JP2001291593A - Organic electroluminescent element - Google Patents

Organic electroluminescent element

Info

Publication number
JP2001291593A
JP2001291593A JP2000107478A JP2000107478A JP2001291593A JP 2001291593 A JP2001291593 A JP 2001291593A JP 2000107478 A JP2000107478 A JP 2000107478A JP 2000107478 A JP2000107478 A JP 2000107478A JP 2001291593 A JP2001291593 A JP 2001291593A
Authority
JP
Japan
Prior art keywords
group
cathode
layer
organic electroluminescent
electroluminescent device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000107478A
Other languages
Japanese (ja)
Other versions
JP3945123B2 (en
Inventor
Yoshiharu Sato
佳晴 佐藤
Akiko Ichinosawa
晶子 市野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000107478A priority Critical patent/JP3945123B2/en
Publication of JP2001291593A publication Critical patent/JP2001291593A/en
Application granted granted Critical
Publication of JP3945123B2 publication Critical patent/JP3945123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescent element which emits light with a high luminance at a low voltage, and which can maintain a stable luminescent property at the time of driving, and further, has a wide range of process conditions at the time of preparation. SOLUTION: This is an organic electroluminescent element obtained by an anode, sequentially laminating an organic luminous layer and a cathode in this order on a substrate, and it has a cathode interface layer containing a compound expressed in formula (1).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電界発光素子に
関するものであり、詳しくは、有機化合物から成る発光
層に電界をかけて光を放出する薄膜型デバイスに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescent device, and more particularly, to a thin film device which emits light by applying an electric field to a light emitting layer made of an organic compound.

【0002】[0002]

【従来の技術】従来、薄膜型の電界発光(EL)素子と
しては、無機材料のII−VI族化合物半導体であるZn
S、CaS、SrS等に、発光中心であるMnや希土類
元素(Eu、Ce、Tb、Sm等)をドープしたものが
一般的であるが、上記の無機材料から作製したEL素子
は、 1)交流駆動が必要(50〜1000Hz)、 2)駆動電圧が高い(〜200V)、 3)フルカラー化が困難(特に青色)、 4)周辺駆動回路のコストが高い、という問題点を有し
ている。
2. Description of the Related Art Conventionally, as a thin film type electroluminescent (EL) element, Zn, which is a group II-VI compound semiconductor of an inorganic material, is used.
In general, S, CaS, SrS, and the like are doped with Mn or a rare earth element (Eu, Ce, Tb, Sm, or the like) which is a luminescence center. However, EL devices manufactured from the above inorganic materials include: 1) AC drive is required (50 to 1000 Hz), 2) High drive voltage (up to 200 V), 3) It is difficult to achieve full color (especially blue), 4) Peripheral drive circuit costs are high. .

【0003】しかし、近年、上記問題点の改良のため、
有機薄膜を用いたEL素子の開発が行われるようになっ
た。特に、発光効率を高めるため、電極からのキャリア
ー注入の効率向上を目的として電極の種類の最適化を行
い、芳香族ジアミンから成る正孔輸送層と8−ヒドロキ
シキノリンのアルミニウム錯体から成る発光層とを設け
た有機電界発光素子の開発(Appl. Phys. Lett., 51巻,
913頁,1987年)により、従来のアントラセン等の単結
晶を用いたEL素子と比較して発光効率の大幅な改善が
なされ、実用特性に近づいている。
However, in recent years, in order to improve the above problems,
Development of EL devices using organic thin films has been started. In particular, in order to enhance the luminous efficiency, the type of the electrode was optimized for the purpose of improving the efficiency of carrier injection from the electrode, and a hole transport layer composed of an aromatic diamine and a luminescent layer composed of an aluminum complex of 8-hydroxyquinoline were used. Of an organic electroluminescent device equipped with an organic layer (Appl. Phys. Lett., Vol. 51,
913, 1987), the luminous efficiency has been greatly improved as compared with the conventional EL device using a single crystal such as anthracene or the like, and the practical characteristics have been approached.

【0004】上記の様な低分子材料を用いた電界発光素
子の他にも、発光層の材料として、ポリ(p−フェニレ
ンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシル
オキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキル
チオフェン)等の高分子材料を用いた電界発光素子の開
発や、ポリビニルカルバゾール等の高分子に低分子の発
光材料と電子移動材料を混合した素子の開発も行われて
いる。
In addition to the electroluminescent device using a low molecular material as described above, poly (p-phenylenevinylene) and poly [2-methoxy-5- (2-ethylhexyloxy)- Development of electroluminescent devices using polymer materials such as 1,4-phenylenevinylene] and poly (3-alkylthiophene), and devices in which a low molecular light emitting material and an electron transfer material are mixed with a polymer such as polyvinyl carbazole Is also being developed.

【0005】有機電界発光素子の課題としては、駆動安
定性の向上と低駆動電圧化の二点が挙げられる。すなわ
ち、有機電界発光素子の駆動時における電圧が高く、耐
熱性を含めた駆動安定性が低いことは、ファクシミリ、
複写機、液晶ディスプレイのバックライト等の光源とし
ては大きな問題であり、特にフルカラーフラットパネル
・ディスプレイ等の表示素子としても望ましくない。
There are two problems with the organic electroluminescent device, namely, improvement of driving stability and reduction of driving voltage. That is, the voltage at the time of driving the organic electroluminescent element is high, and the driving stability including heat resistance is low.
This is a serious problem as a light source such as a backlight for a copier or a liquid crystal display, and is not desirable as a display element particularly for a full-color flat panel display.

【0006】有機電界発光素子の駆動時の不安定性とし
ては、発光輝度の低下、定電流駆動時の電圧上昇、非発
光部分(ダークスポット)の発生等が挙げられる。これ
らの不安定性の原因はいくつか存在するが、主として、
陰極材料、特に、発光層に接する界面の劣化に起因する
と考えられる。有機電界発光素子の場合、陰極から有機
層側への電子注入を容易に行うために、通常、マグネシ
ウム合金やカルシウム等の低仕事関数金属が用いられる
が、これらの金属は雰囲気中の水分により酸化されやす
く、駆動時の不安定性の大きな要因となっている。低仕
事関数金属を用いた陰極は、素子の駆動電圧を低くする
ために必要とされるが、上述の不安定性のために改善が
望まれている。
The instability during driving of the organic electroluminescent device includes a decrease in light emission luminance, an increase in voltage during constant current driving, and generation of a non-light emitting portion (dark spot). There are several sources of these instabilities, but mainly
This is considered to be caused by deterioration of the cathode material, particularly the interface in contact with the light emitting layer. In the case of organic electroluminescent devices, low work function metals such as magnesium alloys and calcium are usually used in order to easily inject electrons from the cathode to the organic layer side, but these metals are oxidized by moisture in the atmosphere. This is a major cause of instability during driving. A cathode using a low work function metal is required to lower the driving voltage of the device, but improvement is desired due to the instability described above.

【0007】これまでに、アルミニウムにリチウム金属
を0.01〜0.1 重量部含有させた合金による陰極が開示さ
れているが(特開平5−121172号公報)、このような陰
極ではリチウム金属の含有量を厳密に制御する必要があ
る。真空蒸着法においてアルミニウムとリチウム金属を
それぞれ独立に制御して2元蒸着によりアルミニウム・
リチウム合金を形成するのはプロセス上困難である。ま
た、アルミニウムとリチウムの所望の組成比の合金を予
めペレットやターゲットの形で作製しておき、電子ビー
ム蒸着法やスパッタ法で陰極を形成することも考えられ
てはいるが、リチウムとアルミニウムの蒸気圧及びスパ
ッタ効率の違いにより、成膜を重ねると蒸着源であるア
ルミニウムとリチウム合金の組成比の変動を起こし、実
用上の問題が存在する。更に、金属リチウム原子は拡散
しやすく有機層に拡散して発光を消光したり、さらに
は、水分には非常に敏感で素子の封止に対する要求が甚
だ厳しいものとなる。
[0007] A cathode made of an alloy containing 0.01 to 0.1 parts by weight of lithium metal in aluminum has been disclosed (JP-A-5-121172). However, in such a cathode, the content of lithium metal is reduced. It needs to be strictly controlled. Aluminum and lithium metal are independently controlled in a vacuum deposition method, and aluminum
Forming a lithium alloy is difficult due to the process. It is also considered that an alloy having a desired composition ratio of aluminum and lithium is prepared in the form of a pellet or a target in advance, and a cathode is formed by an electron beam evaporation method or a sputtering method. Due to the difference in vapor pressure and sputtering efficiency, the composition ratio of aluminum and lithium alloy, which are evaporation sources, fluctuates when film formation is repeated, and there is a practical problem. Further, metal lithium atoms are easily diffused and diffuse into an organic layer to extinguish light emission, and furthermore, they are very sensitive to moisture, and the requirements for element sealing are extremely severe.

