JPH05259577A - Semiconductor multilayer structure - Google Patents

Semiconductor multilayer structure

Info

Publication number
JPH05259577A
JPH05259577A JP4052229A JP5222992A JPH05259577A JP H05259577 A JPH05259577 A JP H05259577A JP 4052229 A JP4052229 A JP 4052229A JP 5222992 A JP5222992 A JP 5222992A JP H05259577 A JPH05259577 A JP H05259577A
Authority
JP
Japan
Prior art keywords
layer
inp
concentration
ingaasp
multilayer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4052229A
Other languages
Japanese (ja)
Inventor
Tomonobu Tsuchiya
朋信 土屋
Takeshi Taniwatari
剛 谷渡
Toshihiro Kono
敏弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4052229A priority Critical patent/JPH05259577A/en
Publication of JPH05259577A publication Critical patent/JPH05259577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To keep carrier concentration constant with excellent controllability, on a P-InP layer or a P-InP substrate of high concentration. CONSTITUTION:A semiconductor multilayer structure is constituted as follows; an InGaAsP layer 2 as a stopper layer for Zn is introduced in the interface between a Zn high concentration layer and a Zn low concentration layer or in a P-InP buffer layer 3. Thereby diffusion of Zn can be restrained by the InGaAsP layer 2, and the carrier concentration can be kept constant with excellent controllability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光素子に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device.

【0002】[0002]

【従来の技術】従来、高濃度(1E18以上)のp−I
nP基板上に成長した半導体多層膜、及び高濃度のp−
InP成長層を含む半導体多層膜では、Znの拡散によ
るキャリア濃度の変化が問題であった。
2. Description of the Related Art Conventionally, high concentration (1E18 or more) p-I
A semiconductor multilayer film grown on an nP substrate and a high concentration p-
In the semiconductor multilayer film including the InP growth layer, the change in carrier concentration due to Zn diffusion has been a problem.

【0003】高濃度(1E18以上)のp−InP基板
上に成長した素子例は、アイイーイーイー ジャーナル
オブ クァンタム エレクトロニクス 第26巻 第
9号(IEEE JOURNAL OF QUANTUM ELECTRONICS.vol.2
6 No.9),pp1460(1990)に記載されて
いるように、p−InPバッファ層の膜厚を3μmと厚
くした例がある。またZnの拡散についてはジャパニー
ズ ジャーナル オブアプライド フィジックス 第2
8巻 第10号(JAPANESE JOURNAL OF APPLIEDPHYSICS
vol.28,No.10),pp1700(1989)等に
述べられている。
An example of a device grown on a high-concentration (1E18 or more) p-InP substrate is the IEEE Journal of Quantum Electronics Vol.
6 No. 9), pp1460 (1990), there is an example in which the film thickness of the p-InP buffer layer is increased to 3 μm. Regarding the diffusion of Zn, Japanese Journal of Applied Physics No. 2
Volume 8 Issue 10 (JAPANESE JOURNAL OF APPLIED PHYSICS
vol.28, No.10), pp1700 (1989) and the like.

【0004】[0004]

【発明が解決しようとする課題】InP層中でのZnの
拡散定数は10-13〜10-12cm2/s と大きい、そのた
め、多層成長時,埋込成長時、及びその他のプロセス時
に基板(p基板)からエピ層,高濃度層から低濃度へと
Znの拡散が生じる。例えば、600℃,4×1018cm
-3,1時間では約1μm拡散する。この拡散は特にp−
InP基板上へのレーザ構造作製において、基板が4×
1018cm-3と高濃度であるのに対しp−InPバッファ
層は通常1〜8×1017cm-3と低く、多層後、もしくは
その後のプロセス等による基板からの拡散が問題とな
る。特に、半導体レーザではキャリア濃度が1E18を
超えると閾値が数倍〜無限大にまで大きくなることがあ
る。逆にこの拡散を考慮して、p−InPバッファ層の
キャリア濃度を下げる方法があるが、この場合、新たに
抵抗が高くなる問題が生じる。
The diffusion constant of Zn in the InP layer is as large as 10 -13 to 10 -12 cm 2 / s. Therefore, the substrate during the multi-layer growth, the buried growth, and other processes Zn is diffused from the (p substrate) to the epi layer and from the high concentration layer to the low concentration. For example, 600 ℃, 4 × 10 18 cm
-3 , 1 hour diffuses about 1 μm. This diffusion is p-
When manufacturing a laser structure on an InP substrate, the substrate is 4 ×
The p-InP buffer layer has a high concentration of 10 18 cm -3 , whereas the p-InP buffer layer has a low concentration of 1 to 8 × 10 17 cm -3 . Particularly, in a semiconductor laser, when the carrier concentration exceeds 1E18, the threshold value may increase from several times to infinity. On the contrary, there is a method of lowering the carrier concentration of the p-InP buffer layer in consideration of this diffusion, but in this case, there is a problem that the resistance is newly increased.

