JPH08236154A - Nonaqueous solvent lithium secondary battery - Google Patents

Nonaqueous solvent lithium secondary battery

Info

Publication number
JPH08236154A
JPH08236154A JP7063497A JP6349795A JPH08236154A JP H08236154 A JPH08236154 A JP H08236154A JP 7063497 A JP7063497 A JP 7063497A JP 6349795 A JP6349795 A JP 6349795A JP H08236154 A JPH08236154 A JP H08236154A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7063497A
Other languages
Japanese (ja)
Inventor
Shinichi Tobishima
真一 鳶島
Keiichi Saito
景一 斉藤
Katsuya Hayashi
克也 林
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7063497A priority Critical patent/JPH08236154A/en
Publication of JPH08236154A publication Critical patent/JPH08236154A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a lithium secondary battery which has a long charge and discharge life and excellent stability by composing organic solvent of the mixed solution of a specific substance, and specifying the volume mixing ratio of the specific substance. CONSTITUTION: A lithium secondary battery is composed of a negative electrode 1 which is made of lithium or can charge and discharge the lithium, a positive electrode 3 which is mainly made of amorphous V2 O5 , and electrolyte which is prepared by dissolving at least one kind of lithium salt in organic solvent. In the lithium secondary battery, the mixed solvent of ethylene carbonate and propylene carbonate is used as the organic solvent. The volume mixing ratio of the ethylene carbonate is set to 5 to 35%. The nonaqueous lithium secondary battery being excellent in charge and discharge characteristics and safety is obtained, thereby.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム、又はリチウ
ムを放電及び充電可能な負極と正極、及び非水溶媒にリ
チウム塩を溶解した電解液を有するリチウム二次電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery having lithium or a negative electrode capable of discharging and charging lithium and a positive electrode, and an electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent.

【0002】[0002]

