JPH0823139A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0823139A
JPH0823139A JP17595794A JP17595794A JPH0823139A JP H0823139 A JPH0823139 A JP H0823139A JP 17595794 A JP17595794 A JP 17595794A JP 17595794 A JP17595794 A JP 17595794A JP H0823139 A JPH0823139 A JP H0823139A
Authority
JP
Japan
Prior art keywords
inp
layer
semiconductor laser
substrate
ingaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17595794A
Other languages
Japanese (ja)
Inventor
Takahiro Nakamura
隆宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17595794A priority Critical patent/JPH0823139A/en
Publication of JPH0823139A publication Critical patent/JPH0823139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor laser on a p-InP substrate which operates with low threshold value and at high efficiency. CONSTITUTION:Relating to a semiconductor laser of double hetero structure (DH structure) which, on a zinc(Zn) doping p-type InP (p-InP) substrate 11, includes a p-InP clad layer, active layer, n-type InP (n-InP) clad layer, a p- InGaAs layer 11 or p-InP/p-InGaAs multi-layer film is inserted between a p-InP substrate 10 and p-InP clad layer 12, so that, diffusion of Zn from the p-InP substrate 10 to an InGaAsP active layer 13 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザに関し、
特に光通信システムの主構成要素となる半導体レーザに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser,
In particular, it relates to a semiconductor laser which is a main constituent element of an optical communication system.

【0002】[0002]

【従来の技術】光通信技術の進歩にともない、その適用
分野は基幹伝送系から、加入者系・LAN・データリン
ク等のシステムへ急速に広がりつつある。これらの分野
で用いられる半導体レーザは、さまざまな環境でかつ大
量に使われることから、耐環境性能に優れかつ低価格で
あることが要請されており、活発な研究開発が行われて
いる。その中でも、計算機や交換機における光配線用光
源として独立駆動が可能になるp形InP基板上の半導
体レーザアレイが注目されている(例えば、岡氏らによ
る電子情報通信学会技術研究報告 OQE92−168
1993年)。
2. Description of the Related Art With the progress of optical communication technology, its applicable fields are rapidly expanding from backbone transmission systems to subscriber systems, LANs, data links, and other systems. Since semiconductor lasers used in these fields are used in various environments and in large amounts, they are required to have excellent environmental resistance performance and low cost, and active research and development are being carried out. Among them, a semiconductor laser array on a p-type InP substrate that can be independently driven as a light source for optical wiring in a computer or an exchange is receiving attention (for example, Oka et al. Technical Report OQE 92-168).
1993).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高濃度
にZnドーピングされたp−InP基板上に図3に示す
レーザ構造を成長する場合、即ち、p−InP基板(1
0)上に、p−InPクラッド層(12)、InGaA
sP活性層(13)、n−InPクラッド層(14)を
成長後、ストライプ状のSiO2をマスクとしてウェッ
トエッチングによりメサストライプを形成し、マスクを
したままp−InP埋込層(17)、n−InP電流ブ
ロック層(18)、p−InP電流ブロック層(19)
を成長し、その後、マスクをエッチングし、n−InP
埋込層(20)、n+ −InGaAsコンタクト層(2
1)を成長し、n側電極(22)及びp側電極(23)
を形成したものの場合、p−InP基板(10)のZn
の活性化率が低いとインジウム・ガリウム・砒素・燐
(InGaAsP)活性層(13)内までZnが拡散
し、スロープ効率の低下や内部損失の増加等レーザ特性
を悪化させる要因となっていた(例えば、水落氏らによ
る第53回応用物理学会予稿集(18p−ZE−5)1
992年)。本発明はこの問題点を解決し、基板からの
Zn拡散を抑制し低しきい値で高効率な半導体レーザを
提供することにある。
However, when the laser structure shown in FIG. 3 is grown on the p-InP substrate heavily doped with Zn, that is, the p-InP substrate (1
0) on the p-InP clad layer (12), InGaA
After growing the sP active layer (13) and the n-InP clad layer (14), a mesa stripe is formed by wet etching using stripe-shaped SiO 2 as a mask, and the p-InP buried layer (17) is left with the mask. n-InP current blocking layer (18), p-InP current blocking layer (19)
And then etching the mask to remove n-InP
Buried layer (20), n + -InGaAs contact layer (2
1) is grown, and n-side electrode (22) and p-side electrode (23)
In the case of forming a p-InP substrate (10), Zn of
If the activation rate is low, Zn diffuses into the indium-gallium-arsenic-phosphorus (InGaAsP) active layer (13), which causes deterioration of laser characteristics such as a decrease in slope efficiency and an increase in internal loss ( For example, Proceedings of the 53rd Japan Society of Applied Physics (18p-ZE-5) by Mizuochi et al.
992). An object of the present invention is to solve this problem and to provide a highly efficient semiconductor laser having a low threshold value by suppressing Zn diffusion from the substrate.