【0008】アルカリ金属元素を6モル%以上含む合金
を用いた陰極も開示されているが(特開平4−212287号
公報)、既述したリチウム金属原子の不安定性のために
厳重な保護膜を必要とし、また、リチウム原子に由来す
る拡散不安定性は回避できない。陰極の有機発光層側に
接する界面に、フッ化リチウム、酸化リチウム等の極薄
膜絶縁層( 0.3〜10nm)を挿入することも、検討されて
いるが(Appl. Phys.Lett., 70巻,152頁,1997年;IEE
E Trans. Electron. Devices,44巻,1245頁,1997
年)、有機層との付着力に難があり、陰極の剥離等のダ
ークスポット発生の問題がある。
Although a cathode using an alloy containing at least 6 mol% of an alkali metal element is also disclosed (Japanese Patent Laid-Open No. 4-212287), a strict protective film must be formed due to the instability of the lithium metal atoms described above. Required and diffusion instability due to lithium atoms cannot be avoided. It has been studied to insert an ultra-thin insulating layer (0.3 to 10 nm) of lithium fluoride, lithium oxide, etc. at the interface in contact with the organic light emitting layer side of the cathode (Appl. Phys. Lett., Vol. 70, 152 pages, 1997; IEE
E Trans. Electron. Devices, 44, 1245, 1997
Year), there is a problem in adhesion to an organic layer, and there is a problem of dark spot generation such as peeling of a cathode.

【0009】[0009]

【発明が解決しようとする課題】上述のごとく、従来の
有機電界発光素子の陰極や、これと接する有機層におけ
る改善では、効果が不充分であったり、プロセス上制御
が非常に困難であるという問題があった。本発明者は上
記実状に鑑み、低電圧で高輝度に発光し、かつ、駆動時
においても安定な発光特性を維持でき、さらには、作製
時のプロセス条件の範囲が広い有機電界発光素子を提供
することを目的として鋭意検討した結果、陰極の有機発
光層側の界面に接して、特定の有機化合物から成る陰極
界面層を設けることにより、上記課題を解決することが
できることを見い出し、本発明を完成するに至った。
As described above, the improvement in the cathode of the conventional organic electroluminescent device and the organic layer in contact therewith is insufficient in effect and very difficult to control in a process. There was a problem. In view of the above situation, the present inventor has provided an organic electroluminescent element which emits light at high luminance at a low voltage, can maintain stable light emitting characteristics even during driving, and has a wide range of process conditions during fabrication. As a result of intensive studies for the purpose of doing so, it was found that the above problem can be solved by providing a cathode interface layer made of a specific organic compound in contact with the interface of the cathode on the organic light emitting layer side. It was completed.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明の要旨
は、基板上に、陽極、有機発光層、及び陰極が順次積層
されてなる有機電界発光素子であって、前記陰極の有機
発光層側の界面に接して、下記一般式(I)で表わされ
る化合物を含有する陰極界面層を有することを特徴とす
る有機電界発光素子に存する。
That is, the gist of the present invention is to provide an organic electroluminescent device in which an anode, an organic light emitting layer, and a cathode are sequentially laminated on a substrate, wherein the cathode has an organic light emitting layer side. And an organic electroluminescent device having a cathode interface layer containing a compound represented by the following general formula (I) in contact with the interface of

【0011】[0011]

【化2】 Embedded image

【0012】(式中、R1 〜R8 は、各々、独立して水
素原子、ハロゲン原子、アルキル基、アラルキル基、ア
ルケニル基、シアノ基、アミノ基、アシル基、アルコキ
シカルボニル基、カルボキシル基、アルコキシ基、ハロ
アルキル基、水酸基、置換基を有していてもよい芳香族
炭化水素環基または置換基を有していてもよい芳香族複
素環基を表し、R1 〜R4 、R5 〜R8 はそれぞれ隣接
する置換基同士で環を形成してもよい。Xは酸素原子、
硫黄原子、またはNR9 基を表し、R9 は水素原子、ア
ルキル基、置換基を有していてもよい芳香族炭化水素環
基を示し、Mはアルカリ金属原子を示す。)
(Wherein R 1 to R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, Represents an alkoxy group, a haloalkyl group, a hydroxyl group, an aromatic hydrocarbon ring group which may have a substituent or an aromatic heterocyclic group which may have a substituent, and R 1 to R 4 , R 5 to R 8 may form a ring with adjacent substituents, X is an oxygen atom,
Represents a sulfur atom or an NR 9 group, R 9 represents a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group which may have a substituent, and M represents an alkali metal atom. )

【0013】[0013]

【発明の実施の態様】本発明の有機電界発光素子は、前
記一般式(I)で表されるアルカリ金属錯体を含んだ陰
極界面層を有することを特徴とする。上記化合物は薄膜
化時の安定性に優れ、素子の安定化への寄与が大きい。
前記一般式において、R1 〜R8 としては、好ましく
は、各々、独立して水素原子;塩素原子、臭素原子、ヨ
ウ素原子等のハロゲン原子;メチル基、エチル基等の炭
素数1〜6のアルキル基;ベンジル基、フェネチル基等
のアラルキル基;ビニル基等の炭素数2〜6のアルケニ
ル基;シアノ基;アミノ基;ジメチルアミノ基、ジエチ
ルアミノ基等のジアルキルアミノ基;ジフェニルアミノ
基;アセチル基等のアシル基;メトキシカルボニル基、
エトキシカルボニル基等の炭素数2〜6のアルコキシカ
ルボニル基;カルボキシル基;メトキシ基、エトキシ基
等の炭素数1〜6のアルコキシ基;トリフルオロメチル
基等のハロアルキル基;水酸基;フェニル基、ナフチル
基、アセナフチル基、アントリル基等の芳香族炭化水素
基;ピリジル基、キノリル基、チエニル基、カルバゾリ
ル基、インドリル基、フリル基等の芳香族複素環基等が
挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The organic electroluminescent device of the present invention is characterized by having a cathode interface layer containing the alkali metal complex represented by the above general formula (I). The above compounds have excellent stability when thinned, and greatly contribute to stabilization of the device.
In the above general formula, R 1 to R 8 are preferably each independently a hydrogen atom; a halogen atom such as a chlorine atom, a bromine atom and an iodine atom; and a carbon atom having 1 to 6 carbon atoms such as a methyl group and an ethyl group. Alkyl group; aralkyl group such as benzyl group and phenethyl group; alkenyl group having 2 to 6 carbon atoms such as vinyl group; cyano group; amino group; dialkylamino group such as dimethylamino group and diethylamino group; diphenylamino group; Acyl groups such as methoxycarbonyl group,
C2-C6 alkoxycarbonyl groups such as ethoxycarbonyl groups; carboxyl groups; C1-C6 alkoxy groups such as methoxy groups and ethoxy groups; haloalkyl groups such as trifluoromethyl groups; hydroxyl groups; phenyl groups and naphthyl groups And aromatic heterocyclic groups such as pyridyl group, quinolyl group, thienyl group, carbazolyl group, indolyl group and furyl group.

【0014】これらの芳香族炭化水素基または芳香族複
素環基に置換する置換基としてはメチル基、エチル基等
の炭素数1〜6のアルキル基;メトキシ基等の低級アル
コキシ基;フェノキシ基等のアリールオキシ基;ベンジ
ルオキシ基等のアリールアルコキシ基;フェニル基、ナ
フチル基等のアリール基;ジメチルアミノ基等の置換ア
ミノ基等が挙げられる。
Substituents on these aromatic hydrocarbon groups or aromatic heterocyclic groups include alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; lower alkoxy groups such as methoxy group; phenoxy groups and the like. Aryloxy groups such as benzyloxy group; aryl groups such as phenyl group and naphthyl group; substituted amino groups such as dimethylamino group.

【0015】R1 〜R8 として特に好ましくは、水素原
子、炭素数1〜6のアルキル基、炭素数1〜6のアルコ
キシ基、フェニル基、ナフチル基等のアリール基が挙げ
られる。尚、R1 〜R4 、あるいはR5 〜R8 はそれぞ
れ隣接する置換基同士で環を形成してもよい。この場
合、形成される環としては、ベンゼン環、ナフタレン環
が挙げられる。
Particularly preferably, R 1 to R 8 include a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group such as a phenyl group and a naphthyl group. Note that R 1 to R 4 or R 5 to R 8 may form a ring with adjacent substituents. In this case, the formed ring includes a benzene ring and a naphthalene ring.

【0016】Xは酸素原子、硫黄原子、またはNR9
を表し、R9 としては、好ましくは、水素原子;メチル
基、エチル基等の炭素数1から6アルキル基;置換基を
有していてもよいフェニル基、ナフチル基、ビフェニル
基等の芳香族炭化水素環基を示し、この場合、置換基と
しては炭素数1〜6のアルキル基、炭素数1〜6のアル
コキシ基が挙げられる。Mはアルカリ金属原子を示す。
X represents an oxygen atom, a sulfur atom, or an NR 9 group, and R 9 is preferably a hydrogen atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; And an aromatic hydrocarbon ring group such as a phenyl group, a naphthyl group, and a biphenyl group. In this case, examples of the substituent include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms. M represents an alkali metal atom.

【0017】前記一般式(I)で表わされる化合物の好
ましい具体例を以下の表1に示すが、これらに限定する
ものではない。
Preferred specific examples of the compound represented by the general formula (I) are shown in Table 1 below, but are not limited thereto.

【0018】[0018]

【表1】 [Table 1]

【0019】尚、表中、R1 〜R8 で特に示していない
もの、および「−」は水素原子を表わす。以下、本発明
の有機電界発光素子について、図面を参照しながら説明
する。図1は本発明に用いられる一般的な有機電界発光
素子の構造例を模式的に示す断面図であり、1は基板、
2は陽極、3は有機発光層、4は陰極界面層、5は陰極
を各々表わす。
In the tables, R 1 to R 8 , which are not particularly indicated, and “-” represent a hydrogen atom. Hereinafter, the organic electroluminescent device of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing an example of the structure of a general organic electroluminescent element used in the present invention.
2 represents an anode, 3 represents an organic light emitting layer, 4 represents a cathode interface layer, and 5 represents a cathode.