【従来の技術】リチウム二次電池は、従来市販されてい
る二次電池(例えば、鉛蓄電池、ニッケルカドミウム)
に比較して高エネルギー密度の電池として期待されてい
る。コイン型等の小型のリチウム二次電池は既に市販さ
れている。また、負極にリチウムイオンを含む炭素を、
正極にコバルト酸化物を使用する単三及び単三類似サイ
ズの二次電池が市販されているが、放電容量はニッケル
カドミウム電池より小さい。したがって、単5〜単1サ
イズの高エネルギーのリチウム二次電池はまだ、実用化
されていない。これは、主として、以下の2つの理由に
よる。第1の理由は、非水溶媒系電解液中でのリチウム
の充放電効率が低いことである。第2の理由は、電池の
大型化に伴う電池の安全性の低下という問題である。リ
チウム二次電池を大型化すると、電池を極端な高温での
二次電池として誤って使用した場合には、電池から大量
のガスが発生したり、極端な場合、発火、破裂の危険性
もある。このリチウム二次電池の安全性の問題は、正
極、負極及び電解液の組合せと密接な関係がある。リチ
ウムは高エネルギーの電池を実現可能であるが、一方、
リチウムの高い化学反応性は電池を非安全なものにする
危険性がある。リチウムと非水溶媒は熱力学的には反応
し、電解液の分解生成物は、通常、リチウム表面に残る
固体とガスである。この発熱反応はリチウムの融点(1
80℃)まで電池温度を上昇し得る。リチウムが溶融す
ると激しく電解液や正極と反応し、電池内部温度を更に
上昇させ、これらの発熱反応を加速するという悪循環に
なる。反応生成物の中には可燃性が高いものもある。更
に、電池は充放電を繰り返すと、より安全性が低下する
傾向がある。これは、リチウムの析出形態が平面になら
ず、表面積が増大し、充放電したリチウムの反応活性度
が増大しているためと解釈されている。したがって、リ
チウムの充放電効率が高い電解液を使用した場合、その
反面リチウムの反応活性度は高い危険性を有し、実用電
池に用いる電解液は安全性確保とリチウムの充放電効率
を高い次元で妥協させたものでなければならない。つま
り、単にリチウムの充放電効率が高い電解液では電池の
安全性が現実に確保できない危険性がある。もちろん、
電池の充放電性能及び安全性は上記のように、負極、正
極、電解液、すべての組合せが影響する。言い替える
と、正極に合せた実用的な最適電解液が必要となる。リ
チウムの充放電効率を向上させるため、種々の電解液が
現在まで検討されているが、その安全性については、ほ
とんど言及されていない。現時点で、最高のリチウムの
充放電効率を得るためには、2−メチルテトラヒドロフ
ラン(以下、2MeTHFと略記する)を溶媒成分とし
て含む電解液を使用することに可能性があると考えられ
る。例えば、2MeTHF単独溶媒を用いた電解液は高
いリチウムの充放電効率を示すことがリチウムの半セル
(正極はない)を用いた実験で報告されている〔米国特
許、第4118550号(1978)〕。また、エチレ
ンカーボネート(以下、ECと略記する)を2MeTH
Fに添加するとV2 5を正極に使用したリチウム電池
は長い充放電寿命を示す傾向があることも報告されてい
る〔米国特許、第4737424号(1988)〕。更
に、VO2 を正極に用いたリチウム電池の充放電にEC
/プロピレンカーボネート(以下、PCと略記する)/
2MeTHF(12.5/12.5/75)を使用した
電解液が効果的であることが報告されている〔米国特
許、第4965150号(1990)〕。しかし、2M
eTHFは、引火点が−11℃と低く、揮発性(沸点は
約80℃)で燃え易い。また、酸化され易く、爆発性の
過酸化物を作り易い。2MeTHFの大量使用はリチウ
ムの充放電効率を向上させるが、一方、電池の安全性を
低下させるという実用上の大きな問題点がある。
2. Description of the Related Art Lithium secondary batteries are secondary batteries that have hitherto been commercially available (for example, lead storage batteries, nickel cadmium).
It is expected as a battery with a higher energy density compared to. A small lithium secondary battery such as a coin type is already on the market. In addition, carbon containing lithium ions in the negative electrode,
AA and similar size secondary batteries using cobalt oxide for the positive electrode are commercially available, but the discharge capacity is smaller than nickel cadmium batteries. Therefore, a high energy lithium secondary battery of size AA to size A has not yet been put to practical use. This is mainly due to the following two reasons. The first reason is that the charge / discharge efficiency of lithium in the non-aqueous solvent electrolyte is low. The second reason is a problem that the safety of the battery is reduced as the battery becomes larger. If the lithium secondary battery is upsized, a large amount of gas may be generated from the battery if the battery is mistakenly used as a secondary battery at extremely high temperatures, or in extreme cases there is a risk of ignition or explosion. . The safety problem of the lithium secondary battery is closely related to the combination of the positive electrode, the negative electrode and the electrolytic solution. Lithium can realize high energy batteries, while
The high chemical reactivity of lithium risks making the battery unsafe. The lithium and the non-aqueous solvent react thermodynamically, and the decomposition products of the electrolytic solution are usually solids and gases remaining on the lithium surface. This exothermic reaction is due to the melting point of lithium (1
The battery temperature can be increased up to 80 ° C. When the lithium melts, it reacts violently with the electrolytic solution and the positive electrode, further raising the internal temperature of the battery and accelerating these exothermic reactions. Some reaction products are highly flammable. Further, when the battery is repeatedly charged and discharged, the safety tends to decrease. This is interpreted that the precipitation form of lithium is not flat, the surface area is increased, and the reactivity of charged and discharged lithium is increased. Therefore, when an electrolyte solution with high lithium charge / discharge efficiency is used, on the other hand, the reaction activity of lithium has a high risk, and the electrolyte solution used in a practical battery has a high level of safety and lithium charge / discharge efficiency. Must be a compromise. In other words, there is a danger that the safety of the battery cannot be actually ensured with an electrolyte solution having a high lithium charge / discharge efficiency. of course,
As described above, the charge / discharge performance and safety of the battery are affected by the negative electrode, the positive electrode, the electrolytic solution, and all combinations. In other words, a practical and optimum electrolytic solution suitable for the positive electrode is required. Various electrolytes have been studied so far in order to improve the charge / discharge efficiency of lithium, but almost no mention is made of their safety. At present, it is considered possible to use an electrolytic solution containing 2-methyltetrahydrofuran (hereinafter abbreviated as 2MeTHF) as a solvent component in order to obtain the highest lithium charge / discharge efficiency. For example, it has been reported in an experiment using a lithium half cell (no positive electrode) that an electrolyte solution using a single solvent of 2MeTHF exhibits high charge / discharge efficiency of lithium [US Pat. No. 4,118,550 (1978)]. . In addition, ethylene carbonate (hereinafter abbreviated as EC) is 2MeTH
It has also been reported that when added to F, a lithium battery using V 2 O 5 as a positive electrode tends to have a long charge / discharge life [US Pat. No. 4,737,424 (1988)]. Furthermore, for charging and discharging lithium batteries using VO 2 as a positive electrode, EC
/ Propylene carbonate (hereinafter abbreviated as PC) /
It has been reported that an electrolytic solution using 2MeTHF (12.5 / 12.5 / 75) is effective [US Pat. No. 4,965,150 (1990)]. However, 2M
eTHF has a low flash point of -11 ° C, is volatile (boiling point is about 80 ° C), and easily burns. In addition, it is easily oxidized and easily forms an explosive peroxide. Although a large amount of 2MeTHF improves the charge / discharge efficiency of lithium, it has a serious practical problem of reducing the safety of the battery.