【0004】[0004]

【課題を解決するための手段】本発明は、ドーパントと
して亜鉛(Zn)を用いたp形インジウム・燐(p−I
nP)基板上に、p−InPクラッド層、活性層、n形
InP(n−InP)クラッド層を有するダブルヘテロ
構造(DH構造)の半導体レーザにおいて、p−InP
基板とp−InPクラッド層の間にp形インジウム・ガ
リウム・砒素(p−InGaAs)層を挿入したことを
特徴とする半導体レーザである。また、本発明は、上記
半導体レーザのp−InP基板とp−InPクラッド層
の間に挿入する、p形インジウム・ガリウム・砒素(p
−InGaAs)層に換え、p−InP/p−InGa
Asの多層膜を挿入していることを特徴とする半導体レ
ーザである。また、本発明は、上記半導体レーザにおい
て、p形インジウム・ガリウム・砒素(p−InGaA
s)層が、(100)面をもつp形インジウム・燐(p
−InP)基板上にMOVPEを用いて形成されたZn
ドーピングp形インジウム・ガリウム・砒素(p−In
GaAs)層であることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention is a p-type indium phosphorus (p-I) using zinc (Zn) as a dopant.
In a double hetero structure (DH structure) semiconductor laser having a p-InP clad layer, an active layer, and an n-type InP (n-InP) clad layer on a (nP) substrate, p-InP
A semiconductor laser is characterized in that a p-type indium gallium arsenide (p-InGaAs) layer is inserted between a substrate and a p-InP clad layer. Further, the present invention provides a p-type indium gallium arsenide (p-type) which is inserted between the p-InP substrate and the p-InP clad layer of the semiconductor laser.
-InGaAs) layer instead of p-InP / p-InGa
The semiconductor laser is characterized in that a multilayer film of As is inserted. In addition, the present invention provides the above semiconductor laser, wherein p-type indium gallium arsenide (p-InGaA) is used.
The s) layer is a p-type indium phosphide (p) having a (100) plane.
-InP) Zn formed on the substrate using MOVPE
Doping p-type indium gallium arsenide (p-In
GaAs) layer.

【0005】[0005]

【作用】図4に、有機金属気相成長法(MOVPE)を
用いて成長温度625℃、成長圧力150Torr、周
期律表の5族原料と3族原料のモル比(5族/3族比)
100、成長速度1μm/hでZn濃度5×1018cm-3
のp−InP基板上に3時間InPに格子整合するIn
GaAsPを成長した場合のZn拡散速度のInGaA
sP組成依存性を示す。この図4から明らかなようにI
nPからInGaAsになるに従いZn拡散速度が減少
しInGaAsではInPの約1/3 になるものである。
従って本発明におけるように、ドーパントとしてZnを
用いたp−InP基板上に、p−InPクラッド層、活
性層、n−InPクラッド層からなるDH構造を有する
半導体レーザにおいて、p−InP基板とp−InPク
ラッド層の間にp−InGaAs層を挿入することによ
り基板からの拡散を抑制でき、低しきい値で高効率な半
導体レーザが実現できるものである。また、p−InP
/p−InGaAsの多層膜を用いて、基板からの拡散
を抑制でき、低しきい値で高効率な半導体レーザが実現
できるものである。
In FIG. 4, the growth temperature is 625 ° C., the growth pressure is 150 Torr, and the molar ratio of the Group 5 raw material and the Group 3 raw material of the periodic table (group 5/3 group ratio) is measured by using metal organic vapor phase epitaxy (MOVPE).
100, growth rate 1 μm / h, Zn concentration 5 × 10 18 cm −3
In lattice-matched to InP on p-InP substrate for 3 hours
InGaA of Zn diffusion rate when GaAsP is grown
The sP composition dependence is shown. As is clear from this FIG.
The Zn diffusion rate decreases from nP to InGaAs, and is about 1/3 of InP in InGaAs.
Therefore, as in the present invention, in a semiconductor laser having a DH structure including a p-InP clad layer, an active layer, and an n-InP clad layer on a p-InP substrate using Zn as a dopant, a p-InP substrate and a p-InP substrate are used. By inserting the p-InGaAs layer between the -InP clad layers, diffusion from the substrate can be suppressed, and a highly efficient semiconductor laser with a low threshold value can be realized. In addition, p-InP
Using a / p-InGaAs multilayer film, diffusion from the substrate can be suppressed, and a highly efficient semiconductor laser with a low threshold value can be realized.