【0020】基板1は有機電界発光素子の支持体となる
ものであり、石英やガラスの板、金属板や金属箔、プラ
スチックフィルムやシートなどが用いられる。特にガラ
ス板や、ポリエステル、ポリメタクリレート、ポリカー
ボネート、ポリスルホンなどの透明な合成樹脂の板が好
ましい。合成樹脂基板を使用する場合にはガスバリア性
に留意する必要がある。基板のガスバリヤ性が低すぎる
と、基板を通過する外気により有機電界発光素子が劣化
することがあるので好ましくない。このため、合成樹脂
基板のどちらか片側もしくは両側に緻密なシリコン酸化
膜等を設けてガスバリア性を確保する方法も好ましい方
法の一つである。
The substrate 1 serves as a support for the organic electroluminescent device, and is made of a quartz or glass plate, a metal plate or a metal foil, a plastic film or a sheet, or the like. Particularly, a glass plate or a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too low, the organic air-emitting device may be deteriorated by outside air passing through the substrate, which is not preferable. Therefore, a method of providing a dense silicon oxide film or the like on one or both sides of the synthetic resin substrate to ensure gas barrier properties is also a preferable method.

【0021】基板1上には陽極2が設けられるが、陽極
2は有機発光層への正孔注入の役割を果たすものであ
る。この陽極は、通常、アルミニウム、金、銀、ニッケ
ル、パラジウム、白金等の金属、インジウム及び/また
はスズの酸化物などの金属酸化物、ヨウ化銅などのハロ
ゲン化金属、カーボンブラック、あるいは、ポリ(3-メ
チルチオフェン)、ポリピロール、ポリアニリン等の導
電性高分子などにより構成される。陽極2の形成は通
常、スパッタリング法、真空蒸着法などにより行われる
ことが多い。また、銀などの金属微粒子、ヨウ化銅など
の微粒子、カーボンブラック、導電性の金属酸化物微粒
子、導電性高分子微粉末などの場合には、適当なバイン
ダー樹脂溶液に分散し、基板1上に塗布することにより
陽極2を形成することもできる。さらに、導電性高分子
の場合は電解重合により直接基板1上に薄膜を形成した
り、基板1上に導電性高分子を塗布して陽極2を形成す
ることもできる(Appl. Phys. Lett., 60巻,2711頁,1
992年)。陽極2は異なる物質で積層して形成すること
も可能である。陽極2の厚みは、必要とする透明性によ
り異なる。透明性が必要とされる場合は、可視光の透過
率を、通常、60%以上、好ましくは80%以上とすること
が望ましく、この場合、厚みは、通常、5〜1000nm、好
ましくは10〜500nm程度である。不透明でよい場合は陽
極2は基板1と同一でもよい。また、さらには上記の陽
極2の上に異なる導電材料を積層することも可能であ
る。
An anode 2 is provided on the substrate 1, and the anode 2 plays a role of injecting holes into the organic light emitting layer. The anode is usually made of a metal such as aluminum, gold, silver, nickel, palladium and platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; carbon black; (3-methylthiophene), conductive polymers such as polypyrrole and polyaniline. Usually, the formation of the anode 2 is often performed by a sputtering method, a vacuum evaporation method, or the like. In the case of fine particles of metal such as silver, fine particles of copper iodide or the like, carbon black, fine particles of conductive metal oxide, fine particles of conductive polymer, etc., they are dispersed in an appropriate binder resin solution and To form the anode 2. Further, in the case of a conductive polymer, a thin film can be formed directly on the substrate 1 by electrolytic polymerization, or the conductive polymer can be applied on the substrate 1 to form the anode 2 (Appl. Phys. Lett. , 60, 2711, 1
992). The anode 2 can be formed by laminating different materials. The thickness of the anode 2 depends on the required transparency. When transparency is required, the transmittance of visible light is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 5 to 1000 nm, preferably 10 to 10 nm. It is about 500 nm. If opaque, the anode 2 may be the same as the substrate 1. Further, it is also possible to laminate a different conductive material on the anode 2.

【0022】陽極2の上には有機発光層3が設けられ
る。有機発光層3は、電界を与えられた電極間におい
て、陽極2から注入された正孔と陰極4から注入された
電子を効率よく輸送して再結合させ、かつ、再結合によ
り効率よく発光する材料から形成される。単層型の有機
発光層3としては、先に挙げたポリ(p-フェニレンビニ
レン)(Nature,347巻,539頁,1990年他)、ポリ[2-
メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレ
ンビニレン](Appl.Phys.Lett.,58巻,1982頁,1991
年他)、ポリ(3-アルキルチオフェン)(Jpn.J.App
l.Phys.,30巻,L1938頁,1991年他)等の高分子材料
や、ポリビニルカルバゾール等の高分子に発光材料と電
子移動材料を混合した系(応用物理,61巻,1044頁,19
92年)等が挙げられる。
An organic light emitting layer 3 is provided on the anode 2. The organic light emitting layer 3 efficiently transports the holes injected from the anode 2 and the electrons injected from the cathode 4 and recombine between the electrodes to which an electric field is applied, and emits light efficiently by the recombination. Formed from material. Examples of the single-layer type organic light-emitting layer 3 include poly (p-phenylenevinylene) (Nature, 347, 539, 1990, etc.) and poly [2-
Methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene] (Appl. Phys. Lett., 58, 1982, 1991)
And others), poly (3-alkylthiophene) (Jpn. J. App
l. Phys., 30, L1938, 1991, etc.), or a system in which a luminescent material and an electron transfer material are mixed with a polymer such as polyvinyl carbazole (Applied Physics, 61, 1044, 19)
1992).

【0023】通常、有機発光層3の発光効率向上ため
に、図2に示す様に、正孔輸送層3bと電子輸送層3cに分
割して機能分離型素子とすることが多い(Appl. Phys.
Lett.,51巻,913頁,1987年)。正孔輸送層3bおよび
電子輸送層3cのうち、どの層、どの領域が発光するか
は、正孔輸送層3b中の正孔輸送材料、および電子輸送
層3c中の電子輸送材料として各々どのような材料を選
択するか、さらに両材料の組み合わせによって決まる。
以下、このような機能分離型素子の場合、正孔輸送層3
bおよび電子輸送層3cのうち、発光する領域を含む層
を「発光層」と称することがある。
Usually, in order to improve the luminous efficiency of the organic light-emitting layer 3, as shown in FIG. 2, the hole-transporting layer 3b and the electron-transporting layer 3c are often divided into function-separated elements (Appl. Phys. .
Lett., 51, 913, 1987). Which layer and which region of the hole transport layer 3b and the electron transport layer 3c emit light depends on how the hole transport material in the hole transport layer 3b and the electron transport material in the electron transport layer 3c are. It depends on which material is selected or on the combination of both materials.
Hereinafter, in the case of such a function separation type element, the hole transport layer 3
Of the layer b and the electron transport layer 3c, a layer including a light emitting region may be referred to as a “light emitting layer”.

【0024】上記の機能分離型素子において、正孔輸送
層3bの材料としては、陽極2からの正孔注入効率が高
く、かつ、注入された正孔を効率よく輸送することがで
きる材料であることが必要である。そのためには、イオ
ン化ポテンシャルが小さく、しかも正孔移動度が大き
く、さらに安定性に優れ、トラップとなる不純物が製造
時や使用時に発生しにくいことが要求される。
In the above function-separated element, the material of the hole transport layer 3b is a material having a high hole injection efficiency from the anode 2 and capable of efficiently transporting the injected holes. It is necessary. For that purpose, it is required that the ionization potential is small, the hole mobility is large, the stability is further excellent, and impurities serving as traps are hardly generated during production or use.

【0025】このような正孔輸送材料としては、例え
ば、4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]
ビフェニルで代表される2個以上の3級アミンを含み2
個以上の縮合芳香族環が窒素原子に置換した芳香族ジア
ミン(特開平5−234681号公報)、4,4',4"-トリス(1-
ナフチルフェニルアミノ)トリフェニルアミン等のスタ
ーバースト構造を有する芳香族アミン化合物(J. Lumi
n., 72-74巻、985頁、1997年)、トリフェニルアミンの
四量体から成る芳香族アミン化合物(Chem.Commun., 21
75頁、1996年)、2,2',7,7'-テトラキス-(ジフェニルア
ミノ)-9,9'-スピロビフルオレン等のスピロ化合物(Syn
th. Metals, 91巻、209頁、1997年)等が挙げられる。
これらの化合物は、単独で用いてもよいし、必要に応じ
て、各々、混合して用いてもよい。
As such a hole transporting material, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino]
Containing two or more tertiary amines represented by biphenyl;
Aromatic diamines in which at least two condensed aromatic rings are substituted with nitrogen atoms (JP-A-5-234681), 4,4 ', 4 "-tris (1-
Aromatic amine compounds having a starburst structure such as naphthylphenylamino) triphenylamine (J. Lumi
n., 72-74, 985, 1997), an aromatic amine compound composed of a tetramer of triphenylamine (Chem. Commun., 21).
75, 1996), spiro compounds such as 2,2 ', 7,7'-tetrakis- (diphenylamino) -9,9'-spirobifluorene (Syn
th. Metals, vol. 91, p. 209, 1997).
These compounds may be used alone, or may be used as a mixture as necessary.