【0003】一方、報告されている多くのリチウム二次
電池で電解液溶媒として、エステルとエステルの混合溶
媒であるECとPCの混合溶媒が提案されている。例え
ば、MoS2 やMnO2 を正極に用いたリチウム二次電
池等が例として挙げられる〔ジャーナル オブ パワー
ソーセス(Journal of Power Sources) 、第24巻、
第195〜206頁(1988)〕。ECとPCは高い
沸点(それぞれ、238及び241℃)と高い引火点
(160及び132℃)を有する。EC/PC混合溶媒
電解液では、EC混合量が多くなるほど、リチウムの充
放電効率も電解液の導電率も向上することが知られてい
る。しかし、ECの融点が36℃と高いため、−20℃
程度までの電池の使用を考慮すると、現実的にはEC混
合量には限界がある。このため、EC/PC混合電解液
を使用したリチウム二次電池はECの最大混合量である
50体積%、つまり、EC/PC(体積混合比、1:
1)を使用している。この混合比を使用することで現実
的に最大のリチウムの充放電効率を実現している。しか
し、非晶質のV2 5 正極を使用したリチウム二次電池
の場合は特殊事例であり、電池性能や安全性を検討した
結果、特にリチウムの充放電寿命に関しては、最適なE
C/PCの混合比は、上述のような一般的結果と違うこ
とを本発明者らは発見した。
On the other hand, in many reported lithium secondary batteries, a mixed solvent of EC and PC, which is a mixed solvent of ester and ester, has been proposed as an electrolytic solution solvent. For example, a lithium secondary battery using MoS 2 or MnO 2 as a positive electrode may be cited as an example [Journal of Power Sources, Vol. 24,
195-206 (1988)]. EC and PC have high boiling points (238 and 241 ° C, respectively) and high flash points (160 and 132 ° C). It is known that in the EC / PC mixed solvent electrolyte, the larger the amount of EC mixed, the higher the lithium charge / discharge efficiency and the higher the conductivity of the electrolyte. However, since the melting point of EC is as high as 36 ° C, -20 ° C
Considering the use of batteries up to a certain degree, the EC mixing amount is practically limited. Therefore, the lithium secondary battery using the EC / PC mixed electrolytic solution has a maximum EC mixing amount of 50% by volume, that is, EC / PC (volume mixing ratio, 1:
1) is used. By using this mixing ratio, the maximum lithium charge / discharge efficiency is practically realized. However, in the case of a lithium secondary battery using an amorphous V 2 O 5 positive electrode, it is a special case, and as a result of examining the battery performance and safety, it was found that the optimum E
The present inventors have found that the C / PC mixing ratio is different from the general result described above.

【0004】[0004]

【発明が解決しようとする課題】本発明は、充放電寿命
が長く、かつ、安全性も良好なリチウム二次電池を実現
するための電解液を提供することを主な目的とするもの
である。
SUMMARY OF THE INVENTION The main object of the present invention is to provide an electrolytic solution for realizing a lithium secondary battery having a long charge / discharge life and good safety. .

【0005】[0005]

【課題を解決するための手段】本発明を概説すれば、本
発明はリチウム二次電池に関する発明であって、リチウ
ム又はリチウムを放電及び充電可能な負極と、主として
非晶質V2 5 からなる正極と、少なくとも1種のリチ
ウム塩を有機溶媒に溶解させた電解液を用いたリチウム
二次電池において、上記有機溶媒が、ECとPCの混合
溶媒を使用し、該ECの体積混合比が5〜35%である
ことを特徴とする。
The present invention is summarized as follows. The present invention relates to a lithium secondary battery, which comprises lithium or a negative electrode capable of discharging and charging lithium, and mainly amorphous V 2 O 5. And a lithium secondary battery using an electrolyte solution in which at least one lithium salt is dissolved in an organic solvent, the organic solvent is a mixed solvent of EC and PC, and the volume mixing ratio of the EC is It is characterized by being 5 to 35%.

【0006】本発明を以下、更に詳細に説明する。リチ
ウム二次電池用電解液には、高いリチウムの充放電効率
を有することが要求される。上述したように、リチウム
は電解液と反応し、リチウム表面に固体の膜を形成す
る。リチウムの充放電性能は、この膜の種々の性質に影
響される。例えば、膜の生成速度、膜のイオン伝導性、
電子伝導性、多孔度、機械的強度、柔軟性等の性質が影
響する。電解液とリチウムの反応に正極が影響しない一
般的な場合(例えば、前述したMoS2 やMnO
2 等)、EC/PC混合溶媒では、ECの混合量が多い
ほどリチウムの充放電性能が向上し、電池の充放電サイ
クル寿命も向上する。しかし、非晶質V2 5 を正極に
使用した場合、充放電の繰り返しに伴って、リチウム負
極上にバナジウム化合物が確認された。この理由は、V
2 5 あるいはそのリチウム化合物が一部電解液に溶解
し、リチウム負極と反応しているためと推定される。こ
の負極上のバナジウム量はEC量が多くなるほど大きく
なることも判明した。更に、EC/PC混合系からEC
を除くと(つまりPC単独)、EC/PC混合系よりも
充放電サイクル性能は劣化することも判った。つまり、
非晶質V2 5 を正極に使用したリチウム二次電池は特
殊であり、EC/PC混合系電解液を使用する場合、そ
の溶媒混合比の最適値は、一般に良く知られている1:
1ではなく、最適化されなければならないことを本発明
者らは発見した。
The present invention will be described in more detail below. An electrolyte for a lithium secondary battery is required to have high lithium charge / discharge efficiency. As described above, lithium reacts with the electrolytic solution to form a solid film on the surface of lithium. The charge / discharge performance of lithium is affected by various properties of this film. For example, the production rate of the membrane, the ionic conductivity of the membrane,
Properties such as electronic conductivity, porosity, mechanical strength, and flexibility influence. In the general case where the positive electrode does not affect the reaction between the electrolytic solution and lithium (for example, MoS 2 or MnO described above).
2 ) and the like, in an EC / PC mixed solvent, the larger the amount of EC mixed, the higher the lithium charge / discharge performance, and the longer the charge / discharge cycle life of the battery. However, when amorphous V 2 O 5 was used for the positive electrode, a vanadium compound was confirmed on the lithium negative electrode with repeated charging and discharging. The reason for this is V
It is presumed that 2 O 5 or its lithium compound was partially dissolved in the electrolytic solution and reacted with the lithium negative electrode. It was also found that the amount of vanadium on the negative electrode increased as the amount of EC increased. Furthermore, from EC / PC mixed system to EC
It was also found that the charging / discharging cycle performance was deteriorated as compared with the EC / PC mixed system when the above was excluded (that is, PC alone). That is,
A lithium secondary battery using amorphous V 2 O 5 as a positive electrode is special, and when an EC / PC mixed electrolyte is used, the optimum value of the solvent mixing ratio is generally well known 1:
We have found that it has to be optimized instead of 1.

【0007】本発明は種々の形状及びサイズのリチウム
電池を作製することが可能である。図1に、電池構造の
一例を示す。図1において、符号1は負極、2はセパレ
ータ、3は正極、4はセパレータ、5は電池缶、6は正
極タブ、7は負極タブ、8は安全弁、9は電池キャッ
プ、10は絶縁体リングを意味する。
The present invention is capable of producing lithium batteries of various shapes and sizes. FIG. 1 shows an example of a battery structure. In FIG. 1, reference numeral 1 is a negative electrode, 2 is a separator, 3 is a positive electrode, 4 is a separator, 5 is a battery can, 6 is a positive electrode tab, 7 is a negative electrode tab, 8 is a safety valve, 9 is a battery cap, and 10 is an insulator ring. Means

【0008】本発明で使用するリチウム塩は、例えば、
LiPF6 、LiAsF6 、LiSbF6 、LiClO
4 、LiCF3 SO3 、LiN(CF3 SO2 2 、L
iC(CF3 SO2 3 、LiCF3 CO2 、LiC4
9 SO2 、LiBF4 、LiAlCl4 、LiBrあ
るいはLiB(C6 5 4 から選ばれた少なくとも1
種の化合物を用いることができ、その濃度は0.5〜
2.0モル/リットル(M)の範囲で使用できる。この
溶質濃度範囲をはずれると、著しくリチウムの充放電性
能が劣化する。
The lithium salt used in the present invention is, for example,
LiPF 6, LiAsF 6, LiSbF 6 , LiClO
4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , L
iC (CF 3 SO 2 ) 3 , LiCF 3 CO 2 , LiC 4
At least 1 selected from F 9 SO 2 , LiBF 4 , LiAlCl 4 , LiBr, and LiB (C 6 H 5 ) 4.
A variety of compounds can be used, the concentration of which is 0.5-
It can be used in the range of 2.0 mol / liter (M). If the solute concentration is out of this range, the charge / discharge performance of lithium will be significantly deteriorated.