【0006】[0006]

【実施例】本発明の実施例について図面を参照して説明
する。図1に本発明の実施例を示す。まず、(100)
面をもつZnドーピングp−InP基板(10)上に、
MOVPEを用いてZnドーピングp−InGaAs層
(p=7×1017cm-3)(11)を厚さ0.3μm、Z
nドーピングp−InPクラッド層(p=7×1017cm
-3)(12)を厚さ2.5μm、発光波長1.3μmの
バンドギャップを有するInGaAsP活性層(13)
を厚さ0.15μm、シリコン(Si)ドーピングn−
InPクラッド層(n=1×1018cm-3)(14)を厚
さ0.3μm、InGaAs層を厚さ0.1μm、それ
ぞれ連続的にエピタキシャル成長する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention. First, (100)
On a Zn-doped p-InP substrate (10) having a surface,
A Zn-doped p-InGaAs layer (p = 7 × 10 17 cm −3 ) (11) having a thickness of 0.3 μm and Z was formed by using MOVPE.
n-doped p-InP clad layer (p = 7 × 10 17 cm
-3 ) (12) having a thickness of 2.5 μm and an InGaAsP active layer (13) having a bandgap with an emission wavelength of 1.3 μm
With a thickness of 0.15 μm and silicon (Si) doping n−
An InP clad layer (n = 1 × 10 18 cm −3 ) (14) having a thickness of 0.3 μm and an InGaAs layer having a thickness of 0.1 μm are continuously epitaxially grown.

【0007】次に、CVD技術及びフォトグラフィーの
手法により、<011>方向に厚み約2000A、幅3
μmのSiO2 ストライプ状マスクを300μm間隔で
形成する。その後、化学エッチングによりInGaAs
層、n−InPクラッド層(14)、InGaAsP活
性層(13)、p−InPクラッド層(12)をメサス
トライプの高さが2.5μmになるようにエッチングす
る。更に、SiO2 ストライプ状マスクを残したまま、
メサストライプの凹部分にp−InP埋込層(p=7×
1017cm-3)(17)を厚さ0.2μm、n−InP電
流ブロック層(n=1×1018cm-3)(18)を厚さ1
μm、p−InP電流ブロック層(p=7×1017c
m-3)(19)を厚さ1μm、それぞれMOVPEを用
いて連続的に選択エピタキシャル成長する。
Next, by the CVD technique and the technique of photography, the thickness is about 2000 A and the width is 3 in the <011> direction.
A SiO 2 stripe-shaped mask of μm is formed at intervals of 300 μm. Then, InGaAs is chemically etched.
The layer, the n-InP cladding layer (14), the InGaAsP active layer (13), and the p-InP cladding layer (12) are etched so that the mesa stripe height is 2.5 μm. Furthermore, while leaving the SiO 2 stripe mask,
A p-InP buried layer (p = 7 ×) is formed in the recessed portion of the mesa stripe.
10 17 cm −3 ) (17) with a thickness of 0.2 μm, n-InP current blocking layer (n = 1 × 10 18 cm −3 ) (18) with a thickness of 1
μm, p-InP current blocking layer (p = 7 × 10 17 c
m -3 ) (19) having a thickness of 1 μm is continuously selectively epitaxially grown using MOVPE.