【0026】上記の化合物以外に、正孔輸送材料として
は、ポリビニルカルバゾール、ポリビニルトリフェニル
アミン(特開平7− 53953号公報)、テトラフェニルベ
ンジジンを含有するポリアリーレンエーテルサルホン
(Polym. Adv. Tech., 7巻、33頁、1996年)等の高分子
材料が挙げられる。上記の正孔輸送材料を塗布法あるい
は真空蒸着法により前記陽極2上に積層することにより
正孔輸送層3bを形成する。
In addition to the above compounds, examples of hole transport materials include polyvinyl carbazole, polyvinyl triphenylamine (Japanese Patent Application Laid-Open No. 7-53953), and polyarylene ether sulfone containing tetraphenylbenzidine (Polym. Adv. Tech.). , 7, 33, 1996). The hole transport layer 3b is formed by laminating the above hole transport material on the anode 2 by a coating method or a vacuum evaporation method.

【0027】塗布法の場合は、正孔輸送材料を1種また
は2種以上と、必要により正孔のトラップにならないバ
インダー樹脂や塗布性改良剤などの添加剤とを添加し、
溶解して塗布溶液を調製し、スピンコート法などの方法
により陽極2上に塗布し、乾燥して正孔輸送層3bを形成
する。バインダー樹脂としては、ポリカーボネート、ポ
リアリレート、ポリエステル等が挙げられる。バインダ
ー樹脂は添加量が多いと正孔移動度を低下させるので、
少ない方が望ましく、通常、50重量%以下が好まし
い。
In the case of the coating method, one or more hole transporting materials and, if necessary, an additive such as a binder resin or a coating improver which does not trap holes are added,
The solution is dissolved to prepare a coating solution, applied to the anode 2 by a method such as spin coating, and dried to form the hole transport layer 3b. Examples of the binder resin include polycarbonate, polyarylate, and polyester. Since the binder resin reduces the hole mobility if the amount added is large,
A smaller amount is desirable, and usually 50% by weight or less is preferred.

【0028】真空蒸着法の場合には、正孔輸送材料を真
空容器内に設置されたルツボに入れ、真空容器内を適当
な真空ポンプで10-4Pa程度にまで排気した後、ルツボを
加熱して、正孔輸送材料を蒸発させ、ルツボと向き合っ
て置かれた基板1上の陽極2上に正孔輸送層3bを形成さ
せる。正孔輸送層3bの膜厚は、通常、10〜300nm、好ま
しくは30〜100nmである。この様に薄い膜を一様に形成
するためには、一般に真空蒸着法がよく用いられる。正
孔輸送層3bの上には電子輸送層3cが設けられる。電子輸
送層3cは、電界を与えられた電極間において陰極からの
電子を効率よく正孔輸送層3bの方向に輸送することがで
きる材料より形成される。
In the case of the vacuum evaporation method, the hole transporting material is put into a crucible placed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 -4 Pa by a suitable vacuum pump, and then the crucible is heated. Then, the hole transport material is evaporated to form a hole transport layer 3b on the anode 2 on the substrate 1 placed facing the crucible. The thickness of the hole transport layer 3b is usually 10 to 300 nm, preferably 30 to 100 nm. In order to uniformly form such a thin film, generally, a vacuum deposition method is often used. An electron transport layer 3c is provided on the hole transport layer 3b. The electron transport layer 3c is formed of a material that can efficiently transport electrons from the cathode in the direction of the hole transport layer 3b between electrodes to which an electric field is applied.

【0029】電子輸送層3cに用いられる電子輸送性材料
としては、陰極4からの電子注入効率が高く、かつ、注
入された電子を効率よく輸送することができる化合物で
あることが必要である。そのためには、電子親和力が大
きく、しかも電子移動度が大きく、さらに安定性に優れ
トラップとなる不純物が製造時や使用時に発生しにくい
材料であることが要求される。
The electron transporting material used for the electron transporting layer 3c needs to be a compound having a high electron injection efficiency from the cathode 4 and capable of transporting the injected electrons efficiently. For this purpose, it is required that the material has a high electron affinity, a high electron mobility, a high stability, and an impurity which becomes a trap and hardly occurs during production or use.

【0030】このような条件を満たす材料としては、8
−ヒドロキシキノリンのアルミニウム錯体などの金属錯
体(特開昭59−194393号公報)、10-ヒドロキシベンゾ
[h]キノリンの金属錯体(特開平6−322362号公報)、
ビススチリルベンゼン誘導体(特開平1−245087号公
報、同2−222484号公報)などが挙げられる。これらの
化合物を用いた電子輸送層3cは、一般に、電子を輸送す
る役割と、正孔と電子の再結合の際に発光をもたらす役
割を同時に果たすことができる。
Materials satisfying such conditions include 8
Metal complexes such as aluminum complexes of -hydroxyquinoline (JP-A-59-194393);
[h] quinoline metal complex (JP-A-6-322362),
Bisstyrylbenzene derivatives (JP-A-1-245087 and JP-A-2-222484) and the like. In general, the electron transport layer 3c using these compounds can simultaneously play a role of transporting electrons and a role of emitting light when holes and electrons recombine.

【0031】なお、正孔輸送層3bが発光機能を有する場
合は、電子輸送層3cは電子を輸送する役割だけを果たす
場合もある。電子輸送層3cの膜厚は、通常、10〜200n
m、好ましくは30〜100nmである。電子輸送層も正孔輸送
層と同様の方法で形成することができるが、通常は真空
蒸着法が用いられる。
When the hole transporting layer 3b has a light emitting function, the electron transporting layer 3c may only play the role of transporting electrons. The thickness of the electron transport layer 3c is usually 10 to 200 n
m, preferably 30-100 nm. The electron transporting layer can be formed in the same manner as the hole transporting layer, but usually, a vacuum evaporation method is used.

【0032】素子の発光効率を向上させるとともに発光
色を変える目的で、発光層として働く層中の正孔輸送材
料や電子輸送材料をホスト材料とし、蛍光色素をドープ
してもよい。例えば、8−ヒドロキシキノリンのアルミ
ニウム錯体をホスト材料として、クマリン等のレーザ用
蛍光色素をドープすること(J. Appl. Phys., 65巻,361
0頁, 1989年)等が行われている。この方法の利点は、 1)高効率の蛍光色素により発光効率が向上、 2)蛍光色素の選択により発光波長が可変、 3)濃度消光を起こす蛍光色素も使用可能、 4)薄膜性のわるい蛍光色素も使用可能、等が挙げられ
る。
For the purpose of improving the luminous efficiency of the device and changing the luminescent color, a hole transporting material or an electron transporting material in the layer serving as the luminescent layer may be used as a host material and doped with a fluorescent dye. For example, doping a fluorescent dye for laser such as coumarin using an aluminum complex of 8-hydroxyquinoline as a host material (J. Appl. Phys., 65, 361)
0, 1989). The advantages of this method are: 1) improved luminous efficiency by high-efficiency fluorescent dye, 2) variable emission wavelength by selecting fluorescent dye, 3) fluorescent dye which causes concentration quenching can be used, 4) fluorescent light with poor thin film property Dyes can also be used.

【0033】素子の駆動寿命を改善する目的において
も、前記発光層材料をホスト材料として、蛍光色素をド
ープすることは有効である。例えば、8−ヒドロキシキ
ノリンのアルミニウム錯体などの金属錯体をホスト材料
として、ルブレンに代表されるナフタセン誘導体(Jpn.
J. Appl. Phys., 7A巻、L824頁、1995年)、キナクリ
ドン誘導体(Appl. Phys. Lett., 70巻、1665頁、1997
年)をホスト材料に対して 0.1〜10重量%ドープするこ
とにより、素子の発光特性、特に駆動安定性を大きく向
上させることができる。発光層ホスト材料に上記ナフタ
セン誘導体、キナクリドン誘導体等の蛍光色素をドープ
する方法としては、共蒸着による方法と蒸着源を予め所
定の濃度で混合しておく方法がある。
For the purpose of improving the driving life of the device, it is effective to dope a fluorescent dye using the light emitting layer material as a host material. For example, using a metal complex such as an aluminum complex of 8-hydroxyquinoline as a host material, a naphthacene derivative represented by rubrene (Jpn.
J. Appl. Phys., 7A, L824, 1995), quinacridone derivative (Appl. Phys. Lett., 70, 1665, 1997)
By doping 0.1 to 10% by weight of the host material, the emission characteristics of the device, particularly the driving stability, can be greatly improved. As a method of doping the fluorescent material such as the naphthacene derivative and the quinacridone derivative into the light emitting layer host material, there are a method of co-evaporation and a method of previously mixing an evaporation source at a predetermined concentration.

【0034】なお、蛍光色素がドープされる領域は、正
孔輸送層3b及び/又は電子輸送層3cの、層全体であ
ってもその一部分であってもよく、各層の膜厚方向にお
いて均一にドープされても、膜厚方向において濃度分布
があっても構わない。例えば電子輸送層3c中の、正孔
輸送層3bとの界面近傍にのみドープしたり、逆に陰極
側の界面近傍にドープしてもよい。蛍光色素のドープさ
れる量は、ホスト材料に対して、通常10-3〜10重量
%が好ましい。
The region to which the fluorescent dye is doped may be the whole or a part of the hole transport layer 3b and / or the electron transport layer 3c, and may be uniform in the thickness direction of each layer. It may be doped or have a concentration distribution in the film thickness direction. For example, doping may be performed only in the vicinity of the interface with the hole transporting layer 3b in the electron transporting layer 3c, or conversely, may be performed in the vicinity of the interface on the cathode side. The amount of the fluorescent dye to be doped is preferably usually 10 −3 to 10% by weight based on the host material.