【0009】本発明のリチウム二次電池に使用する負極
としては、リチウム、又はリチウムを放電及び充電可能
な負極、すなわちリチウムを吸蔵放出可能な負極をその
概念内に含むリチウムを充放電可能な負極がある。これ
ら負極の例としては、金属リチウム、リチウムを充放電
可能な合金、あるいはリチウムを吸蔵放出可能な化合物
が挙げられる。リチウムを充放電可能な合金としては、
例えば、Li−Al合金、Li−Sn等が挙げられる。
リチウムイオンを吸蔵放出可能な化合物としては、各種
炭素材料やタングステン酸化物、ニオビウム酸化物等の
リチウムイオン挿入可能な化合物を挙げることができ
る。好ましい負極は、電極電位がリチウム金属に出来る
限り近く、出来る限り多くのリチウムイオンの挿入、脱
離が可能なものであり、結果として電池の高エネルギー
密度化が可能なものほど性能が優れていることになる。
As the negative electrode used in the lithium secondary battery of the present invention, lithium or a negative electrode capable of discharging and charging lithium, that is, a negative electrode capable of occluding and releasing lithium within its concept, capable of charging and discharging lithium. There is. Examples of these negative electrodes include metallic lithium, alloys capable of charging and discharging lithium, and compounds capable of inserting and extracting lithium. As an alloy that can charge and discharge lithium,
For example, Li-Al alloy, Li-Sn, etc. are mentioned.
Examples of the compound capable of inserting and extracting lithium ions include various carbon materials and compounds capable of inserting lithium ions such as tungsten oxide and niobium oxide. A preferable negative electrode has an electrode potential as close as possible to lithium metal and is capable of inserting and releasing as many lithium ions as possible, and as a result, a battery having a higher energy density is superior in performance. It will be.

【0010】本発明のリチウム二次電池に使用する正極
活物質は、非晶質V2 5 を主体とするものである。こ
の場合、充放電の繰り返し時に非晶質状態を安定化させ
るためにネットワークフォーマーと称される化合物を小
量添加することができ、特に、V2 5 −P2 5 、モ
ル比は95:5が良好な性能を示す。
The positive electrode active material used in the lithium secondary battery of the present invention is mainly composed of amorphous V 2 O 5 . In this case, a small amount of a compound called a network former can be added in order to stabilize the amorphous state during repeated charge and discharge, and in particular, V 2 O 5 —P 2 O 5 and the molar ratio are 95: 5 shows good performance.

【0011】[0011]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0012】実施例1 正極活物質に非晶質V2 5 −P2 5 (モル比95:
5)を使用し、負極活物質にリチウムを使用した図1に
示した円筒型電池を作製した。電池の充放電特性を比較
検討するために、以下に述べる8種類の電解液〔電解液
(A)〜(H)〕を使用した。 電解液(A):1M LiAsF6 −PC, 電解液(B):1M LiAsF6 −EC/PC(体積
混合比、10:90), 電解液(C):1M LiAsF6 −EC/PC(体積
混合比、30:70), 電解液(D):1M LiAsF6 −EC/PC(5
0:50), 電解液(E):1M LiAsF6 −EC/PC(体積
混合比、3:97), 電解液(F):1M LiAsF6 −EC/PC(体積
混合比、5:95), 電解液(G):1M LiAsF6 −EC/PC(体積
混合比、35:65), 電解液(H):1M LiAsF6 −EC/PC(体積
混合比、40:60). 電解液(A)、(D)、(E)及び(H)は、本発明の
効果を示すための参考例であり、電解液(D)は、通
常、最も優れたサイクル寿命を示すと考えられている。
電解液(B)、電解液(C)、電解液(F)及び電解液
(G)は本発明の電池の電解液である。電池の充放電試
験は、放電電流が600mA、充電電流が100mA
で、充電終止電圧が3.5V、充電終止電圧が1.8V
で行った。電池の充放電寿命は、下記の式(数1)で定
義されるFOM〔フィギュア オブ メリット(Figure
of Merit)〕で評価した。このFOMの値が大きい程、
電池の充放電サイクル性能は優れている。
Example 1 Amorphous V 2 O 5 -P 2 O 5 (molar ratio 95:
5) was used and lithium was used as the negative electrode active material to produce the cylindrical battery shown in FIG. In order to compare and examine the charge / discharge characteristics of the batteries, the following eight types of electrolytic solutions [electrolytic solutions (A) to (H)] were used. Electrolyte (A): 1M LiAsF 6 -PC , electrolyte (B): 1M LiAsF 6 -EC / PC ( volume mixing ratio 10:90), electrolyte (C): 1M LiAsF 6 -EC / PC ( volume Mixing ratio, 30:70), electrolyte (D): 1M LiAsF 6 -EC / PC (5
0:50), the electrolyte (E): 1M LiAsF 6 -EC / PC ( volume mixing ratio 3:97), electrolyte (F): 1M LiAsF 6 -EC / PC ( volume mixing ratio, 5:95) , Electrolytic solution (G): 1M LiAsF 6 -EC / PC (volume mixing ratio, 35:65), electrolytic solution (H): 1M LiAsF 6 -EC / PC (volume mixing ratio, 40:60). The electrolytic solutions (A), (D), (E) and (H) are reference examples for showing the effects of the present invention, and the electrolytic solution (D) is generally considered to exhibit the best cycle life. Has been.
The electrolytic solution (B), the electrolytic solution (C), the electrolytic solution (F) and the electrolytic solution (G) are the electrolytic solution of the battery of the present invention. In the battery charge / discharge test, the discharge current is 600 mA and the charge current is 100 mA.
Then, the end-of-charge voltage is 3.5V, the end-of-charge voltage is 1.8V
I went in. The charge and discharge life of a battery is defined by the following formula (Equation 1): FOM [Figure of Merit (Figure
of Merit)]. The larger this FOM value is,
The charge / discharge cycle performance of the battery is excellent.

【0013】[0013]

【数1】FOM=〔積算放電容量〕/〔電池の仕込リチ
ウムの放電容量〕
[Formula 1] FOM = [cumulative discharge capacity] / [discharge capacity of charged lithium in battery]

【0014】FOMを評価する時、初期の放電容量の5
0%の容量に電池の放電容量が低下した充放電サイクル
数を電池の充放電寿命とした。これらのFOMの値は、
本明細書では、FOM−Rで比較検討した。FOM−R
とは、下記式(数2)で表される電解液(D)の値を1
とした場合のFOMの相対値である。
When evaluating FOM, the initial discharge capacity of 5
The number of charge / discharge cycles at which the discharge capacity of the battery decreased to 0% was defined as the charge / discharge life of the battery. The values of these FOMs are
In this specification, FOM-R was used for comparison. FOM-R
Is the value of the electrolytic solution (D) represented by the following formula (Equation 2) is 1
Is the relative value of FOM.

【0015】[0015]

【数2】FOM−R=〔注目している電解液のFOM
値〕/〔電解液(D)のFOM値〕
[Formula 2] FOM-R = [FOM of the electrolytic solution of interest
Value] / [FOM value of electrolyte (D)]

【0016】図2に示すように、本発明の電解液(EC
の体積混合比が5〜35%)は、比較例の電解液
(A)、電解液(D)、電解液(E)、電解液(H)に
比較して電池の充放電サイクル寿命が長く、優れた性能
を示すことがわかる。
As shown in FIG. 2, the electrolytic solution of the present invention (EC
The volume mixing ratio of 5 to 35%) has a longer charge / discharge cycle life of the battery than the electrolytic solutions (A), (D), (E) and (H) of the comparative examples. , It shows excellent performance.

【0017】実施例2 電池の熱安定性を検討するため、本発明の電解液(B)
及び電解液(C)を用いて実施例1と同様に作製した電
池の加熱試験を行った。電池の加熱試験は、上記の本発
明の電解液〔電解液(B)及び(C)〕を有する電池に
ついて行った。電池は130℃に加熱し、2時間、温度
を130℃に維持した。結果を表1に示す。負極にリチ
ウムを使用し、電解液として、上記電解液(D)と同一
のものを使用し、本実施例で使用した電池とほぼ同様の
電池構造を有するMoS2 を正極に使用した電池及びM
nO2 を正極に使用した電池について同様の実験を行っ
た結果の報告〔ジ エレクトロケミカル ソサイエテイ
(The Electrochemical Society)発行、米国アリゾナ州
フェニックスにおける第178回E.C.S.ミーティ
ングの拡張抄録(Extended Abstracts of 178th E.C.S.
Meeting, Phenix,Arizona)、第20頁(1991)〕
では、MoS2 やMnO2 電池では、この加熱試験で発
火若しくは激しい発煙が起こることが報告されている。
これに対して、本発明の電池では、表1に示すように、
異常な温度上昇、電圧低下、安全弁の開放、爆発、発火
等の危険な現象は何も見られなかった。これらの結果か
ら本発明の電池は実用上での安全性に優れることが判
る。
Example 2 In order to investigate the thermal stability of a battery, the electrolytic solution (B) of the present invention was used.
A heating test was performed on the battery prepared in the same manner as in Example 1 by using the electrolyte solution (C). The heating test of the battery was carried out on the battery having the above-mentioned electrolytic solution of the present invention [electrolytic solution (B) and (C)]. The cell was heated to 130 ° C and maintained at 130 ° C for 2 hours. The results are shown in Table 1. A battery in which lithium is used for the negative electrode, the same electrolytic solution as the above electrolytic solution (D) is used, and MoS 2 having a battery structure substantially similar to the battery used in this example is used for the positive electrode, and M
A report of the same experiment was carried out on a battery using nO 2 as the positive electrode [Published by The Electrochemical Society, published in The Electrochemical Society, 178th E. C. S. Extended Abstracts of 178th ECS
Meeting, Phenix, Arizona), p. 20 (1991)]
Have reported that MoS 2 and MnO 2 batteries ignite or violently smoke during this heating test.
On the other hand, in the battery of the present invention, as shown in Table 1,
No dangerous phenomena such as abnormal temperature rise, voltage drop, safety valve opening, explosion and ignition were observed. From these results, it is understood that the battery of the present invention has excellent practical safety.