【0008】SiO2 ストライプ状マスクを弗化アンモ
ニウムにより除去し、次に、InGaAs層を除去す
る。その後、n−InP埋込層(n=1×1018cm-3
(20)を厚さ2μm、n+−InGaAsコンタクト
層(n=1×1019cm-3)(21)を厚さ0.3μm、
それぞれMOVPEを用いて連続的に成長する。その
後、全体の厚さが120μm程度になるまで研磨し、n
形半導体側にn側電極(22)、p形半導体基板側にP
側電極(23)をそれぞれ真空蒸着法により形成し、ア
ニーリングした後、個々の半導体レーザにへき開分離
し、全加工を終了し、図1に示す半導体レーザが出来上
がる。
The SiO 2 striped mask is removed with ammonium fluoride and then the InGaAs layer is removed. After that, an n-InP buried layer (n = 1 × 10 18 cm −3 )
(20) has a thickness of 2 μm, n + -InGaAs contact layer (n = 1 × 10 19 cm −3 ) (21) has a thickness of 0.3 μm,
Each is continuously grown using MOVPE. After that, polishing is performed until the total thickness becomes about 120 μm, and n
N-side electrode (22) on the p-type semiconductor side, P on the p-type semiconductor substrate side
The side electrodes (23) are respectively formed by a vacuum vapor deposition method, annealed, and then cleaved and separated into individual semiconductor lasers, and the whole processing is completed, and the semiconductor laser shown in FIG. 1 is completed.

【0009】このレーザを共振器長300μmで評価し
たところ、しきい値電流は平均3mA、スロープ効率は
平均0.35W/Aであった。この結果は図3に示す従
来型半導体レーザによる結果に比べ改善されており、本
発明を用いることにより、素子特性が向上することが確
認された。
When this laser was evaluated with a cavity length of 300 μm, the threshold current was 3 mA on average and the slope efficiency was 0.35 W / A on average. This result is improved as compared with the result by the conventional semiconductor laser shown in FIG. 3, and it was confirmed that the device characteristics are improved by using the present invention.

【0010】また、図1に示す本発明の半導体レーザ及
び図3に示す従来型の半導体レーザについて、二次イオ
ン質量分析法(SIMS)によりZn濃度プロファイル
を分析した結果を図2に示す。図2は、縦軸にZn濃度
(cm-3)、横軸に表面からの距離(μm)が示され、横
軸には、n−InPクラッド層、InGaAsP活性
層、p−InPクラッド層、及びp−InGaAs層、
p−InP基板のそれぞれの層が示しているものであ
る。従来型半導体レーザの場合、点線で示したp−In
GaAs層無しのように、基板からのZnがInGaA
sP活性層(13)まで拡散しているのに対し、本発明
による半導体レーザでは、実線で示したp−InGaA
s層有りのように、p−InGaAs層(11)でZn
拡散が阻止されているのが分かる。以上のように本発明
による素子構造を用いれば、低しきい値、高効率なレー
ザが実現できる。
FIG. 2 shows the result of analyzing the Zn concentration profile of the semiconductor laser of the present invention shown in FIG. 1 and the conventional semiconductor laser shown in FIG. 3 by secondary ion mass spectrometry (SIMS). In FIG. 2, the vertical axis represents Zn concentration (cm −3 ), the horizontal axis represents the distance from the surface (μm), and the horizontal axis represents the n-InP clad layer, InGaAsP active layer, p-InP clad layer, And a p-InGaAs layer,
The respective layers of the p-InP substrate are shown. In the case of a conventional semiconductor laser, p-In shown by a dotted line
Zn from the substrate is InGaA as if there were no GaAs layer.
In the semiconductor laser according to the present invention, the p-InGaA shown by the solid line is diffused while the sP active layer (13) is diffused.
As with the s layer, Zn is used in the p-InGaAs layer (11).
You can see that the diffusion has been stopped. As described above, by using the device structure according to the present invention, a low threshold and highly efficient laser can be realized.