【0035】陰極界面層4は有機発光層3、(機能分離
型素子の場合は電子輸送層3c)の上に積層される。本発
明は、陰極界面層として、前記一般式(I)で示される
有機化合物を含む層を用いることを特徴とする。陰極界
面層の膜厚は、好ましくは、 0.3〜10nm、特に好ましく
は、0.5〜5nmである。このような薄い薄膜を形成するの
には、一般的には、真空蒸着法が用いられる。
The cathode interface layer 4 is laminated on the organic light emitting layer 3 (the electron transport layer 3c in the case of a function separation type element). The present invention is characterized in that a layer containing the organic compound represented by the general formula (I) is used as the cathode interface layer. The thickness of the cathode interface layer is preferably from 0.3 to 10 nm, particularly preferably from 0.5 to 5 nm. In order to form such a thin film, a vacuum deposition method is generally used.

【0036】陰極5は、陰極界面層4を介して、有機発
光層3に電子を注入する役割を果たす。本発明において
は、陰極として用いられる金属は、アルミニウム、イン
ジウム、マグネシウム、カルシウム、亜鉛、バナジウ
ム、クロム、スズ、銅が挙げられ、特に好ましくは、ア
ルミニウムが挙げられる。陰極金属と陰極界面層を構成
する有機化合物で蒸着時に反応が起こり、結果として電
子注入が容易になる反応生成物が陰極界面に形成され
る。また、前記一般式(I)で表わされる有機化合物
は、真空準位を下げるとともに発光層のLUMO準位を
下げる効果を有し、結果として電子注入障壁を下げて駆
動電圧を下げる働きを有する。
The cathode 5 plays a role of injecting electrons into the organic light emitting layer 3 via the cathode interface layer 4. In the present invention, the metal used as the cathode includes aluminum, indium, magnesium, calcium, zinc, vanadium, chromium, tin, and copper, and particularly preferably, aluminum. A reaction occurs during deposition between the cathode metal and the organic compound constituting the cathode interface layer, and as a result, a reaction product that facilitates electron injection is formed at the cathode interface. Further, the organic compound represented by the general formula (I) has an effect of lowering the vacuum level and lowering the LUMO level of the light emitting layer, and as a result, has a function of lowering the electron injection barrier and lowering the driving voltage.

【0037】陰極4の膜厚は通常、陽極2と同様であ
る。陰極を保護する目的で、この上にさらに、仕事関数
が高く大気に対して安定な金属材料からなる、保護層を
積層することは素子の安定性を増すため好ましい。この
目的のために、アルミニウム、銅、クロム、金、銀の金
属が使われる。保護層に使用される金属材料は、陰極4
に使用される金属材料と同じものであっても異なるもの
であってもよい。
The thickness of the cathode 4 is usually the same as that of the anode 2. For the purpose of protecting the cathode, it is preferable to further form a protective layer made of a metal material having a high work function and being stable to the atmosphere, for increasing the stability of the device. Aluminum, copper, chromium, gold and silver metals are used for this purpose. The metal material used for the protective layer is a cathode 4
The material may be the same as or different from the metal material used for the metal.

【0038】本発明の有機電界発光素子は、陰極−陰極
界面層間以外の任意の層間に、以上述べてきたような各
層以外にも、層を有していてよい。
The organic electroluminescent device of the present invention may have a layer between any layers other than the cathode-cathode interface layer, in addition to the layers described above.

【0039】例えば、正孔注入の効率をさらに向上さ
せ、かつ、有機層全体の陽極への付着力を改善させる目
的で、正孔輸送層3bと陽極2との間に陽極バッファ層3a
を挿入してもよい(図3)。陽極バッファ層3aを挿入す
ることで、初期の素子の駆動電圧が下がると同時に、素
子を定電流で連続駆動した時の電圧上昇も抑制される効
果がある。陽極バッファ層に用いられる材料に要求され
る条件としては、陽極とのコンタクトがよく均一な薄膜
が形成でき、熱的に安定、すなわち、融点及びガラス転
移温度が高く、融点としては 300℃以上、ガラス転移温
度としては 100℃以上が要求される。さらに、イオン化
ポテンシャルが低く陽極からの正孔注入が容易なこと、
正孔移動度が大きいことが挙げられる。
For example, in order to further improve the efficiency of hole injection and to improve the adhesion of the whole organic layer to the anode, an anode buffer layer 3a is provided between the hole transport layer 3b and the anode 2.
May be inserted (FIG. 3). The insertion of the anode buffer layer 3a has the effect of lowering the initial drive voltage of the device and suppressing the voltage rise when the device is continuously driven with a constant current. The conditions required for the material used for the anode buffer layer are that the contact with the anode can be made well, a uniform thin film can be formed, and it is thermally stable, that is, the melting point and the glass transition temperature are high, and the melting point is 300 ° C or more. A glass transition temperature of 100 ° C or higher is required. Furthermore, the ionization potential is low and the hole injection from the anode is easy,
The hole mobility is large.

【0040】この目的のために、これまでに銅フタロシ
アニン等のタロシアニン化合物(特開昭63−295695号公
報)、ポリアニリン(Appl. Phys. Lett., 64巻、1245
頁,1994年)、ポリチオフェン(Optical Materials, 9
巻、125頁、1998年)等の有機化合物や、スパッタ・カ
ーボン膜(Synth. Met., 91巻、73頁、1997年)や、バ
ナジウム酸化物、ルテニウム酸化物、モリブデン酸化物
等の金属酸化物(J.Phys. D, 29巻、2750頁、1996年)
が報告されている。
For this purpose, a thalocyanine compound such as copper phthalocyanine (JP-A-63-295695) and polyaniline (Appl. Phys. Lett., Vol. 64, 1245) have been used so far.
P., 1994), polythiophene (Optical Materials, 9)
Vol. 125, 1998), sputtered carbon films (Synth. Met., Vol. 91, p. 73, 1997), and metal oxides such as vanadium oxide, ruthenium oxide and molybdenum oxide. (J.Phys. D, 29, 2750, 1996)
Have been reported.

【0041】陽極バッファ層の場合も、正孔輸送層と同
様にして薄膜形成可能であるが、無機物の場合には、さ
らに、スパッタ法や電子ビーム蒸着法、プラズマCVD
法が用いられる。以上の様にして形成される陽極バッフ
ァ層3aの膜厚は、通常、3〜100nm、好ましくは10〜50nm
である。
In the case of the anode buffer layer, a thin film can be formed in the same manner as in the case of the hole transporting layer. In the case of an inorganic substance, however, a sputtering method, an electron beam evaporation method, or a plasma CVD method may be used.
Method is used. The thickness of the anode buffer layer 3a formed as described above is usually 3 to 100 nm, preferably 10 to 50 nm.
It is.

【0042】また、有機電界発光素子の発光効率をさら
に向上させる方法として、有機発光層3の上にさらに電
子注入層を積層することもできる。この電子注入層に用
いられる化合物には、陰極からの電子注入が容易で、電
子の輸送能力がさらに大きいことが要求される。この様
な電子輸送材料としては、既に発光層材料として挙げた
8−ヒドロキシキノリンのアルミ錯体、オキサジアゾー
ル誘導体(Appl. Phys.Lett., 55巻, 1489頁, 1989年
他) やそれらをポリメタクリル酸メチル(PMMA)
等の樹脂に分散した系(Appl. Phys. Lett.,61巻,279
3頁, 1992年)、フェナントロリン誘導体(特開平5−3
31459号公報)等が挙げられる。電子注入層の膜厚は、
通常、5〜200nm、好ましくは10〜100 nmである。
As a method for further improving the luminous efficiency of the organic electroluminescent device, an electron injection layer can be further laminated on the organic light emitting layer 3. The compound used for the electron injection layer is required to be capable of easily injecting electrons from the cathode and having a higher electron transport ability. Examples of such an electron transport material include 8-hydroxyquinoline aluminum complexes and oxadiazole derivatives (Appl. Phys. Lett., Vol. 55, p. 1489, 1989, etc.), which have already been cited as a material for the light-emitting layer, and poly (ethylene). Methyl methacrylate (PMMA)
(Appl. Phys. Lett., 61, 279)
P. 3, 1992), phenanthroline derivatives (JP-A-5-3
No. 31459). The thickness of the electron injection layer is
Usually, it is 5 to 200 nm, preferably 10 to 100 nm.

【0043】尚、図1とは逆の構造、すなわち、基板上
に陰極5、陰極界面層4、有機発光層3、陽極2の順に
積層することも可能であり、既述したように少なくとも
一方が透明性の高い2枚の基板の間に本発明の有機電界
発光素子を設けることも可能である。同様に、図2、図
3に示した前記各層構成とは逆の構造に積層することも
可能である。
Incidentally, it is also possible to stack the cathode 5, the cathode interface layer 4, the organic luminescent layer 3, and the anode 2 in this order on the substrate, that is, as described above, at least one of them. It is also possible to provide the organic electroluminescent device of the present invention between two substrates having high transparency. Similarly, it is also possible to laminate in a structure opposite to the above-mentioned respective layer constitutions shown in FIGS.