【0018】[0018]

【表1】 表 1 ───────────────────────────────── 電解液 加熱試験の結果 ───────────────────────────────── (B) 安全弁開放せず、電圧降下なし、発火なし、破裂なし。 (C) 安全弁開放せず、電圧降下なし、発火なし、破裂なし。 ─────────────────────────────────[Table 1] Table 1 ───────────────────────────────── Results of electrolyte solution heating test ───── ──────────────────────────── (B) The safety valve does not open, there is no voltage drop, there is no ignition, and there is no explosion. (C) Safety valve did not open, no voltage drop, no ignition, no rupture. ──────────────────────────────────

【0019】実施例3 実施例1と同一の充放電条件で50回充放電した電解液
(B)及び(C)を使用した電池について、130℃の
加熱試験、及び21℃と55℃における電池の外部短絡
試験を行った。表2及び表3に結果を示す。
Example 3 A battery using the electrolytic solutions (B) and (C) charged and discharged 50 times under the same charge and discharge conditions as in Example 1, a heating test at 130 ° C., and a battery at 21 ° C. and 55 ° C. The external short circuit test was conducted. The results are shown in Tables 2 and 3.

【0020】[0020]

【表2】 表 2 ───────────────────────────────── 電解液 加熱試験の結果 ───────────────────────────────── (B) 安全弁開放せず、電圧降下なし、発火なし、破裂なし。 (C) 安全弁開放せず、電圧降下なし、発火なし、破裂なし。 ─────────────────────────────────[Table 2] Table 2 ───────────────────────────────── Electrolyte heating test results ───── ──────────────────────────── (B) The safety valve does not open, there is no voltage drop, there is no ignition, and there is no explosion. (C) Safety valve did not open, no voltage drop, no ignition, no rupture. ──────────────────────────────────

【0021】[0021]

【表3】 表 3 ───────────────────────────── 電解液 21℃及び55℃の外部短絡試験の結果 ───────────────────────────── (B) 安全弁開放せず、発火なし、破裂なし。 (C) 安全弁開放せず、発火なし、破裂なし。 ─────────────────────────────[Table 3] Table 3 ───────────────────────────── Electrolyte Results of external short circuit test at 21 ℃ and 55 ℃ ── ─────────────────────────── (B) Safety valve does not open, does not ignite, and does not burst. (C) The safety valve did not open, did not ignite, and did not burst. ─────────────────────────────

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
によれば、充放電特性及び安全性に優れた非水溶媒系リ
チウム二次電池を実現できる。
As is clear from the above description, according to the present invention, a non-aqueous solvent type lithium secondary battery excellent in charge / discharge characteristics and safety can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例として円筒型電池の構造を示した
図である。
FIG. 1 is a diagram showing a structure of a cylindrical battery as an example of the present invention.

【図2】電池の充放電寿命と電解液組成の関係を示した
図である。
FIG. 2 is a diagram showing the relationship between the charge / discharge life of a battery and the composition of an electrolytic solution.

【符号の説明】[Explanation of symbols]

1:負極、2:セパレータ、3:正極、4:セパレー
タ、5:電池缶、6:正極タブ、7:負極タブ、8:安
全弁、9:電池キャップ、10:絶縁体リング
1: Negative electrode, 2: Separator, 3: Positive electrode, 4: Separator, 5: Battery can, 6: Positive electrode tab, 7: Negative electrode tab, 8: Safety valve, 9: Battery cap, 10: Insulator ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山木 準一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Junichi Yamaki 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウム又はリチウムを放電及び充電可
能な負極と、主として非晶質V2 5 からなる正極と、
少なくとも1種のリチウム塩を有機溶媒に溶解させた電
解液を用いたリチウム二次電池において、上記有機溶媒
が、エチレンカーボネートとプロピレンカーボネートの
混合溶媒を使用し、該エチレンカーボネートの体積混合
比が5〜35%であることを特徴とするリチウム二次電
池。
1. A negative electrode capable of discharging and charging lithium or lithium, and a positive electrode mainly composed of amorphous V 2 O 5 .
In a lithium secondary battery using an electrolytic solution in which at least one kind of lithium salt is dissolved in an organic solvent, the organic solvent is a mixed solvent of ethylene carbonate and propylene carbonate, and the volume mixing ratio of the ethylene carbonate is 5 Lithium secondary battery characterized by being -35%.
【請求項2】 前記正極が非晶質V2 5 −P2 5
あることを特徴とする請求項1記載のリチウム二次電
池。
2. The lithium secondary battery according to claim 1, wherein the positive electrode is amorphous V 2 O 5 —P 2 O 5 .
【請求項3】 負極が、金属リチウム、リチウムを充放
電可能な合金、あるいはリチウムを吸蔵放出可能な化合
物であることを特徴とする請求項1又は2に記載のリチ
ウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the negative electrode is metallic lithium, an alloy capable of charging and discharging lithium, or a compound capable of inserting and extracting lithium.
【請求項4】 リチウム塩が、LiPF6 、LiAsF
6 、LiSbF6 、LiClO4 、LiCF3 SO3
LiN(CF3 SO2 2 、LiC(CF3
2 3 、LiCF3 CO2 、LiC4 9 SO2 、L
iBF4 、LiAlCl4 、LiBrあるいはLiB
(C6 5 4 から選ばれた少なくとも1種の化合物を
用いることを特徴とする請求項1〜3のいずれかに記載
のリチウム二次電池。
4. The lithium salt is LiPF 6 , LiAsF.
6 , LiSbF 6 , LiClO 4 , LiCF 3 SO 3 ,
LiN (CF 3 SO 2 ) 2 , LiC (CF 3 S
O 2 ) 3 , LiCF 3 CO 2 , LiC 4 F 9 SO 2 , L
iBF 4 , LiAlCl 4 , LiBr or LiB
The lithium secondary battery according to claim 1, wherein at least one compound selected from (C 6 H 5 ) 4 is used.
【請求項5】 負極としてリチウムを、正極活物質とし
て非晶質V2 5 −P2 5 を、電解液として、LiP
6 、LiAsF6 、LiSbF6 、LiClO4 、L
iCF3 SO3 、LiN(CF3 SO2 2 、LiC
(CF3 SO23 、LiCF3 CO2 、LiC4 9
SO2 、LiBF4 、LiAlCl4 、LiBrあるい
はLiB(C6 5 4 から選ばれた少なくとも1種の
リチウム塩を0.5〜2.0Mの濃度で、エチレンカー
ボネートの体積混合比が5〜35%のエチレンカーボネ
ートとプロピレンカーボネートの混合溶媒に溶解させた
ものを用いることを特徴とする請求項1〜4のいずれか
に記載のリチウム二次電池。
5. Lithium is used as a negative electrode, amorphous V 2 O 5 —P 2 O 5 is used as a positive electrode active material, and LiP is used as an electrolytic solution.
F 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , L
iCF 3 SO 3, LiN (CF 3 SO 2) 2, LiC
(CF 3 SO 2 ) 3 , LiCF 3 CO 2 , LiC 4 F 9
At least one lithium salt selected from SO 2 , LiBF 4 , LiAlCl 4 , LiBr, or LiB (C 6 H 5 ) 4 at a concentration of 0.5 to 2.0 M and a volume mixing ratio of ethylene carbonate of 5 to 5%. The lithium secondary battery according to any one of claims 1 to 4, wherein a lithium secondary battery dissolved in a mixed solvent of 35% ethylene carbonate and propylene carbonate is used.
JP7063497A 1995-02-28 1995-02-28 Nonaqueous solvent lithium secondary battery Pending JPH08236154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7063497A JPH08236154A (en) 1995-02-28 1995-02-28 Nonaqueous solvent lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7063497A JPH08236154A (en) 1995-02-28 1995-02-28 Nonaqueous solvent lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08236154A true JPH08236154A (en) 1996-09-13

Family

ID=13230948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7063497A Pending JPH08236154A (en) 1995-02-28 1995-02-28 Nonaqueous solvent lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08236154A (en)

Similar Documents

Publication Publication Date Title
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
US6482550B1 (en) Non-aqueous secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
US6153338A (en) Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
US20090081545A1 (en) HIGH CAPACITY AND HIGH RATE LITHIUM CELLS WITH CFx-MnO2 HYBRID CATHODE
JPH09171840A (en) Aromatic monomer series gas generating agent for protecting overcharge in nonaqueous lithium battery
JP2008527615A (en) Electrolyte for lithium ion secondary battery
JPH11149943A (en) Additive for elongation of charging and discharging life of rechargeable non-aqueous lithium battery
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
CA2041385A1 (en) Safety electrolyte solvent and electrochemical cells containing a safety electrolyte solvent
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP2970086B2 (en) Non-aqueous electrolyte battery
JP2002231306A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP2002289159A (en) Nonaqueous electrolyte secondary battery pack
US5270134A (en) Non-aqueous secondary lithium battery
JPH1154150A (en) Secondary battery having nonaqueous solvent electrolyte
JPH10144346A (en) Secondary battery containing nonaqueous solvent electrolytic solution
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP2003109659A (en) Nonaqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP4240422B2 (en) Organic electrolyte secondary battery
JPH08236154A (en) Nonaqueous solvent lithium secondary battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040301

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20040301

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050629

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050825

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

A711 Notification of change in applicant

Effective date: 20051214

Free format text: JAPANESE INTERMEDIATE CODE: A712

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060517

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091202

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091202

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101202

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101202

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111202

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20121202

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20121202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8