し、十分にすり潰して固
相状態で均一になるまで混合した。
Embedded image 20 mg of the quinacridone derivative (Qd) shown in (3) was put together in an agate mortar, pulverized, and ground until sufficiently homogenized in a solid state.

【0021】次に、ガラス管の一方の口をガスバーナー
で封じ、そのガラス管の他方の口から上記混合粉末を入
れ、該他方の口からターボ分子ポンプで排気しながらガ
ラス管の周囲に巻き付けたヒーターリボンで加熱するこ
とにより、上記粉末に含まれていたガスを十分に脱気し
た。
Next, one opening of the glass tube is sealed with a gas burner, the above-mentioned mixed powder is put into the other opening of the glass tube, and the glass tube is wrapped around the glass tube while being evacuated by a turbo molecular pump from the other opening. The gas contained in the powder was sufficiently degassed by heating with the heater ribbon.

【0022】図4は、本発明の有機EL素子を作製する
ために用いられた真空溶融装置を示す構成図である。図
4の装置は、該装置全体を覆う機密室であるチャンバー
31、電極基板を固定するための銅製ホルダー34及び
36、該銅製ホルダー36を上下に移動させるための昇
降機構32、加熱ヒーター39、銅ブロック40、ター
ボ分子ポンプ37及び回転ポンプ38を具備している。
FIG. 4 is a constitutional view showing a vacuum melting apparatus used for producing the organic EL element of the present invention. The apparatus shown in FIG. 4 is a chamber 31 which is a sealed room for covering the entire apparatus, copper holders 34 and 36 for fixing the electrode substrate, an elevating mechanism 32 for moving the copper holder 36 up and down, a heater 39, A copper block 40, a turbo molecular pump 37, and a rotary pump 38 are provided.

【0023】先ず、図5にしめすように、十分に洗浄し
たITO膜付きの透明ガラス基板(以下、ITO電極基
板とする)33(フルウチ化学製、抵抗率10 Ω/
□、サイズ20mm×20mm、厚み1.0mm)を下
部ホルダー34に固定し、ITO電極基板33上に調製
された混合粉末30を載せた。そして、銀(Ag)とマ
グネシウム(Mg)を体積比1:20の割合で、ガラス
基板上に100nmの厚さに共蒸着したAg・Mg膜付
きガラス基板(以下、Ag・Mg電極基板とする)35
を上部ホルダー36に固定した。
First, as shown in FIG. 5, a sufficiently cleaned transparent glass substrate with an ITO film (hereinafter referred to as an ITO electrode substrate) 33 (manufactured by Furuuchi Chemical Co., Ltd., resistivity 10 Ω /
□, size 20 mm × 20 mm, thickness 1.0 mm) was fixed to the lower holder 34, and the prepared mixed powder 30 was placed on the ITO electrode substrate 33. Then, a glass substrate with an Ag / Mg film (hereinafter referred to as an Ag / Mg electrode substrate) is obtained by co-evaporating silver (Ag) and magnesium (Mg) in a volume ratio of 1:20 on a glass substrate to a thickness of 100 nm. ) 35
Was fixed to the upper holder 36.

【0024】ターボ分子ポンプ37及び回転ポンプ38
によりベーキング後にチャンバー31内を真空排気する
ことにより、真空度は5.0×10-8 Torrに到達
した。上下の銅製ホルダー34、36及び電極基板3
3、35を銅ブロック40を介して加熱ヒーター39に
より150℃まで加熱し、PVKを十分溶融させた。次
に、図6に示すように、昇降機構32に取り付けてある
べルーズに窒素ガスを導入して、気圧差を利用して上部
ホルダー36を徐々に押し下げ、二枚の電極基板33、
35同士を平行になるように3 kg/cm2の圧力で押
し当てた。このようにして、単層型有機EL素子が得ら
れた。二枚の基板33、35の間隔は、ポリマー濃度及
び粘性度、電極基板に加わる圧力によって変化するが、
本実施例で得られた素子の有機膜の膜厚を膜厚計で測定
すると、約2μmであった。
Turbo molecular pump 37 and rotary pump 38
By evacuation of the chamber 31 after baking, the degree of vacuum reached 5.0 × 10 −8 Torr. Upper and lower copper holders 34, 36 and electrode substrate 3
PVKs 3 and 35 were heated to 150 ° C. by the heater 39 through the copper block 40 to sufficiently melt PVK. Next, as shown in FIG. 6, nitrogen gas is introduced into the bellows attached to the elevating mechanism 32, and the upper holder 36 is gradually pushed down by using the pressure difference, so that the two electrode substrates 33,
The 35 pieces were pressed against each other with a pressure of 3 kg / cm 2 . In this way, a single-layer organic EL device was obtained. The distance between the two substrates 33 and 35 changes depending on the polymer concentration and viscosity and the pressure applied to the electrode substrate.
When the film thickness of the organic film of the device obtained in this example was measured by a film thickness meter, it was about 2 μm.