【0011】[0011]

【発明の効果】以上説明したように、本発明の半導体レ
ーザ構造を用いれば、基板からのZn拡散がp−InG
aAs層で阻止されInGaAsP活性層まで及ばない
ため、低しきい値で高効率な半導体レーザが実現できる
という効果を奏するものである。即ちp形p型InP基
板上にp−InPクラッド層、活性層、n−InPクラ
ッド層からなるDH構造を成長する場合、基板から活性
化されていないZnが拡散し、活性層にまで影響を及ぼ
し、レーザ特性を劣化させる。一方、p形InP基板と
p−InPクラッド層の間に、Znの拡散定数がInP
よりも小さいInGaAs層或いはInP/InGaA
s多層膜を挿入することにより、基板からのZnの拡散
を抑制でき、p基板上でも良好なレーザ特性が得られる
ものである。
As described above, when the semiconductor laser structure of the present invention is used, Zn diffusion from the substrate is p-InG.
Since it is blocked by the aAs layer and does not reach the InGaAsP active layer, it has the effect of realizing a highly efficient semiconductor laser with a low threshold value. That is, when a DH structure including a p-InP clad layer, an active layer, and an n-InP clad layer is grown on a p-type p-type InP substrate, unactivated Zn diffuses from the substrate and affects the active layer. Influences and deteriorates the laser characteristics. On the other hand, the diffusion constant of Zn between the p-type InP substrate and the p-InP clad layer is InP.
Smaller InGaAs layer or InP / InGaA
By inserting the s multilayer film, diffusion of Zn from the substrate can be suppressed, and good laser characteristics can be obtained even on the p substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す半導体レーザの断面構
造図である。
FIG. 1 is a sectional structural view of a semiconductor laser showing an embodiment of the present invention.

【図2】 本発明の半導体レーザ及び従来の半導体レー
ザの表面から深さ方向のZn濃度をSIMS分析により
測定した結果を示す図である。
FIG. 2 is a diagram showing the results of measuring the Zn concentration in the depth direction from the surface of the semiconductor laser of the present invention and the conventional semiconductor laser by SIMS analysis.

【図3】 従来の半導体レーザの断面構造図である。FIG. 3 is a sectional structural view of a conventional semiconductor laser.

【図4】 InPに格子整合するInGaAsP組成に
よるZn拡散距離依存性を示す図である。
FIG. 4 is a diagram showing the Zn diffusion length dependence of the InGaAsP composition that is lattice-matched to InP.

【符号の説明】[Explanation of symbols]

10 p−InP基板 11 p−InGaAs層 12 p−InPクラッド層 13 InGaAsP活性層 14 n−InPクラッド層 17 p−InP埋込層 18 n−InP電流ブロック層 19 p−InP電流ブロック層 20 n−InP埋込層 21 n+−InGaAsコンタクト層 22 n側電極 23 p側電極10 p-InP substrate 11 p-InGaAs layer 12 p-InP clad layer 13 InGaAsP active layer 14 n-InP clad layer 17 p-InP buried layer 18 n-InP current block layer 19 p-InP current block layer 20 n- InP buried layer 21 n + -InGaAs contact layer 22 n-side electrode 23 p-side electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ドーパントとして亜鉛(Zn)を用いた
p形インジウム・燐(p−InP)基板上に、p−In
Pクラッド層、活性層、n形InP(n−InP)クラ
ッド層を有するダブルヘテロ構造(DH構造)の半導体
レーザにおいて、p−InP基板とp−InPクラッド
層の間にp形インジウム・ガリウム・砒素(p−InG
aAs)層を挿入したことを特徴とする半導体レーザ。
1. A p-In on a p-type Indium-Phosphorus (p-InP) substrate using zinc (Zn) as a dopant.
In a double hetero structure (DH structure) semiconductor laser having a P clad layer, an active layer, and an n-type InP (n-InP) clad layer, a p-type indium gallium Arsenic (p-InG
A semiconductor laser having an aAs) layer inserted therein.
【請求項2】 請求項1に記載のp−InP基板とp−
InPクラッド層の間に挿入する、p形インジウム・ガ
リウム・砒素(p−InGaAs)層に換え、p−In
P/p−InGaAsの多層膜を挿入することを特徴と
する半導体レーザ。
2. A p-InP substrate according to claim 1 and a p-InP substrate.
Instead of a p-type indium gallium arsenide (p-InGaAs) layer inserted between the InP clad layers, p-In
A semiconductor laser comprising a P / p-InGaAs multilayer film.
JP17595794A 1994-07-05 1994-07-05 Semiconductor laser Pending JPH0823139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17595794A JPH0823139A (en) 1994-07-05 1994-07-05 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17595794A JPH0823139A (en) 1994-07-05 1994-07-05 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0823139A true JPH0823139A (en) 1996-01-23