【0044】[0044]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はその要旨を越えない限り、以下の
実施例の記載に限定されるものではない。 実施例1 図3に示す構造を有する有機電界発光素子を以下の方法
で作製した。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the description of the following examples unless it exceeds the gist. Example 1 An organic electroluminescent device having a structure shown in FIG. 3 was produced by the following method.

【0045】ガラス基板1上にインジウム・スズ酸化物
(ITO)透明導電膜を 120nm堆積したもの(ジオマテ
ック社製;電子ビーム成膜品;シート抵抗15Ω)を通常
のフォトリソグラフィ技術と塩酸エッチングを用いて 2
mm幅のストライプにパターニングして陽極2を形成し
た。パターン形成したITO基板を、アセトンによる超
音波洗浄、純水による水洗、イソプロピルアルコールに
よる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、
最後に紫外線オゾン洗浄を行って、真空蒸着装置内に設
置した。上記装置の粗排気を油回転ポンプにより行った
後、装置内の真空度が2x10-6Torr(約2,7x10-4Pa)以下
になるまで液体窒素トラップを備えた油拡散ポンプを用
いて排気した。
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate 1 with a thickness of 120 nm (manufactured by Geomatic Corporation; electron beam film-formed product; sheet resistance of 15Ω) was etched using a conventional photolithography technique and hydrochloric acid etching. 2
The anode 2 was formed by patterning into a stripe having a width of mm. The patterned ITO substrate is cleaned by ultrasonic cleaning with acetone, water cleaning with pure water, and ultrasonic cleaning with isopropyl alcohol, and then dried by nitrogen blowing.
Finally, ultraviolet ozone cleaning was performed, and the apparatus was installed in a vacuum evaporation apparatus. After the rough exhaust of the above device is performed by an oil rotary pump, exhaust is performed using an oil diffusion pump equipped with a liquid nitrogen trap until the degree of vacuum in the device becomes 2 × 10 −6 Torr (about 2,7 × 10 −4 Pa) or less. did.

【0046】上記装置内に配置されたモリブデンボート
に入れた以下に示す銅フタロシアニン(結晶形はβ型)
Copper phthalocyanine shown below in a molybdenum boat placed in the above apparatus (crystal form is β-form)

【0047】[0047]

【化3】 Embedded image

【0048】を加熱して蒸着を行った。真空度2x10-6To
rr(約2.7x10-4Pa)、蒸着時間1分で蒸着を行ない、膜
厚10nmの陽極バッファ層3aを得た。次に、前記装置内に
配置されたセラミックるつぼに入れた、以下に示す、4,
4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェ
ニル
Was heated to perform vapor deposition. Vacuum 2x10 -6 To
Vapor deposition was performed at rr (approximately 2.7 × 10 −4 Pa) and a vapor deposition time of 1 minute to obtain a 10 nm-thick anode buffer layer 3a. Next, placed in a ceramic crucible placed in the device, shown below,
4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl

【0049】[0049]

【化4】 Embedded image

【0050】をるつぼの周囲のタンタル線ヒーターで加
熱して蒸着を行った。この時のるつぼの温度は、280〜2
70℃の範囲で制御した。蒸着時の真空度1.5x10-6Torr
(約2.0x10-4Pa)、蒸着時間3分で膜厚60nmの正孔輸送
層3bを得た。引続き、発光機能を有する電子輸送層3cの
材料として、以下の構造式に示すアルミニウムの8−ヒ
ドロキシキノリン錯体、Al(C9H6NO)3
The evaporation was performed by heating with a tantalum wire heater around the crucible. The temperature of the crucible at this time is 280 ~ 2
The temperature was controlled in the range of 70 ° C. 1.5x10 -6 Torr vacuum during deposition
(Approximately 2.0 × 10 −4 Pa) and a hole transport layer 3b having a thickness of 60 nm was obtained in a deposition time of 3 minutes. Subsequently, as a material of the electron transporting layer 3c having a light emitting function, an 8-hydroxyquinoline complex of aluminum represented by the following structural formula, Al (C 9 H 6 NO) 3

【0051】[0051]

【化5】 Embedded image

【0052】を正孔輸送層3bと同様にして蒸着した。こ
の時のアルミニウムの8−ヒドロキシキノリン錯体のる
つぼ温度は 290〜 300℃の範囲で制御し、蒸着時の真空
度は1.6x10-6Torr(約2.1x10-4Pa)、蒸着時間は3分
で、蒸着された電子輸送層3cの膜厚は75nmであった。
上記の陽極バッファ層3a、正孔輸送層3b及び電子輸送層
3cを真空蒸着する時の基板温度は室温に保持した。
Was deposited in the same manner as the hole transport layer 3b. At this time, the crucible temperature of the aluminum 8-hydroxyquinoline complex was controlled in the range of 290 to 300 ° C., the degree of vacuum at the time of vapor deposition was 1.6 × 10 −6 Torr (about 2.1 × 10 −4 Pa), and the vapor deposition time was 3 minutes. The thickness of the deposited electron transport layer 3c was 75 nm.
The above-described anode buffer layer 3a, hole transport layer 3b, and electron transport layer
The substrate temperature during vacuum deposition of 3c was kept at room temperature.

【0053】ここで、電子輸送層3cまでの蒸着を行った
素子を一度前記真空蒸着装置内より大気中に取り出し
て、陰極蒸着用のマスクとして 2mm幅のストライプ状シ
ャドーマスクを、陽極2のITOストライプとは直交す
るように素子に密着させて、別の真空蒸着装置内に設置
して有機層と同様にして装置内の真空度が2x10-6Torr
(約2.7x10-4Pa)以下になるまで排気した。
Here, the element on which the vapor deposition up to the electron transport layer 3c has been performed is once taken out of the vacuum vapor deposition apparatus into the atmosphere, and a 2 mm wide stripe-shaped shadow mask is used as a cathode vapor deposition mask. Adhere to the element so as to be orthogonal to the stripe, and install it in another vacuum evaporation apparatus and set the degree of vacuum in the apparatus to 2x10 -6 Torr in the same way as for the organic layer.
(About 2.7 × 10 −4 Pa) or less.

【0054】電子輸送層3cの上に、引き続き、表1の化
合物(16)を、同様にしてセラミックるつぼを用いて、
350℃に加熱して蒸着時間5分で 0.8nm陰極界面層4を
形成した。蒸着時の真空度は3.5x10-6Torr(約4.7x10-4
Pa)であった。続いて、陰極5として、アルミニウムを
蒸着速度0.4nm/秒で陰極界面層4上に膜厚80nmで形成し
た。蒸着時の真空度は1.0x10-5Torr(約1.3x10-3Pa)で
あった。以上の陰極界面層及び陰極の蒸着時の基板温度
は室温に保持した。
Subsequently, on the electron transport layer 3c, the compound (16) shown in Table 1 was similarly applied using a ceramic crucible.
By heating to 350 ° C., the cathode interface layer 4 having a thickness of 0.8 nm was formed in a deposition time of 5 minutes. The degree of vacuum during deposition is 3.5 × 10 -6 Torr (about 4.7 × 10 -4
Pa). Subsequently, aluminum was formed as the cathode 5 on the cathode interface layer 4 at a deposition rate of 0.4 nm / sec with a thickness of 80 nm. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −5 Torr (about 1.3 × 10 −3 Pa). The substrate temperature during the deposition of the cathode interface layer and the cathode was kept at room temperature.

【0055】以上の様にして、 2mm× 2mmのサイズの有
機電界発光素子が得られた。この素子を陰極蒸着装置か
ら取り出した後、大気中において陽極と陰極間に順方向
の電圧を印加して発光特性を測定した。この素子の発光
特性を表−2に示す。表−2において、発光輝度は250m
A/cm2の電流密度での値、発光効率は 100cd/m2での
値、輝度/電流は輝度−電流密度特性の傾きを、電圧は
100cd/m2での値を各々示す。また、この素子の電圧−
輝度特性を図4のグラフに示す。この素子では10V以下
の低い電圧で1000〜10000 cd/m2でという高輝度が得ら
れた。
As described above, an organic electroluminescent device having a size of 2 mm × 2 mm was obtained. After the device was taken out of the cathode vapor deposition apparatus, a forward voltage was applied between the anode and the cathode in the atmosphere, and the light emission characteristics were measured. Table 2 shows the light emission characteristics of this device. In Table 2, the emission luminance is 250m
A / cm 2 at current density, luminous efficiency at 100 cd / m 2 , luminance / current is the slope of the luminance-current density characteristic, and voltage is
The values at 100 cd / m 2 are shown. Also, the voltage of this element-
The luminance characteristics are shown in the graph of FIG. In this device, high luminance of 1000 to 10,000 cd / m 2 was obtained at a low voltage of 10 V or less.

【0056】さらに、250 mA/cm2という高い電流密度で
駆動した時の輝度低下で評価した、素子の耐熱性試験の
結果を図5のグラフに示す。輝度低下の少ない極めて安
定した特性が得られた。 比較例1 陰極界面層を設けない他は実施例1と同様にして素子を
作製した。この素子の実施例1に準じて求めた発光特性
を表−2と図4のグラフに、高電流密度での駆動特性を
図5に示す。陰極界面層を有するものと比較して、素子
が高電圧化し、また耐久性の極めて低い結果となった。
FIG. 5 is a graph showing the result of a heat resistance test of the device, which was evaluated based on a decrease in luminance when driven at a high current density of 250 mA / cm 2 . Extremely stable characteristics with little decrease in luminance were obtained. Comparative Example 1 An element was produced in the same manner as in Example 1 except that the cathode interface layer was not provided. The emission characteristics of this device obtained according to Example 1 are shown in Table 2 and the graph of FIG. 4, and the driving characteristics at a high current density are shown in FIG. As compared with the device having the cathode interface layer, the voltage of the device was increased, and the durability was extremely low.