【0005】本発明の目的はこの様なZnの拡散を抑制
し、多層成長時,埋込成長時、及びその他のプロセス時
にも、キャリア濃度を正確に制御することにある。
An object of the present invention is to suppress such diffusion of Zn and accurately control the carrier concentration during multilayer growth, buried growth, and other processes.

【0006】[0006]

【課題を解決するための手段】前記課題で示したZn拡
散の抑制は、InPバッファ層中、もしくは高濃度層と
低濃度層の境界に4元層(InGaAsP)を入れるこ
とにより達成される。
The suppression of Zn diffusion shown in the above problem can be achieved by putting a quaternary layer (InGaAsP) in the InP buffer layer or at the boundary between the high concentration layer and the low concentration layer.

【0007】すなわち、本発明は4元層(InGaAs
P)をストッパ層として導入することにより、Znの拡
散を抑制しキャリア濃度を制御性良く一定に保つことが
できる。
That is, according to the present invention, the quaternary layer (InGaAs
By introducing P) as a stopper layer, diffusion of Zn can be suppressed and the carrier concentration can be kept constant with good controllability.

【0008】[0008]

【作用】上述のようにInP中のZnの拡散係数は大き
いため、キャリア濃度の増加、及び温度の上昇に伴い拡
散しやすい。一方、InGaAsP混晶中でのZnの拡
散係数は小さい(約1/2以下)ことから、Znの拡散
が抑制され、ストッパ層となる。
Since Zn in InP has a large diffusion coefficient as described above, it easily diffuses as the carrier concentration increases and the temperature rises. On the other hand, since the diffusion coefficient of Zn in the InGaAsP mixed crystal is small (about 1/2 or less), the diffusion of Zn is suppressed and it becomes a stopper layer.

【0009】[0009]

【実施例】<実施例1>図1は実施例1の半導体多層断
面図であり、4元層をp−InP基板とp−InPバッ
ファ層との境界に用いた例である。作製は有機金属気相
成長方法により、p−InP基板1(4E18)上にp−
InGaAsPストッパ層2(波長が1.10μm,ホ
ール濃度が3E17)を0.1μm膜厚成長した後、p
−InPバッファ層3(ホール濃度が3E17,膜厚が
1.0μm),アンドープInGaAsP活性層4(波長が1.
3μm,膜厚が0.2μm),n−InPクラッド層5
(電子濃度が2E18,膜厚が1.0μm),n−InG
aAsPキャップ層6(波長が1.18μm、膜厚が0.
3μm)を順次成長した。
EXAMPLE 1 FIG. 1 is a sectional view of a semiconductor multilayer according to Example 1, showing an example in which a quaternary layer is used as a boundary between a p-InP substrate and a p-InP buffer layer. Fabrication was carried out by p-InP substrate 1 (4E18) on the p-InP substrate 1 by metalorganic vapor phase epitaxy.
After the InGaAsP stopper layer 2 (wavelength 1.10 μm, hole concentration 3E17) was grown to a thickness of 0.1 μm, p
-InP buffer layer 3 (hole concentration 3E17, film thickness 1.0 μm), undoped InGaAsP active layer 4 (wavelength 1.
3 μm, film thickness 0.2 μm), n-InP clad layer 5
(Electron concentration is 2E18, film thickness is 1.0 μm), n-InG
aAsP cap layer 6 (wavelength 1.18 μm, film thickness 0.1.
3 μm) was sequentially grown.

【0010】図2にこの時の活性層から基板までのZn
の深さ方向の濃度変化を示す。尚、比較のために従来の
p−InGaAsPストッパ層の無い場合も示した。従
来のp−InPバッファ層のみの場合には基板からバッ
ファ層へZnが拡散し、p−InGaAsPストッパ
層、さらにはInGaAs活性層のキャリア濃度が変化
しているのに対し、本発明(InGaAsPストッパ
層)を用いた場合にはキャリア濃度を一定に保つことが
できた。これにより、例えば、半導体レーザにおいて、
キャリア濃度の増加(1E18以上)に伴う閾値の増加
(数倍〜∞)を防ぐことができた。
FIG. 2 shows Zn from the active layer to the substrate at this time.
Shows the change in concentration in the depth direction. For comparison, a case without a conventional p-InGaAsP stopper layer is also shown. In the case of the conventional p-InP buffer layer only, Zn diffuses from the substrate to the buffer layer, and the carrier concentration of the p-InGaAsP stopper layer and further the InGaAs active layer changes. When (layer) was used, the carrier concentration could be kept constant. Thereby, for example, in a semiconductor laser,
It was possible to prevent an increase in threshold value (several times to ∞) accompanying an increase in carrier concentration (1E18 or more).

【0011】<実施例2>図3は本発明による第2の実
施例の多層構造図である。本実施例では図1で示したI
nGaAsPストッパ層をInPバッファ層中に複数個
入れたものであり、キャリア濃度の低いp−InPバッ
ファ層(1E18程度からそれ以下)、もしくは高濃度
のp−InP基板(6E18以上)にはより効果的であ
る。
<Embodiment 2> FIG. 3 is a multilayer structure diagram of a second embodiment according to the present invention. In this embodiment, I shown in FIG.
A plurality of nGaAsP stopper layers are put in an InP buffer layer, which is more effective for a p-InP buffer layer having a low carrier concentration (about 1E18 to below) or a high concentration p-InP substrate (6E18 or more). Target.

【0012】<実施例3>図4は本発明による第3の実
施例の多層断面図である。本実施例はn基板上に成長し
た時p−InPクラッド層中のZnの拡散を考慮した例
である。作製はn−InP基板7(1〜2E18)上にn
−InPバッファ層8(電子濃度が2E18)を1.0μ
m 膜厚成長した後、InGaAs/InP多重量子井
戸(MQW)活性層9,p−InGaAsPストッパ層
10(波長が1.10μm,膜厚が0.05μm),p−
InPクラッド層11(ホール濃度が8E17,膜厚が
3.0μm),p−InGaAsPキャップ層12(波
長が1.18μm,膜厚が0.3μm)を順次成長した。
この場合、多層後のプロセスで700℃以上になる場
合、特に有効である。
<Third Embodiment> FIG. 4 is a cross-sectional view of a third embodiment of the present invention. The present embodiment is an example in which diffusion of Zn in the p-InP cladding layer is taken into consideration when grown on an n substrate. Fabrication is performed on the n-InP substrate 7 (1 to 2E18) by n
-InP buffer layer 8 (electron concentration is 2E18) 1.0 μm
After the growth of m film thickness, InGaAs / InP multiple quantum well (MQW) active layer 9, p-InGaAsP stopper layer 10 (wavelength 1.10 μm, film thickness 0.05 μm), p-
An InP clad layer 11 (hole concentration: 8E17, film thickness: 3.0 μm) and a p-InGaAsP cap layer 12 (wavelength: 1.18 μm, film thickness: 0.3 μm) were sequentially grown.
In this case, it is particularly effective when the temperature is 700 ° C. or higher in the process after the multilayer.

【0013】[0013]

【発明の効果】図2はInGaAsPストッパ層の効果
を示すZnの濃度変化であり、従来のp−InGaAs
Pストッパ層の無い場合には基板からバッファ層へZn
が拡散し、p−InPバッファ層、さらにはInGaA
s活性層のキャリア濃度が変化しているのに対し、本発
明(InGaAsPストッパ層)を用いた場合にはキャ
リア濃度を一定に保つことができた。これにより、例え
ば、半導体レーザにおいて、キャリア濃度の増加(1E
18以上)に伴う閾値の増加(数倍〜∞)を防ぐことが
でき、再現性良く低閾値のレーザを作製することができ
た。
FIG. 2 is a Zn concentration change showing the effect of the InGaAsP stopper layer.
If there is no P stopper layer, Zn from the substrate to the buffer layer
Diffuse into the p-InP buffer layer and further InGaA
While the carrier concentration of the s active layer was changed, the carrier concentration could be kept constant when the present invention (InGaAsP stopper layer) was used. Thus, for example, in a semiconductor laser, the carrier concentration increases (1E
It was possible to prevent the increase of the threshold value (several times to ∞) accompanying 18 or more), and it was possible to fabricate a low threshold laser with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の多層構造の断面図。FIG. 1 is a sectional view of a multilayer structure according to a first embodiment of the present invention.

【図2】Znの深さ方向の濃度変化の説明図。FIG. 2 is an explanatory diagram of a concentration change of Zn in a depth direction.

【図3】本発明の実施例2の多層構造の断面図。FIG. 3 is a sectional view of a multilayer structure according to a second embodiment of the present invention.

【図4】本発明の実施例3の多層構造の断面図。FIG. 4 is a sectional view of a multilayer structure according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…p−InP基板、2…p−InGaAsPストッパ
層、3…p−InPバッファ層、4…InGaAsP活
性層、5…n−InPクラッド層、6…n−InGaA
sPキャップ層。
1 ... p-InP substrate, 2 ... p-InGaAsP stopper layer, 3 ... p-InP buffer layer, 4 ... InGaAsP active layer, 5 ... n-InP clad layer, 6 ... n-InGaA
sP cap layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】p−InP基板上、もしくは高濃度のp−
InP層を含む半導体多層構造において、前記p−In
P層中、もしくは高濃度と低濃度層界面に不純物拡散抑
制層を有することを特徴とする半導体多層構造。
1. A p-InP substrate or a high concentration of p-
In a semiconductor multilayer structure including an InP layer, the p-In
A semiconductor multilayer structure having an impurity diffusion suppressing layer in a P layer or at an interface between a high concentration and a low concentration layer.
【請求項2】請求項1において、前記不純物拡散抑制層
がInGaAsP層である半導体多層構造。
2. The semiconductor multi-layer structure according to claim 1, wherein the impurity diffusion suppression layer is an InGaAsP layer.
JP4052229A 1992-03-11 1992-03-11 Semiconductor multilayer structure Pending JPH05259577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4052229A JPH05259577A (en) 1992-03-11 1992-03-11 Semiconductor multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052229A JPH05259577A (en) 1992-03-11 1992-03-11 Semiconductor multilayer structure

Publications (1)

Publication Number Publication Date
JPH05259577A true JPH05259577A (en) 1993-10-08

Family

ID=12908909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052229A Pending JPH05259577A (en) 1992-03-11 1992-03-11 Semiconductor multilayer structure

Country Status (1)

Country Link
JP (1) JPH05259577A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823139A (en) * 1994-07-05 1996-01-23 Nec Corp Semiconductor laser
JPH08130346A (en) * 1994-11-02 1996-05-21 Nec Corp Semiconductor laser device and manufacture thereof
JP2007059873A (en) * 2005-07-26 2007-03-08 Sharp Corp Semiconductor light emitting device and its manufacturing method
JP2011054787A (en) * 2009-09-02 2011-03-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and method for manufacturing semiconductor device
JP2015133381A (en) * 2014-01-10 2015-07-23 三菱電機株式会社 Method of manufacturing semiconductor device, semiconductor device, and system of manufacturing semiconductor device
JP2018006770A (en) * 2017-09-27 2018-01-11 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823139A (en) * 1994-07-05 1996-01-23 Nec Corp Semiconductor laser
JPH08130346A (en) * 1994-11-02 1996-05-21 Nec Corp Semiconductor laser device and manufacture thereof
JP2007059873A (en) * 2005-07-26 2007-03-08 Sharp Corp Semiconductor light emitting device and its manufacturing method
JP2011054787A (en) * 2009-09-02 2011-03-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and method for manufacturing semiconductor device
JP2015133381A (en) * 2014-01-10 2015-07-23 三菱電機株式会社 Method of manufacturing semiconductor device, semiconductor device, and system of manufacturing semiconductor device
JP2018006770A (en) * 2017-09-27 2018-01-11 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device

Similar Documents

Publication Publication Date Title
US9257815B1 (en) Optical semiconductor device
JPH05259577A (en) Semiconductor multilayer structure
US5270246A (en) Manufacturing method of semiconductor multi-layer film and semiconductor laser
US5805628A (en) Semiconductor laser
JPH07202317A (en) Manufacture of embedded structure semiconductor laser
JP3396323B2 (en) High resistance compound semiconductor layer, crystal growth method thereof, and semiconductor device using the high resistance compound semiconductor layer
JPH03250684A (en) Manufacture of mesa buried type optical semiconductor device
JP3047049B2 (en) Method of manufacturing buried semiconductor laser
JPS6021586A (en) Compound semiconductor device
JPH0964459A (en) Semiconductor device
JP2003198064A (en) Impurity diffusion control method in semiconductor hetero structure
JP2004109594A (en) Waveguide type semiconductor element
US6518076B2 (en) Semiconductor laser device and manufacturing method of the same
JPS6377186A (en) Manufacture of semiconductor laser
JPH05235481A (en) Semiconductor light emitting device
US6818925B2 (en) Semiconductor substrates and structures
JP2010027923A (en) Semiconductor optical element
JPH08222808A (en) Manufacture of semiconductor light-emitting device
JPS6390879A (en) Manufacture of semiconductor laser
JPH0897498A (en) Semiconductor device and semiconductor laser device
JPH04206586A (en) Semiconductor light emitting device and manufacture thereof
JPS63285991A (en) Semiconductor laser
JPH04103186A (en) Semiconductor laser and manufacture thereof
JPH06350188A (en) Semiconductor laser element
JPH0384985A (en) Variable wavelength semiconductor laser