Family

ID=16005219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17595794A Pending JPH0823139A (en) 1994-07-05 1994-07-05 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0823139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276330B1 (en) * 1996-12-21 2000-12-15 이구택 The manufacturing method for high magnetic density oriented electric steel sheet with magnetic properties
JP2005209909A (en) * 2004-01-23 2005-08-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical element and its manufacturing method
DE102010014112B4 (en) * 2009-06-15 2012-06-21 Mitsubishi Electric Corp. Optical semiconductor element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126692A (en) * 1988-11-07 1990-05-15 Mitsubishi Electric Corp Semiconductor laser device
JPH02154472A (en) * 1988-12-06 1990-06-13 Nec Corp Semiconductor modulation doping structure
JPH0377391A (en) * 1989-08-21 1991-04-02 Fujitsu Ltd Semiconductor laser
JPH05259577A (en) * 1992-03-11 1993-10-08 Hitachi Ltd Semiconductor multilayer structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126692A (en) * 1988-11-07 1990-05-15 Mitsubishi Electric Corp Semiconductor laser device
JPH02154472A (en) * 1988-12-06 1990-06-13 Nec Corp Semiconductor modulation doping structure
JPH0377391A (en) * 1989-08-21 1991-04-02 Fujitsu Ltd Semiconductor laser
JPH05259577A (en) * 1992-03-11 1993-10-08 Hitachi Ltd Semiconductor multilayer structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276330B1 (en) * 1996-12-21 2000-12-15 이구택 The manufacturing method for high magnetic density oriented electric steel sheet with magnetic properties
JP2005209909A (en) * 2004-01-23 2005-08-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical element and its manufacturing method
DE102010014112B4 (en) * 2009-06-15 2012-06-21 Mitsubishi Electric Corp. Optical semiconductor element

Similar Documents

Publication Publication Date Title
US6989550B2 (en) Distributed feedback semiconductor laser equipment employing a grating
EP0959540B1 (en) Semiconductor laser having effective output increasing function
US7405421B2 (en) Optical integrated device
US5470785A (en) Method of manufacturing buried heterostructure semiconductor laser
US5847415A (en) Light emitting device having current blocking structure
EP0544439A1 (en) Article comprising a strained layer quantum well laser
JP4057802B2 (en) Semiconductor optical device
US4948753A (en) Method of producing stripe-structure semiconductor laser
US5257276A (en) Strained layer InP/InGaAs quantum well laser
US7305017B2 (en) Semiconductor optical device
US5936990A (en) Semiconductor laser
US6552358B2 (en) High power single mode laser and method of fabrication
US5222091A (en) Structure for indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor
JPH0823139A (en) Semiconductor laser
EP0604965B1 (en) Semiconductor laser having an A1GaInP cladding layer
Ishikawa et al. V‐grooved substrate buried heterostructure InGaAsP/InP laser by one‐step epitaxy
US20030062517A1 (en) Semiconductor device with current confinement structure
US20050008053A1 (en) Complex coupled single mode laser with dual active region
JPH05218585A (en) Semiconductor light emitting device
US6686217B2 (en) Compound semiconductor device manufacturing method
JP2006295040A (en) Optical semiconductor device, its manufacturing method, and optical communication equipment
JP2956255B2 (en) Method for manufacturing ridge waveguide semiconductor laser
JP2554192B2 (en) Semiconductor laser manufacturing method
JP2708949B2 (en) Method of manufacturing semiconductor laser device
JPH1140897A (en) Semiconductor laser element and its manufacture