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【発明の効果】本発明の有機電界発光素子の陰極によれ
ば、低電圧において高輝度・高効率で発光させることが
可能となり、さらには高電流密度の駆動においても安定
であり、保存時の劣化の少ない素子を得ることができ
る。従って、本発明による有機電界発光素子はフラット
パネル・ディスプレイ(例えばOAコンピュータ用や壁
掛けテレビ)、車載表示素子、携帯電話表示や面発光体
としての特徴を生かした光源(例えば、複写機の光源、
液晶ディスプレイや計器類のバックライト光源)、表示
板、標識灯への応用が考えられ、その技術的価値は大き
いものである。
According to the cathode of the organic electroluminescent device of the present invention, it is possible to emit light with high luminance and high efficiency at a low voltage, and it is stable even when driven at a high current density. An element with little deterioration can be obtained. Therefore, the organic electroluminescent device according to the present invention can be used as a light source (for example, a light source of a copier, a light source of a copier,
It can be applied to liquid crystal displays and backlight sources for instruments, display panels, and sign lights, and its technical value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有機電界発光素子の一例を示した模式断面図。FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent device.

【図2】有機電界発光素子の別の例を示した模式断面
図。
FIG. 2 is a schematic sectional view showing another example of the organic electroluminescent device.

【図3】有機電界発光素子の更に別の例を示した模式断
面図。
FIG. 3 is a schematic sectional view showing still another example of the organic electroluminescent element.

【図4】実施例1及び比較例1における電圧−輝度特性
を表したグラフ。
FIG. 4 is a graph showing voltage-luminance characteristics in Example 1 and Comparative Example 1.

【図5】実施例1及び比較例1における素子の耐熱性試
験結果を表したグラフ。
FIG. 5 is a graph showing the results of a heat resistance test of the devices in Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 基板 2 陽極 3 有機発光層 3a 陽極バッファ層 3b 正孔輸送層 3c 電子輸送層 4 陰極界面層 5 陰極 Reference Signs List 1 substrate 2 anode 3 organic light emitting layer 3a anode buffer layer 3b hole transport layer 3c electron transport layer 4 cathode interface layer 5 cathode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、陽極、有機発光層、及び陰極
が順次積層されてなる有機電界発光素子であって、前記
陰極の有機発光層側の界面に接して、下記一般式(I)
で表わされる化合物を含有する陰極界面層を有すること
を特徴とする有機電界発光素子。 【化1】 (式中、R1 〜R8 は、各々、独立して水素原子、ハロ
ゲン原子、アルキル基、アラルキル基、アルケニル基、
シアノ基、アミノ基、アシル基、アルコキシカルボニル
基、カルボキシル基、アルコキシ基、ハロアルキル基、
水酸基、置換基を有していてもよい芳香族炭化水素環基
または置換基を有していてもよい芳香族複素環基を表
し、R1 〜R4 、R5 〜R8 はそれぞれ隣接する置換基
同士で環を形成してもよい。Xは酸素原子、硫黄原子、
またはNR9 基を表し、R9 は水素原子、アルキル基、
または置換基を有していてもよい芳香族炭化水素環基を
示し、Mはアルカリ金属原子を示す。)
1. An organic electroluminescent device comprising a substrate, on which an anode, an organic light-emitting layer, and a cathode are sequentially laminated, wherein the cathode is in contact with an interface on the organic light-emitting layer side, and has the following general formula (I):
An organic electroluminescent device having a cathode interface layer containing a compound represented by the formula: Embedded image (Wherein, R 1 to R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group,
Cyano group, amino group, acyl group, alkoxycarbonyl group, carboxyl group, alkoxy group, haloalkyl group,
Represents a hydroxyl group, an aromatic hydrocarbon ring group which may have a substituent or an aromatic heterocyclic group which may have a substituent, and R 1 to R 4 and R 5 to R 8 are each adjacent The substituents may form a ring. X is an oxygen atom, a sulfur atom,
Or an NR 9 group, wherein R 9 is a hydrogen atom, an alkyl group,
Alternatively, it represents an aromatic hydrocarbon ring group which may have a substituent, and M represents an alkali metal atom. )
【請求項2】 陰極界面層の膜厚が 0.3〜10nmの範囲内
にあることを特徴とする、請求項1記載の有機電界発光
素子。
2. The organic electroluminescent device according to claim 1, wherein the thickness of the cathode interface layer is in the range of 0.3 to 10 nm.
【請求項3】 陰極を形成する金属がアルミニウム、イ
ンジウム、マグネシウム、カルシウム、亜鉛、バナジウ
ム、クロム、およびスズから選ばれることを特徴とす
る、請求項1または2に記載の有機電界発光素子。
3. The organic electroluminescent device according to claim 1, wherein the metal forming the cathode is selected from aluminum, indium, magnesium, calcium, zinc, vanadium, chromium, and tin.
JP2000107478A 2000-04-10 2000-04-10 Organic electroluminescence device Expired - Fee Related JP3945123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000107478A JP3945123B2 (en) 2000-04-10 2000-04-10 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000107478A JP3945123B2 (en) 2000-04-10 2000-04-10 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2001291593A true JP2001291593A (en) 2001-10-19
JP3945123B2 JP3945123B2 (en) 2007-07-18

Family

ID=18620465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107478A Expired - Fee Related JP3945123B2 (en) 2000-04-10 2000-04-10 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP3945123B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214696B2 (en) 2002-12-19 2007-05-08 The Scripps Research Institute Compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
US7868033B2 (en) 2004-05-20 2011-01-11 Foldrx Pharmaceuticals, Inc. Compounds, compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
JP2014511832A (en) * 2011-03-24 2014-05-19 メルク パテント ゲーエムベーハー Organic ionic functional materials
EP2963696A1 (en) 2014-07-04 2016-01-06 Novaled GmbH Organic light-emitting diode (OLED) including an electron transport layer stack comprising different lithium compounds
EP2999019A1 (en) 2014-09-19 2016-03-23 Novaled GmbH Organic light-emitting diode including an electron transport layer stack comprising different lithium compounds and elemental metal
EP3002796A1 (en) 2014-10-01 2016-04-06 Novaled GmbH Organic light-emitting diode including an electron transport layer comprising a three component blend of a matrix compound and two lithium compounds
EP3035400A1 (en) 2014-12-17 2016-06-22 Novaled GmbH Organic light-emitting diode comprising electron transport layers with different matrix compounds
CN105712936A (en) * 2016-03-02 2016-06-29 吉林奥来德光电材料股份有限公司 Lithium compound with heterocyclic ligand and preparation method and application thereof
EP3093288A1 (en) 2015-05-12 2016-11-16 Novaled GmbH Organic light-emitting diode comprising different matrix compounds in the first and second electron transport layer
EP3147961A1 (en) 2015-09-28 2017-03-29 Novaled GmbH Organic electroluminescent device
EP3208861A1 (en) 2016-02-19 2017-08-23 Novaled GmbH Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled)
EP3369729A1 (en) 2017-03-02 2018-09-05 Novaled GmbH Fused 9-phenyl-acridine derivatives for use in an electronic device and display device
EP3406599A1 (en) 2017-05-23 2018-11-28 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3407401A1 (en) 2017-05-23 2018-11-28 Novaled GmbH Organic electronic device comprising an organic semiconductor layer and a device
EP3425692A1 (en) 2017-07-07 2019-01-09 Novaled GmbH Organic electroluminescent device comprising an electron injection layer with zero-valent metal
EP3470398A1 (en) 2017-10-13 2019-04-17 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3470412A1 (en) 2017-10-13 2019-04-17 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3483154A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine, fluorene and aryl groups and their use in organic electronic devices
EP3483157A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine group, fluorene-group and hetero-fluorene group
EP3483153A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine group, fluorene-group and aryl group and their use in organic electronic devices
EP3503240A1 (en) 2017-12-21 2019-06-26 Novaled GmbH Organic semiconductor layer
EP3502106A1 (en) 2017-12-21 2019-06-26 Novaled GmbH Triazine compounds substituted with bulky groups
EP3527557A1 (en) 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
EP3527558A1 (en) 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
EP3567039A1 (en) 2018-05-08 2019-11-13 Novaled GmbH N-heteroarylene compounds with low lumo energies
EP3598515A1 (en) 2018-07-18 2020-01-22 Novaled GmbH Compound and organic semiconducting layer, organic electronic device, display device and lighting device comprising the same
WO2020077710A1 (en) * 2018-10-19 2020-04-23 华中科技大学 Polymer-metal chelate cathode interface material and use thereof
EP3757100A1 (en) 2019-06-25 2020-12-30 Novaled GmbH Triazine compounds substituted with bulky groups
US11011708B2 (en) 2016-10-24 2021-05-18 Novaled Gmbh Electron transport layer stack for an organic light-emitting diode
EP3835295A1 (en) 2019-12-10 2021-06-16 Novaled GmbH Acridine compound and organic semiconducting layer, organic electronic device and display device comprising the same
US11145817B2 (en) 2016-04-12 2021-10-12 Novaled Gmbh Organic light emitting diode comprising an organic semiconductor layer
US11532801B2 (en) 2016-10-24 2022-12-20 Novaled Gmbh Organic electroluminescent device comprising a redox-doped electron transport layer and an auxiliary electron transport layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406382A (en) 2014-12-29 2017-11-28 陶氏环球技术有限责任公司 Composition and the display device that is produced from it of 2,3 disubstituted indoles as charge transport materials