【0025】続いて、張り合わせた電極基板の側面に紫
外線硬化樹脂(スリーボンド社製)を塗布し、スポット
キュア照射装置(ウシオ電気社製)を用いて接合部分に
紫外線を照射した。照射時間30秒で紫外線硬化樹脂は
硬化し、二枚の電極基板33、35をしっかりと固定し
た。電極に銀ペーストでリード線を取り付け、電極間に
12Vの直流電圧を印加すると、1000 cd/m2
越える高輝度の発光が得られた。電界発光強度を測定し
たが、8Vで印加した状態で3000時間以上経過して
も安定に動作した。なお、本実施例では、電子輸送材料
としてOXD−7を用いたが、下記構造式(IV)
Subsequently, an ultraviolet curable resin (manufactured by ThreeBond Co., Ltd.) was applied to the side surfaces of the bonded electrode substrates, and the joint portion was irradiated with ultraviolet rays using a spot cure irradiation device (manufactured by Ushio Inc.). The ultraviolet curing resin was cured by the irradiation time of 30 seconds, and the two electrode substrates 33 and 35 were firmly fixed. When a lead wire was attached to the electrodes with a silver paste and a DC voltage of 12 V was applied between the electrodes, high-luminance light emission exceeding 1000 cd / m 2 was obtained. The electroluminescence intensity was measured, and the operation was stable even after 3000 hours or more with the voltage applied at 8V. Although OXD-7 was used as the electron transport material in this example, the following structural formula (IV)

【化4】 で示されるフェニルオキサジアゾール(OXD−1)等
のオキサジアゾール誘導体を用いても同様な結果が得ら
れると思われる。
[Chemical 4] It is considered that similar results can be obtained by using an oxadiazole derivative such as phenyloxadiazole (OXD-1) represented by

【0026】また、本実施例ではホール輸送材料として
PVKを用いたが、ポリ(3−アルキルチオフェン)、
ポリ(ナフタレンビニレン)、ポリ(p−フェニレンビ
ニレン)、ポリ(2−メトキシー5−(2’−エチルヘ
キソキシ)ーフェニレンビニレン)、ポリ(9−アルキ
ルフルオレン)等の高分子材料を用いても構わない。そ
して、本実施例では発光物質としてQdを用いたが、8
−キノリノール・Al錯体、9,10ジフェニルアント
ラセン、ペリレン、テトラフェニルブタジエン、ペリレ
ンテトラカルボン酸等を用いてもよい。
Although PVK is used as the hole transport material in this embodiment, poly (3-alkylthiophene),
Polymer materials such as poly (naphthalene vinylene), poly (p-phenylene vinylene), poly (2-methoxy-5- (2′-ethylhexoxy) -phenylene vinylene), and poly (9-alkylfluorene) may be used. . In addition, although Qd is used as the light emitting material in this embodiment,
-Quinolinol / Al complex, 9,10 diphenylanthracene, perylene, tetraphenylbutadiene, perylenetetracarboxylic acid, etc. may be used.

【0027】さらに、本実施例では混合粉末を用いた
が、混合粉末を有機溶媒に溶かしてスピンコート法ある
いはディップ法、LB法等の湿式法によりITO基板上
に有機膜を形成し、又はITO基板上に有機蒸着膜や有
機分子線蒸着膜を形成してから電極基板を張り合わせて
もよい。
Further, although the mixed powder is used in this embodiment, the mixed powder is dissolved in an organic solvent to form an organic film on the ITO substrate by a wet method such as a spin coating method, a dipping method, an LB method, or ITO. The electrode substrate may be attached after forming the organic vapor deposition film or the organic molecular beam vapor deposition film on the substrate.

【0028】実施例2 電気的に不活性なバインダーポリマーとしてポリメチル
メタクリレート(PMMA、分子量2000)1g、ホ
ール輸送材料として下記構造式(V)
Example 2 1 g of polymethylmethacrylate (PMMA, molecular weight 2000) as an electrically inactive binder polymer and the following structural formula (V) as a hole transport material.

【化5】 で示されるアリールアミン誘導体(PDA)100mg
及び電子輸送材料として下記構造式(VI)
Embedded image 100 mg of arylamine derivative (PDA) represented by
And the following structural formula (VI) as an electron transport material

【化6】 で示されるアルミキノリノール錯体(Alq3、同仁化
学社製)200mgを実施例1と同様な操作により混合
粉末を調製し、ITO電極基板上に載せた。
[Chemical 6] A mixed powder of 200 mg of an aluminum quinolinol complex (Alq3, manufactured by Dojindo Kagaku Co., Ltd.) shown in 1 was prepared by the same operation as in Example 1 and placed on an ITO electrode substrate.

【0029】次に、Ag・Mg電極基板とITO電極基
板とを一定間隔で離して固定し、真空度が8.0×10
-8 Torrになるまで真空状態にした。さらに実施例
1と同様に、加熱ヒーターにより銅ブロックを介して上
下のホルダー及び電極基板を130℃になるまで加熱し
た。PMMAが溶融状態になった時点で、二枚の電極を
実施例1と同様に張り合わせた。なお、電極基板の間隔
は金属スペーサにより1μmになるように調節した。こ
のようにして、発光物質を用いない単層型有機EL素子
が作製された。上記作製法で作製した有機EL素子に、
実施例1と同様にして10Vの直流電圧を印加すると、
800 cd/m2程度のAlq3からの緑色発光が得ら
れた。また、8Vで印加電圧した時の発光寿命は、25
00時間以上であった。なお、上記混合粉末にクマリン
色素、キクナドリン、スクアリリウム等の赤、青及び緑
の色素を混ぜて調製した有機層を電極基板で挟むことに
より、白色光が得られると考えられる。なお、本実施例
ではホール輸送材料としてPDAが用いられたが、トリ
フェニルアミン誘導体を用いてもよい。
Next, the Ag / Mg electrode substrate and the ITO electrode substrate are fixed at a fixed interval and fixed, and the degree of vacuum is 8.0 × 10.
A vacuum was applied until the pressure reached -8 Torr. Further, in the same manner as in Example 1, the upper and lower holders and the electrode substrate were heated to 130 ° C. through the copper block by the heater. When the PMMA was in a molten state, the two electrodes were laminated in the same manner as in Example 1. The distance between the electrode substrates was adjusted to 1 μm with a metal spacer. In this way, a single-layer type organic EL device using no luminescent substance was produced. For the organic EL device manufactured by the above manufacturing method,
When a DC voltage of 10 V is applied in the same manner as in Example 1,
Green emission from Alq3 of about 800 cd / m 2 was obtained. In addition, the emission life when an applied voltage of 8 V is 25
It was over 00 hours. It is considered that white light can be obtained by sandwiching an organic layer prepared by mixing red, blue, and green dyes such as coumarin dye, quinadrine, and squarylium with the above mixed powder between electrode substrates. Although PDA was used as the hole transport material in this example, a triphenylamine derivative may be used.

【0030】実施例3 ホール輸送材料として上記構造式(I)で示されるPV
K 3g、電子輸送材料として上記構造式(VI)で示さ
れるAlq3 500mg及び発光物質として上記構造
式(III)で示されるQd 10mgを実施例1と同様の
操作により混合粉末を調製した。そして、実施例1と同
一条件下で前記混合粉末を電極基板で挟み込み、真空溶
融法により単層型有機EL素子を作製した。得られた有
機EL素子に実施例1と同様にして15Vの直流電圧を
印加すると、500 cd/m2の発光が得られた。ま
た、10Vで印加電圧した時の発光寿命は、2500時
間以上であった。
Example 3 PV represented by the above structural formula (I) as a hole transport material
A mixed powder was prepared in the same manner as in Example 1, except that K 3 g, 500 mg of Alq3 represented by the above structural formula (VI) as an electron transport material, and 10 mg of Qd represented by the above structural formula (III) as a light emitting substance were processed. Then, the mixed powder was sandwiched between electrode substrates under the same conditions as in Example 1, and a single-layer organic EL device was produced by a vacuum melting method. When a DC voltage of 15 V was applied to the obtained organic EL device in the same manner as in Example 1, light emission of 500 cd / m 2 was obtained. In addition, the light emission lifetime when an applied voltage of 10 V was 2500 hours or more.

【0031】実施例4 本実施例では、ガラス基板上に誘電体多層膜ミラーとI
TO電極とを設けた電極基板と、金属電極基板との間に
電界発光機能を有する有機材料を含有する有機膜を挟み
込み、真空下で加熱して高分子層を溶融させて素子を作
製した。具体的には、円板形状のガラス基板(直径30
mm、厚さ3mm)の片面にTiO2とSiO2とを交互
に19層積層し、反対の基板表面にはARコートした誘
電体多層膜ミラー(湘南光膜研究所製)を用いた。この
ミラーの反射率は、200nmから450nmの波長領
域で3〜5%、500nm〜600nmの波長領域で9
9%である。そして、誘電体多層膜ミラー面に透明電極
としてITO膜をスパッタ法により形成した。
Example 4 In this example, a dielectric multilayer film mirror and an I
An organic film containing an organic material having an electroluminescent function was sandwiched between an electrode substrate provided with a TO electrode and a metal electrode substrate, and heated under vacuum to melt the polymer layer, thereby producing an element. Specifically, a disk-shaped glass substrate (diameter 30
(mm, thickness 3 mm), 19 layers of TiO 2 and SiO 2 were alternately laminated on one surface, and an AR-coated dielectric multilayer mirror (manufactured by Shonan Optical Film Laboratory) was used on the opposite substrate surface. The reflectance of this mirror is 3 to 5% in the wavelength region of 200 nm to 450 nm, and 9 in the wavelength region of 500 nm to 600 nm.
9%. Then, an ITO film was formed as a transparent electrode on the surface of the dielectric multilayer film mirror by a sputtering method.

【0032】ホール輸送材料として上記構造式(I)で
示されるPVK 3g、電子輸送材料として上記構造式
(VI)で示されるAlq3 500mg及び発光物質と
して上記構造式(III)で示されるQd 10mgを実施
例1と同様の操作により混合粉末を調製した。続いて、
誘電体多層膜ミラーを備えたITO電極基板と、Al電
極基板とを上下の金属製ホルダーに取り付け、実施例1
と同様に、上記混合粉末をITO電極基板上に載せて、
真空度8.0×10-8 Torrの下、加熱ヒーターに
より150℃まで加熱してAl電極基板をITO電極基
板に押し当てて単層型有機EL素子を作製した。得られ
た有機EL素子に実施例1と同様にして15Vの直流電
圧を印加すると、誘電体ミラーと金属ミラー間の光閉じ
込め効果により、500nmにピークをもつ発光スペク
トル幅の狭い500 cd/m2の緑色発光が観測され
た。
PVK 3g represented by the above structural formula (I) as a hole transport material, Alq3 500 mg represented by the above structural formula (VI) as an electron transport material, and Qd 10 mg represented by the above structural formula (III) as a luminescent substance. A mixed powder was prepared in the same manner as in Example 1. continue,
The ITO electrode substrate provided with the dielectric multilayer mirror and the Al electrode substrate were attached to the upper and lower metal holders, and the first embodiment was prepared.
Similarly, the above mixed powder is placed on an ITO electrode substrate,
Under a vacuum degree of 8.0 × 10 −8 Torr, the Al electrode substrate was pressed against the ITO electrode substrate by heating to 150 ° C. with a heater to fabricate a single-layer organic EL device. When a DC voltage of 15 V was applied to the obtained organic EL device in the same manner as in Example 1, the optical confinement effect between the dielectric mirror and the metal mirror resulted in a narrow emission spectrum width of 500 cd / m 2 having a peak at 500 nm. The green emission of was observed.

【0033】[0033]

【発明の効果】本発明によれば、安定なアモルファス膜
を形成する高分子材料を用いたり、高分子材料中に電界
発光材料を分散させることにより、微結晶化を抑制する
ことができると共に、高真空度の下で電界発光機能を有
する有機材料を含有する有機混合物を加熱して溶融させ
るので、有機混合物中に含まれている残留酸素や水等が
除去される。その結果、大気中の酸素が蛍光色素や有機
半導体に吸着せず、それらの電子状態が変化することを
防止することができる。高真空中で溶融した有機混合物
を電極基板で圧縮加圧し、さらに得られた有機層の周囲
を封止剤で封止するので外気との接触が遮断され、発光
寿命を長期化することができる。また、有機蒸着法に比
較して、クマリン色素、キクナドリン、スクアリリウム
等の赤、青、緑の蛍光色素を容易に発光層にドープする
ことができ、簡単に白色光が得られる。そのため、本発
明の有機EL素子は液晶ディスプレイのバックライト、
照明器具、インテリア照明器具等に用いることができ
る。
According to the present invention, microcrystallization can be suppressed by using a polymer material that forms a stable amorphous film or by dispersing an electroluminescent material in the polymer material. Since an organic mixture containing an organic material having an electroluminescent function is heated and melted under a high degree of vacuum, residual oxygen, water and the like contained in the organic mixture are removed. As a result, oxygen in the atmosphere is not adsorbed on the fluorescent dye or the organic semiconductor, and it is possible to prevent the electronic states of these from changing. The organic mixture melted in a high vacuum is compressed and pressed by the electrode substrate, and the periphery of the obtained organic layer is sealed with a sealant, so that contact with the outside air is blocked and the light emission life can be extended. . Further, as compared with the organic vapor deposition method, red, blue, and green fluorescent dyes such as coumarin dye, quinadrine, and squarylium can be easily doped into the light emitting layer, and white light can be easily obtained. Therefore, the organic EL element of the present invention is a backlight of a liquid crystal display,
It can be used for lighting equipment, interior lighting equipment and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる有機EL素子の第一実施例を示
す構成図である。
FIG. 1 is a configuration diagram showing a first embodiment of an organic EL element according to the present invention.

【図2】本発明にかかる有機EL素子の第二実施例を示
す構成図である。
FIG. 2 is a constitutional view showing a second embodiment of the organic EL element according to the present invention.

【図3】本発明にかかる有機EL素子の第三実施例を示
す構成図である。
FIG. 3 is a configuration diagram showing a third embodiment of the organic EL element according to the present invention.

【図4】本発明にかかる有機EL素子の製造に用いられ
る製造装置を示す構成図である。
FIG. 4 is a configuration diagram showing a manufacturing apparatus used for manufacturing an organic EL element according to the present invention.

【図5】有機混合粉末が電極基板に載せられた状態を示
す図である。
FIG. 5 is a diagram showing a state in which an organic mixed powder is placed on an electrode substrate.

【図6】溶融した有機混合粉末が圧縮加圧されて電極基
板に挟み込まれた状態を示す図である。
FIG. 6 is a diagram showing a state in which a molten organic mixed powder is compressed and pressed and sandwiched between electrode substrates.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ITO膜 3 銀・マグネシウム合金膜 4 有機層 5 透明電極基板 6 電極基板 1 glass substrate 2 ITO film 3 silver-magnesium alloy film 4 organic layer 5 transparent electrode substrate 6 electrode substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電界発光機能を有する有機材料を含有す
る有機混合物からなる有機層が、高真空度の下で前記有
機混合物が溶融する温度以上に加熱すると共に圧力を加
えながら、少なくとも一方が透明もしくは半透明な二枚
の電極基板で挟着されたことを特徴とする有機EL素
子。
1. An organic layer made of an organic mixture containing an organic material having an electroluminescent function is heated to a temperature at which the organic mixture is melted under a high degree of vacuum and a pressure is applied, and at least one of them is transparent. Alternatively, an organic EL element characterized by being sandwiched between two semitransparent electrode substrates.
【請求項2】 前記真空度が10-7〜10-10 Torr
であることを特徴とする請求項1記載の有機EL素子。
2. The degree of vacuum is 10 −7 to 10 −10 Torr.
The organic EL device according to claim 1, wherein
【請求項3】 前記圧力が3〜10 kg/cm2である
ことを特徴とする請求項1記載の有機EL素子。
3. The organic EL device according to claim 1, wherein the pressure is 3 to 10 kg / cm 2 .
【請求項4】 前記二枚の電極基板で挟着された前記有
機層の周囲が封止剤で封止されたことを特徴とする請求
項1記載の有機EL素子。
4. The organic EL element according to claim 1, wherein a periphery of the organic layer sandwiched between the two electrode substrates is sealed with a sealant.
【請求項5】 前記透明もしくは半透明な電極基板が基
板と電極との間に誘電体多層膜ミラーを備えたことを特
徴とする請求項1記載の有機EL素子。
5. The organic EL device according to claim 1, wherein the transparent or semitransparent electrode substrate has a dielectric multilayer mirror between the substrate and the electrode.
【請求項6】 電界発光機能を有する有機材料を含有す
る有機混合物を高真空度の下で該有機混合物が溶融する
温度以上で加熱し、さらに溶融状態の有機混合物を少な
くとも一方が透明もしくは半透明な二枚の電極基板で圧
力を加えながら挟着させて有機層を形成したことを特徴
とする有機EL素子の製造方法。
6. An organic mixture containing an organic material having an electroluminescence function is heated under a high degree of vacuum at a temperature at which the organic mixture melts or higher, and at least one of the molten organic mixtures is transparent or translucent. A method for manufacturing an organic EL element, characterized in that an organic layer is formed by sandwiching the two electrode substrates while applying pressure.
JP7039731A 1995-02-28 1995-02-28 Organic el element and its manufacture Pending JPH08236273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7039731A JPH08236273A (en) 1995-02-28 1995-02-28 Organic el element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7039731A JPH08236273A (en) 1995-02-28 1995-02-28 Organic el element and its manufacture

Publications (1)

Publication Number Publication Date
JPH08236273A true JPH08236273A (en) 1996-09-13

Family

ID=12561125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7039731A Pending JPH08236273A (en) 1995-02-28 1995-02-28 Organic el element and its manufacture

Country Status (1)

Country Link
JP (1) JPH08236273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100263755B1 (en) * 1997-10-10 2000-08-16 김덕중 Process for the preparation of organic light-emitting device using compression-molding method
JP2001267074A (en) * 2000-03-22 2001-09-28 Fuji Photo Film Co Ltd Organic light emission element
US6686063B2 (en) 2000-09-27 2004-02-03 Seiko Epson Corporation Organic electroluminescent device, method for manufacturing organic electroluminescent device, and electronic apparatus
JP2004079300A (en) * 2002-08-14 2004-03-11 Fuji Photo Film Co Ltd Light emitting element and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100263755B1 (en) * 1997-10-10 2000-08-16 김덕중 Process for the preparation of organic light-emitting device using compression-molding method
JP2001267074A (en) * 2000-03-22 2001-09-28 Fuji Photo Film Co Ltd Organic light emission element
US6686063B2 (en) 2000-09-27 2004-02-03 Seiko Epson Corporation Organic electroluminescent device, method for manufacturing organic electroluminescent device, and electronic apparatus
JP2004079300A (en) * 2002-08-14 2004-03-11 Fuji Photo Film Co Ltd Light emitting element and its manufacturing method

Similar Documents

Publication Publication Date Title
US6010796A (en) Electroluminescent device
JPH06325871A (en) Organic electroluminescent element
JP2003031371A (en) Organic electroluminescent element and blue light emitting element
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JP2001291593A (en) Organic electroluminescent element
JP2003138251A (en) Organic luminescent device
WO2009142030A1 (en) Organic electroluminescent device, display device and illuminating device
JPH08325564A (en) Organic thin film el device
JP3978976B2 (en) Organic electroluminescence device
JP2000306669A (en) Organic luminescent element
JP2000133453A (en) Organic electroluminescent element and its manufacture
JPH11329732A (en) Organic thin film el element
JP2001357974A (en) Manufacturing method of organic el element and organic el element
JP2002237381A (en) Organic electroluminescence element
JP3129200B2 (en) Light emitting element
JPH0888083A (en) Organic electric field light-emitting device
JP2002270369A (en) Organic electric field light emitting device and its manufacturing method
JPH06330032A (en) Organic electroluminescent element
JPH0860144A (en) Organic electroluminescent element
JPH08236273A (en) Organic el element and its manufacture
JPH09151371A (en) Organic thin film el element
JP3972584B2 (en) Organic electroluminescent device and manufacturing method thereof
JP4607268B2 (en) Organic electroluminescence device
JPH06200244A (en) Organic thin-film el element
JPH11307255A (en) Organic electroluminecence element