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214696B2 (en) 2002-12-19 2007-05-08 The Scripps Research Institute Compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
US7214695B2 (en) 2002-12-19 2007-05-08 The Scripps Research Institute Compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
US7560488B2 (en) 2002-12-19 2009-07-14 The Scripps Research Institute Methods for treating transthyretin amyloid diseases
US8168663B2 (en) 2002-12-19 2012-05-01 The Scripps Research Institute Pharmaceutically acceptable salt of 6-carboxy-2-(3,5 dichlorophenyl)-benzoxazole, and a pharmaceutical composition comprising the salt thereof
US8653119B2 (en) 2002-12-19 2014-02-18 The Scripps Research Institute Methods for treating transthyretin amyloid diseases
US7868033B2 (en) 2004-05-20 2011-01-11 Foldrx Pharmaceuticals, Inc. Compounds, compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
US8338459B2 (en) 2004-05-20 2012-12-25 Foldrx Pharmaceuticals, Inc. Compounds, compositions and methods for stabilizing transthyretin and inhibiting transthyretin misfolding
JP2014511832A (en) * 2011-03-24 2014-05-19 メルク パテント ゲーエムベーハー Organic ionic functional materials
US9923152B2 (en) 2011-03-24 2018-03-20 Merck Patent Gmbh Organic ionic functional materials
EP2963696A1 (en) 2014-07-04 2016-01-06 Novaled GmbH Organic light-emitting diode (OLED) including an electron transport layer stack comprising different lithium compounds
WO2016001283A1 (en) 2014-07-04 2016-01-07 Novaled Gmbh Organic light-emitting diode (oled) including an electron transport layer stack comprising different lithium compounds
EP2999019A1 (en) 2014-09-19 2016-03-23 Novaled GmbH Organic light-emitting diode including an electron transport layer stack comprising different lithium compounds and elemental metal
EP3002796A1 (en) 2014-10-01 2016-04-06 Novaled GmbH Organic light-emitting diode including an electron transport layer comprising a three component blend of a matrix compound and two lithium compounds
WO2016096881A1 (en) 2014-12-17 2016-06-23 Novaled Gmbh Organic light-emitting diode comprising electron transport layers with different matrix compounds
EP3035400A1 (en) 2014-12-17 2016-06-22 Novaled GmbH Organic light-emitting diode comprising electron transport layers with different matrix compounds
EP3872074A1 (en) 2015-05-12 2021-09-01 Novaled GmbH Organic light-emitting diode comprising different matrix compounds in the first and second electron transport layer
EP3093288A1 (en) 2015-05-12 2016-11-16 Novaled GmbH Organic light-emitting diode comprising different matrix compounds in the first and second electron transport layer
EP3147961A1 (en) 2015-09-28 2017-03-29 Novaled GmbH Organic electroluminescent device
EP3208861A1 (en) 2016-02-19 2017-08-23 Novaled GmbH Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled)
WO2017140780A1 (en) 2016-02-19 2017-08-24 Novaled Gmbh Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled)
CN105712936A (en) * 2016-03-02 2016-06-29 吉林奥来德光电材料股份有限公司 Lithium compound with heterocyclic ligand and preparation method and application thereof
US11145817B2 (en) 2016-04-12 2021-10-12 Novaled Gmbh Organic light emitting diode comprising an organic semiconductor layer
US11532801B2 (en) 2016-10-24 2022-12-20 Novaled Gmbh Organic electroluminescent device comprising a redox-doped electron transport layer and an auxiliary electron transport layer
US11011708B2 (en) 2016-10-24 2021-05-18 Novaled Gmbh Electron transport layer stack for an organic light-emitting diode
EP3369729A1 (en) 2017-03-02 2018-09-05 Novaled GmbH Fused 9-phenyl-acridine derivatives for use in an electronic device and display device
WO2018158438A1 (en) 2017-03-02 2018-09-07 Novaled Gmbh Acridine compound for use in an electronic device and display device
WO2018215355A1 (en) 2017-05-23 2018-11-29 Novaled Gmbh Organic electronic device comprising an organic semiconductor layer and a device
EP4194442A1 (en) 2017-05-23 2023-06-14 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3407401A1 (en) 2017-05-23 2018-11-28 Novaled GmbH Organic electronic device comprising an organic semiconductor layer and a device
EP3406599A1 (en) 2017-05-23 2018-11-28 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
WO2018215348A1 (en) 2017-05-23 2018-11-29 Novaled Gmbh Organic electronic device comprising an organic semiconductor layer
EP3425692A1 (en) 2017-07-07 2019-01-09 Novaled GmbH Organic electroluminescent device comprising an electron injection layer with zero-valent metal
EP3470398A1 (en) 2017-10-13 2019-04-17 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3470412A1 (en) 2017-10-13 2019-04-17 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
WO2019072928A1 (en) 2017-10-13 2019-04-18 Novaled Gmbh Organic electronic device comprising an organic semiconductor layer
WO2019072932A1 (en) 2017-10-13 2019-04-18 Novaled Gmbh Organic electronic device comprising an organic semiconductor layer
WO2019072856A1 (en) 2017-10-13 2019-04-18 Novaled Gmbh Organic electronic device comprising an organic semiconductor layer
EP3483153A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine group, fluorene-group and aryl group and their use in organic electronic devices
EP3483157A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine group, fluorene-group and hetero-fluorene group
EP3483154A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine, fluorene and aryl groups and their use in organic electronic devices
WO2019121672A1 (en) 2017-12-21 2019-06-27 Novaled Gmbh Triazine compounds substituted with bulky groups
WO2019121664A1 (en) 2017-12-21 2019-06-27 Novaled Gmbh Organic semiconductor layer
EP3502106A1 (en) 2017-12-21 2019-06-26 Novaled GmbH Triazine compounds substituted with bulky groups
EP3503240A1 (en) 2017-12-21 2019-06-26 Novaled GmbH Organic semiconductor layer
EP3527558A1 (en) 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
EP3527557A1 (en) 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
WO2019215179A1 (en) 2018-05-08 2019-11-14 Novaled Gmbh N-heteroarylene compounds with low lumo energies
EP3567039A1 (en) 2018-05-08 2019-11-13 Novaled GmbH N-heteroarylene compounds with low lumo energies
WO2020016233A1 (en) 2018-07-18 2020-01-23 Novaled Gmbh Compound and organic semiconducting layer, organic electronic device, display device and lighting device comprising the same
EP3598515A1 (en) 2018-07-18 2020-01-22 Novaled GmbH Compound and organic semiconducting layer, organic electronic device, display device and lighting device comprising the same
WO2020077710A1 (en) * 2018-10-19 2020-04-23 华中科技大学 Polymer-metal chelate cathode interface material and use thereof
EP3757100A1 (en) 2019-06-25 2020-12-30 Novaled GmbH Triazine compounds substituted with bulky groups
WO2020260406A1 (en) 2019-06-25 2020-12-30 Novaled Gmbh Triazine compounds substituted with bulky groups
EP3835295A1 (en) 2019-12-10 2021-06-16 Novaled GmbH Acridine compound and organic semiconducting layer, organic electronic device and display device comprising the same
WO2021116225A1 (en) 2019-12-10 2021-06-17 Novaled Gmbh Acridine compound and organic semiconducting layer, organic electronic device and display device comprising the same

Also Published As

Publication number Publication date
JP3945123B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3945123B2 (en) Organic electroluminescence device
JP3855675B2 (en) Organic electroluminescence device
JP4023204B2 (en) Organic electroluminescence device
JP3972588B2 (en) Organic electroluminescence device
JP2001313179A (en) Organic electroluminescent element
JP2003031371A (en) Organic electroluminescent element and blue light emitting element
JP2002008860A (en) Organic electroluminescenct element
JPH11242996A (en) Organic electroluminescent element
JP2002100478A (en) Organic electroluminescence element and its method of manufacture
JP2002100482A (en) Organic electroluminescence element
JP2002056985A (en) Organic electroluminescent element and manufacturing method of the same
JP2001223084A (en) Organic electric field light emitting element
JP3978976B2 (en) Organic electroluminescence device
JPH09289081A (en) Organic electroluminous element
JPH10316658A (en) 4,4'-bis(n-carbazolyl) diphenylamine derivative and organic electroluminescent element produced by using the derivative
JP2000150169A (en) Organic electroluminescence element
JP2003026641A (en) Binaphthyl compound, method for producing the same and organic electroluminescent element
JP4006951B2 (en) Organic electroluminescent device and manufacturing method thereof
JP3750315B2 (en) Organic electroluminescence device
JP4135411B2 (en) Asymmetric 1,4-phenylenediamine derivative and organic electroluminescence device using the same
JP4906810B2 (en) Organic electroluminescent device using benzopyrrole compound
JPH10294179A (en) Organic electroluminescence element and luminescence material
JP2004327166A (en) Organic el device and its manufacturing method
JP3757583B2 (en) Organic electroluminescence device
JP3972584B2 (en) Organic electroluminescent device and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees