JPH0823035A - Semiconductor element and manufacture thereof - Google Patents

Semiconductor element and manufacture thereof

Info

Publication number
JPH0823035A
JPH0823035A JP6155636A JP15563694A JPH0823035A JP H0823035 A JPH0823035 A JP H0823035A JP 6155636 A JP6155636 A JP 6155636A JP 15563694 A JP15563694 A JP 15563694A JP H0823035 A JPH0823035 A JP H0823035A
Authority
JP
Japan
Prior art keywords
oxide film
selective oxide
film
semiconductor device
buried layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6155636A
Other languages
Japanese (ja)
Inventor
Shizunori Oyu
静憲 大湯
Itsuki Sudo
敬己 須藤
Yoshifumi Kawamoto
佳史 川本
Osamu Okura
理 大倉
Takashi Nishida
高 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6155636A priority Critical patent/JPH0823035A/en
Publication of JPH0823035A publication Critical patent/JPH0823035A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve an information holding characteristic of DRAM elements by realizing element separation corresponding to refining and preventing an increase in electric field strength. CONSTITUTION:This semiconductor element has a structure (a) having a selective oxide film for element separation where a side near an active region 3 on a silicon substrate 1 is of a thin thickness t1 and a side far from it is of a thick thickness t2. The semiconductor element has also a structure (b) where the depth from the substrate surface of a high-concentration embedded layer 4 under the selective oxide film 2 has two kinds of d1, d2, besides the high- concentration embedded layer 4 near an active region where the source/drain electrodes 16 and the gate electrodes 17 are to be formed, has a deep depth d1 from the substrate surface. Further, the semiconductor device has a structure (c) where a layer under a thin film on the side near the active region of the selective oxide film 2 is a high-concentration embedded layer 5 of relatively low concentration and a layer under a thick film far from the active region of the selective oxide film 2 has a high-concentration embedded layer 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子およびその製
造方法に係り、特に微細化に対応できるように情報保持
特性の向上を図ったDRAM素子に好適な半導体素子お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device suitable for a DRAM device having improved information retention characteristics so as to cope with miniaturization and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、半導体素子の素子分離領域、例え
ばDRAM素子の素子分離領域は、特開平3−1556
64号公報に開示されるように、1種類の厚さの選択酸
化膜により構成されていた。また、素子分離領域の高濃
度埋込層は、塚本他”DRAM/16Mビット以降の性
能をマスク2枚減らしながら達成”(日経マイクロデバ
イス、1992年12月号、110頁から116頁)に
記載されるように、膜厚が1種類の選択酸化膜を通して
不純物のイオン打込みを行なうことにより形成してい
た。この際、高濃度埋込層の不純物濃度と深さは、選択
酸化膜下では寄生MOSトランジスタ動作が起こらない
ように、そして、活性領域ではソースとドレインがパン
チスルーしないように制御する。
2. Description of the Related Art Conventionally, a device isolation region of a semiconductor device, for example, a device isolation region of a DRAM device has been disclosed in Japanese Patent Laid-Open No. 3-1556.
As disclosed in Japanese Patent Laid-Open No. 64, it was composed of a selective oxide film having one kind of thickness. The high-density buried layer in the element isolation region is described in Tsukamoto et al. “Achieving performance after DRAM / 16 Mbit while reducing two masks” (Nikkei Microdevice, December 1992, pages 110 to 116). As described above, the impurity was ion-implanted through the selective oxide film having one film thickness. At this time, the impurity concentration and depth of the high-concentration buried layer are controlled so that the parasitic MOS transistor operation does not occur under the selective oxide film and the source and drain do not punch through in the active region.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述し
た特開平3−155664号公報に記載のような積み上
げ構造のメモリセルの場合、蓄積電極と基板とのコンタ
クトを取るためにコンタクト加工を必要とするが、この
コンタクト加工の合わせずれによって選択酸化膜の端部
が侵食され接合と高濃度埋込層との距離が極端に近くな
ってしまうことがある。これにより、ソース/ドレイン
接合の空乏層での電界強度がさらに大きくなり、電界に
依存するような接合リーク電流(具体的には、アバラン
シェ電流やツェナー電流)が急増して、情報保持時間が
短くなってしまう難点があった。
However, in the case of the memory cell having the stacked structure as described in the above-mentioned Japanese Patent Laid-Open No. 3-155664, contact processing is required to make contact between the storage electrode and the substrate. However, due to the misalignment of the contact processing, the edge of the selective oxide film may be eroded and the distance between the junction and the high-concentration buried layer may become extremely short. As a result, the electric field strength in the depletion layer of the source / drain junction is further increased, and the junction leak current (specifically, avalanche current or Zener current) that depends on the electric field is rapidly increased, and the information retention time is shortened. There was a problem that became.

【0004】また、前述した後者の、1種類の厚さの選
択酸化膜により素子分離領域が形成されるDRAM素子
の場合、高濃度埋込層の深さは選択酸化膜の形状を反映
して素子分離端で連続的に変化しており、ソース/ドレ
イン領域は比較的高濃度埋込層に近づいた構造となるた
め、素子の微細化が進むに伴いソース/ドレイン接合の
空乏層では非常に電界強度が大きくなっていた。これに
より、電界依存の接合リーク電流が大きくなり、情報保
持時間を長く保つことが困難となってきた。更に、ソー
ス/ドレイン接合の深さのバラツキや高濃度埋込層の濃
度および深さのバラツキによって接合リーク電流のバラ
ツキが大きくなり、このため情報保持時間のバラツキも
大きくなり、DRAM素子製造において再現性の確保が
困難であった。
Further, in the latter case of the aforementioned DRAM element in which the element isolation region is formed by a selective oxide film having one kind of thickness, the depth of the high-concentration buried layer reflects the shape of the selective oxide film. Since the source / drain region has a structure that is relatively close to the high-concentration buried layer because it changes continuously at the element separation edge, the depletion layer of the source / drain junction becomes very close as the device becomes finer. The electric field strength was high. As a result, the electric field-dependent junction leak current becomes large, and it becomes difficult to keep the information retention time long. Furthermore, variations in the junction leak current increase due to variations in the depth of the source / drain junctions and variations in the concentration and depth of the high-concentration buried layer, which in turn increases the variations in the information retention time, which can be reproduced in DRAM device manufacturing. It was difficult to secure sex.

【0005】以上のような電界強度の影響は、微細化が
進むにつれて半導体素子の深刻な問題となり、特に高集
積のDRAM素子製造の大きな阻害要因となる。従っ
て、微細化に対応でき、しかも電界強度の増加を防止で
きる構造のDRAM素子とその製造方法が所望されてい
る。
The influence of the electric field strength as described above becomes a serious problem for semiconductor devices as miniaturization progresses, and becomes a major impediment factor for manufacturing highly integrated DRAM devices. Therefore, there is a demand for a DRAM device having a structure capable of coping with miniaturization and preventing an increase in electric field strength, and a manufacturing method thereof.

【0006】そこで、本発明の目的は、上記従来の問題
点を解決し、微細化に対応した素子分離を実現してDR
AM素子に好適な情報保持特性の向上を図ることができ
る半導体素子及びその製造方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems and realize element isolation corresponding to miniaturization to realize DR.
It is an object of the present invention to provide a semiconductor element capable of improving the information holding characteristic suitable for an AM element and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る半導体素子は、素子分離用の選択酸化
膜を有する半導体素子において、選択酸化膜は少なくと
も2種類の膜厚を有すると共に、MOSトランジスタの
ソース/ドレイン領域およびゲート領域が形成される活
性領域に近い側の膜厚が薄く形成されていることを特徴
とするものである。すなわち、図1(a)を用いて説明
すれば、シリコン基板1表面に形成された素子分離用の
選択酸化膜2は、その膜厚がt1の薄い部分とt2の厚い
部分の少なくとも2種類を有し、かつ、MOSトランジ
スタのソース/ドレイン領域及びゲート領域が形成され
る活性領域3に近い方の膜厚が薄い構造を有する半導体
素子である。
In order to achieve the above object, a semiconductor element according to the present invention is a semiconductor element having a selective oxide film for element isolation, wherein the selective oxide film has at least two kinds of film thicknesses. In addition, it is characterized in that the film thickness on the side close to the active region where the source / drain region and the gate region of the MOS transistor are formed is thin. That is, if described with reference to FIG. 1 (a), selective oxide film 2 for element isolation formed in the surface of the silicon substrate 1, the film thickness of the thin portion and the thick portion of t 2 of t 1 of at least 2 It is a semiconductor element having a kind and a structure having a thin film thickness in a portion closer to an active region 3 where a source / drain region and a gate region of a MOS transistor are formed.

【0008】また、本発明に係る半導体素子は、高濃度
埋込層と素子分離用の選択酸化膜を有する半導体素子素
子において、高濃度埋込層の選択酸化膜下の部分は、基
板表面からの深さが少なくとも2種類の深さを有すると
共に、MOSトランジスタのソース/ドレイン領域およ
びゲート領域が形成される活性領域に近い側の前記深さ
が深くなるように形成すれば好適である。すなわち、図
1(b)を用いて説明すれば、選択酸化膜2の下には少
なくとも2種類の深さd1,d2を持つ高濃度埋込層4が
形成されていて、選択酸化膜2の下の、活性領域3に近
い方の基板1表面からの深さd1の方が深い構造を有す
る半導体素子Aである。尚、図1の(a)〜(c)にお
いて同一参照符号は同一構成部分を示し、参照符号17
はゲート電極、40はゲート酸化膜、41は低濃度ソー
ス/ドレイン領域である。
Further, the semiconductor element according to the present invention is a semiconductor element element having a high-concentration buried layer and a selective oxide film for element isolation, and the portion below the selective oxide film of the high-concentration buried layer is from the substrate surface. It is preferable that the depth is at least two kinds and the depth on the side close to the active region where the source / drain region and the gate region of the MOS transistor are formed is deep. That is, referring to FIG. 1B, a high-concentration buried layer 4 having at least two kinds of depths d 1 and d 2 is formed under the selective oxide film 2, and the selective oxide film 2 is formed. A semiconductor element A having a structure in which the depth d 1 from the surface of the substrate 1 under the active region 3 under 2 is deeper. 1 (a) to 1 (c), the same reference numerals indicate the same components, and reference numeral 17
Is a gate electrode, 40 is a gate oxide film, and 41 is a low concentration source / drain region.

【0009】上記半導体素子において、高濃度埋込層の
導電形はMOSトランジスタのソース/ドレイン領域の
導電形と反対導電形とすれば好適である。特に、上記半
導体素子はDRAM素子とすれば好適である。
In the above semiconductor device, it is preferable that the high-concentration buried layer has a conductivity type opposite to that of the source / drain regions of the MOS transistor. In particular, the semiconductor element is preferably a DRAM element.

【0010】或いは、本発明に係る半導体素子は、高濃
度埋込層と素子分離用の選択酸化膜を有する半導体素子
において、選択酸化膜は少なくとも2種類の膜厚を有
し、MOSトランジスタのソース/ドレイン領域および
ゲート領域が形成される活性領域に近い側の膜厚が薄く
形成されていると共に、高濃度埋込層の選択酸化膜下の
部分は基板表面からの高濃度埋込層の深さが少なくとも
2種類の深さを有し、高濃度埋込層の濃度は前記選択酸
化膜の厚い側よりも薄い側の下の方が低くなるように形
成してもよい。すなわち、図1(c)を用いて説明すれ
ば、膜厚が少なくとも2種類ある選択酸化膜2の下に、
高濃度埋込み層5,6の少なくとも2種類を有し、か
つ、活性領域3側に近い方の薄い選択酸化膜2の下の高
濃度埋込層5の濃度が低く、活性領域3から離れた厚い
選択酸化膜2の下部の高濃度埋込層6の濃度が高い構造
の半導体素子Bである。
Alternatively, the semiconductor element according to the present invention is a semiconductor element having a high-concentration buried layer and a selective oxide film for element isolation, wherein the selective oxide film has at least two types of film thickness, and the source of the MOS transistor is / The thickness of the side close to the active region where the drain region and the gate region are formed is thin, and the portion below the selective oxide film of the high-concentration buried layer is the depth of the high-concentration buried layer from the substrate surface. May have at least two types of depths, and the concentration of the high-concentration buried layer may be lower on the thin side than on the thick side of the selective oxide film. That is, to explain with reference to FIG. 1C, below the selective oxide film 2 having at least two kinds of film thickness,
It has at least two types of high-concentration buried layers 5 and 6, and the high-concentration buried layer 5 under the thin selective oxide film 2 closer to the active region 3 side has a low concentration and is separated from the active region 3. The semiconductor element B has a structure in which the high-concentration buried layer 6 below the thick selective oxide film 2 has a high concentration.

【0011】そして、本発明に係る半導体素子の製造方
法では、素子分離用の選択酸化膜を形成するために、シ
リコン窒化膜をマスクに第1の選択酸化を行い第1の厚
さの選択酸化膜を形成する工程1と、次いで、前記シリ
コン窒化膜の側壁にシリコン窒化膜を形成する工程2
と、再度シリコン窒化膜をマスクに第2の選択酸化を行
い第1の厚さよりも厚い第2の厚さの選択酸化膜を形成
する工程3とを有し、前記工程2と工程3を工程順に少
なくとも1回は行なうことを特徴とする。
In the method of manufacturing a semiconductor device according to the present invention, in order to form a selective oxide film for element isolation, a first selective oxidation is performed by using a silicon nitride film as a mask and a selective oxidation of a first thickness is performed. Step 1 of forming a film, and then Step 2 of forming a silicon nitride film on the sidewall of the silicon nitride film
And a step 3 in which the second selective oxidation is performed again using the silicon nitride film as a mask to form a selective oxide film having a second thickness which is thicker than the first thickness, and the steps 2 and 3 are performed. It is characterized in that it is performed at least once in order.

【0012】また、上記半導体素子の製造方法により形
成した少なくとも2種類の膜厚を有する選択酸化膜を通
して不純物イオン打込みを行ない高濃度埋込層を形成す
る工程を有すれば好適である。更に、上記不純物イオン
打込みは、少なくとも2種類の打込みエネルギと少なく
とも2種類の打込み量で行うことができる。特に、上記
半導体素子の製造方法において、半導体素子はDRAM
素子とすれば好適である。
It is also preferable to have a step of forming a high-concentration buried layer by implanting impurity ions through a selective oxide film having at least two types of film thickness formed by the method for manufacturing a semiconductor element. Furthermore, the impurity ion implantation can be performed with at least two types of implantation energy and at least two types of implantation amounts. In particular, in the method of manufacturing a semiconductor device described above, the semiconductor device is a DRAM.
It is suitable as an element.

【0013】すなわち、本発明に係る半導体素子の製造
方法を図2を用いて説明すれば、以下の通りである。同
図(a)に示すように、まず、シリコン基板7表面に薄
いシリコン酸化膜8を形成した後、選択酸化用のシリコ
ン窒化膜9を堆積し、これを加工した後、シリコン窒化
膜9をマスクにして膜厚t1の薄い仕様すなわち前記第
1の厚さの選択酸化膜10を形成し、次いで、同図
(b)に示すように、シリコン窒化膜9の側壁にシリコ
ン窒化膜11を形成して、同図(c)に示すように、シ
リコン窒化膜9,11をマスクに膜厚t2の厚い仕様す
なわち前記第2の厚さの選択酸化膜12を形成する。こ
こで、同図(b),(c)を工程順に少なくとも1回繰
り返せば、2種類以上の膜厚の選択酸化膜を形成でき
る。また、同図(d)に示すように、シリコン窒化膜
9、11を除去した後に、同図(e)に示すように、膜
厚がt1,t2の少なくとも2種類の選択酸化膜10、1
2を通して不純物イオン打込みを行なって、上記前者の
半導体素子Aに用いる高濃度埋込層13を形成する。
尚、この時、図3に示すように、膜厚が少なくとも2種
類の選択酸化膜10、12を通して、少なくとも2種類
の打込みエネルギで、少なくとも2種類の打込み量の不
純物イオン打込みを行なえば、上記後者の半導体素子B
に用いる高濃度埋込層14、15を形成できる。次に、
図2(f)に示すように、ゲート酸化膜21、ゲート電
極22、ソース/ドレイン層24、シリコン酸化膜2
3,25、及びソース/ドレイン層26を形成してMO
Sトランジスタを作製した後、通常の作製プロセスに従
って例えばDRAM素子を製造すればよい。
That is, the method of manufacturing a semiconductor device according to the present invention will be described below with reference to FIG. As shown in FIG. 3A, first, a thin silicon oxide film 8 is formed on the surface of the silicon substrate 7, a silicon nitride film 9 for selective oxidation is deposited, and after this is processed, the silicon nitride film 9 is removed. Using the mask as a mask, the selective oxide film 10 having a small thickness t 1 , that is, the first thickness is formed, and then, as shown in FIG. 2B, a silicon nitride film 11 is formed on the side wall of the silicon nitride film 9. Then, as shown in FIG. 3C, the silicon nitride films 9 and 11 are used as a mask to form a thick specification of the film thickness t 2 , that is, the selective oxide film 12 having the second thickness. Here, by repeating the steps (b) and (c) in the process order at least once, it is possible to form the selective oxide film having two or more kinds of film thickness. Further, as shown in FIG. 3D, after removing the silicon nitride films 9 and 11, at least two kinds of selective oxide films 10 having film thicknesses t 1 and t 2 are formed as shown in FIG. 1
Impurity ion implantation is performed through 2 to form the high-concentration buried layer 13 used for the former semiconductor element A.
At this time, as shown in FIG. 3, if at least two types of implantation energy are used to implant impurity ions through at least two types of selective oxide films 10 and 12 with at least two types of implantation energy, The latter semiconductor device B
The high-concentration buried layers 14 and 15 used for the can be formed. next,
As shown in FIG. 2F, the gate oxide film 21, the gate electrode 22, the source / drain layer 24, the silicon oxide film 2
3, 25, and source / drain layers 26 are formed to form MO
After manufacturing the S-transistor, for example, a DRAM element may be manufactured according to a normal manufacturing process.

【0014】[0014]

【作用】本発明に係る半導体素子によれば、選択酸化膜
が少なくとも2種類の膜厚を持ち、かつ、活性領域に近
い側ほど選択酸化膜の膜厚が薄く、活性領域から離れた
部分で選択酸化膜の膜厚を厚くした構成としたことによ
り、素子分離性能は厚い選択酸化膜部分によって確保で
き、選択酸化のときのバーズビークの伸びによる活性領
域の減少は薄い選択酸化膜の部分によって防止できる。
According to the semiconductor element of the present invention, the selective oxide film has at least two kinds of film thickness, and the film thickness of the selective oxide film is smaller on the side closer to the active region, and the selective oxide film is more distant from the active region. By making the thickness of the selective oxide film thick, element isolation performance can be secured by the thick selective oxide film portion, and the reduction of the active area due to the extension of the bird's beak during the selective oxidation is prevented by the thin selective oxide film portion. it can.

【0015】また、高濃度埋込層の選択酸化膜下に形成
される部分は、基板表面からの高濃度埋込層の深さが2
種類以上有り、活性領域に近い側ほど前記基板からの深
さを深く、活性領域から離れた部分で浅くなるように形
成したことにより、活性領域に形成されるソース/ドレ
イン層と高濃度埋込層との距離が離れるので接合の空乏
層の電界強度が小さくでき、かつ、厚い選択酸化膜下に
は埋込層の高濃度部分が接するので寄生MOSを動作し
にくくすることができる。
In the portion formed under the selective oxide film of the high concentration buried layer, the depth of the high concentration buried layer is 2 from the substrate surface.
There are more than one type, and the source / drain layer formed in the active region and the high-concentration buried region are formed by forming the depth from the substrate deeper on the side closer to the active region and shallower on the part farther from the active region. Since the distance from the layer is large, the electric field strength of the depletion layer of the junction can be reduced, and since the high concentration portion of the buried layer contacts under the thick selective oxide film, the parasitic MOS can be made difficult to operate.

【0016】更に、膜厚が2種類以上の選択酸化膜下に
高濃度埋込層が2種類以上存在し、かつ、活性領域に近
い側の薄い選択酸化膜下では高濃度埋込層の濃度が比較
的低く、活性領域から離れた側の厚い選択酸化膜下では
高濃度埋込層の濃度が高くなるように形成したことによ
り、薄い選択酸化膜下の高濃度埋込層は比較的濃度が低
いためソース/ドレイン層との間に形成される空乏層の
電界強度を低く保つことができると共に、厚い選択酸化
膜下の高濃度埋込層は濃度が高いため寄生MOS動作を
防止して素子分離性能を確保する。なお、厚い選択酸化
膜下の高濃度埋込層は、薄い選択酸化膜上に配線される
ゲート電極に電圧が印加されてもソースとドレインが電
気的に導通しないような濃度に設定しておく必要があ
る。
Further, there are two or more high-concentration buried layers under the selective oxide film having two or more kinds of film thickness, and the concentration of the high-concentration buried layer is under the thin selective oxide film near the active region. Is relatively low, and the high-concentration buried layer under the thick selective oxide film on the side away from the active region has a high concentration. Is low, the electric field strength of the depletion layer formed between the source / drain layers can be kept low, and the high-concentration buried layer under the thick selective oxide film has a high concentration to prevent parasitic MOS operation. Ensure element isolation performance. The high-concentration buried layer under the thick selective oxide film is set to a concentration such that the source and drain are not electrically connected even if a voltage is applied to the gate electrode wired on the thin selective oxide film. There is a need.

【0017】以上のような構造を持つ半導体素子は、微
細化、低電界、および、寄生素子動作耐性向上を同時に
推進できる。特に、この特徴は、DRAM素子の情報保
持特性向上に役立つものである。
The semiconductor device having the above structure can simultaneously promote miniaturization, low electric field, and improvement of parasitic device operation resistance. In particular, this feature is useful for improving the information retention characteristics of the DRAM device.

【0018】そして、本発明に係る半導体素子の製造方
法によれば、シリコン窒化膜をマスクに第1の選択酸化
を行い第1の厚さの選択酸化膜を形成する工程1と、次
いで、前記シリコン窒化膜の側壁にシリコン窒化膜を形
成する工程2と、再度シリコン窒化膜をマスクに第2の
選択酸化を行い第1の厚さよりも厚い第2の厚さの選択
酸化膜を形成する工程3とを有し、工程2と工程3を工
程順に少なくとも1回は行なうことにより、自己整合的
に少なくとも2種類の膜厚を有し、かつ、活性領域に近
い側の膜厚が薄い選択酸化膜を形成することができる。
According to the method of manufacturing a semiconductor device of the present invention, the first selective oxidation is performed by using the silicon nitride film as a mask to form the selective oxide film having the first thickness, and then the above step is performed. Step 2 of forming a silicon nitride film on the side wall of the silicon nitride film, and step of forming a selective oxide film of a second thickness thicker than the first thickness by performing second selective oxidation again using the silicon nitride film as a mask. 3, the step 2 and the step 3 are performed at least once in the order of the steps, so that the selective oxidation has at least two kinds of film thicknesses in a self-aligning manner and has a small film thickness on the side close to the active region. A film can be formed.

【0019】また、上記半導体素子の製造方法により形
成した少なくとも2種類の膜厚を有する選択酸化膜を通
して不純物イオン打込みを行ない高濃度埋込層を形成す
る工程を有することにより、選択酸化膜下に基板表面か
らの深さを少なくとも2種類有し、かつ、活性領域に近
い側ほど深さが深く活性領域から離れた部分で浅い高濃
度埋込層を自己整合的に形成することができる。
Further, by including a step of implanting impurity ions through a selective oxide film having at least two kinds of film thickness formed by the above-mentioned method for manufacturing a semiconductor element to form a high-concentration buried layer, the selective oxide film is formed below the selective oxide film. It is possible to form a high-concentration buried layer that has at least two types of depths from the surface of the substrate and that has a depth deeper on the side closer to the active region and is shallower in a portion distant from the active region in a self-aligned manner.

【0020】更に、上記不純物イオン打込みを、少なく
とも2種類の打込みエネルギと少なくとも2種類の打込
み量で行うことにより、比較的低濃度の埋込層を活性領
域に近い側の薄い選択酸化膜下に形成し、高濃度の埋込
層を活性領域から離れた選択酸化膜下に自己整合的に形
成することができる。
Furthermore, by performing the above-described impurity ion implantation with at least two types of implantation energy and at least two types of implantation amounts, a relatively low concentration buried layer is formed under the thin selective oxide film near the active region. A high-concentration buried layer can be formed in a self-aligned manner under the selective oxide film apart from the active region.

【0021】以上のように、本発明に係る半導体素子の
製造方法によれば、高性能のDRAM素子を簡便な工程
によって作製できる。これは、微細化が進めば進む程、
効果が表れる素子構造および製造方法である。
As described above, according to the method of manufacturing a semiconductor device of the present invention, a high performance DRAM device can be manufactured by simple steps. This is because as the miniaturization progresses,
The element structure and the manufacturing method exhibit the effect.

【0022】[0022]

【実施例】以下、本発明に係る半導体素子およびその製
造方法の好適な実施例につき、添付図面を参照しながら
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a semiconductor device and a method of manufacturing the same according to the present invention will be described in detail below with reference to the accompanying drawings.

【0023】<実施例1>図2は本発明に係る半導体素
子の製造方法の一実施例を示す図であり、(a)〜
(f)は主要製造工程を工程順に示した断面図である。
図2に従って、先ず、複数の膜厚を有する選択酸化膜の
製造方法を説明する。
<Embodiment 1> FIG. 2 is a view showing an embodiment of a method of manufacturing a semiconductor device according to the present invention, in which (a)-
(F) is sectional drawing which showed the main manufacturing process in order of process.
First, a method of manufacturing a selective oxide film having a plurality of film thicknesses will be described with reference to FIG.

【0024】図2(a)に示すように、ボロン濃度が5
×1016cm-3で、(100)面方位のp形シリコン基
板7の表面に、熱酸化法により15nmの厚さのシリコ
ン酸化膜8を形成し、次いで、化学気相成長法により1
50nmの厚さのシリコン窒化膜9を堆積した。ここ
で、通常のホトエッチング工程により、シリコン窒化膜
9を加工した後、シリコン窒化膜9をマスクに酸化を行
う選択酸化法により膜厚t1が300nmのシリコン酸
化膜すなわち選択酸化膜10を形成した。
As shown in FIG. 2A, the boron concentration is 5
A silicon oxide film 8 having a thickness of 15 nm is formed on the surface of the p-type silicon substrate 7 having a (100) plane orientation at a density of × 10 16 cm -3 by a thermal oxidation method, and then a chemical vapor deposition method
A silicon nitride film 9 having a thickness of 50 nm was deposited. Here, after the silicon nitride film 9 is processed by a normal photo-etching process, a silicon oxide film having a film thickness t 1 of 300 nm, that is, a selective oxide film 10 is formed by a selective oxidation method in which the silicon nitride film 9 is used as a mask for oxidation. did.

【0025】次に、図2(b)に示すように、化学気相
成長法により100nmの厚さのシリコン窒化膜11を
堆積し、異方性ドライエッチング法により膜厚分のエッ
チング(この場合、100nm)を行ない、シリコン窒
化膜9の側壁のみに前記シリコン窒化膜11が残るよう
に加工した。
Next, as shown in FIG. 2B, a 100 nm-thick silicon nitride film 11 is deposited by chemical vapor deposition, and anisotropic dry etching is performed to etch the film thickness (in this case). , 100 nm) and processed so that the silicon nitride film 11 remains only on the side wall of the silicon nitride film 9.

【0026】その後、図2(c)に示すように、再び選
択酸化法により300nmの厚さの上記選択酸化膜10
をさらに酸化して、膜厚t2が400nmの厚さのシリ
コン酸化膜すなわち選択酸化膜12を形成した。なお、
図2(b)及び図2(c)を繰り返せば、2種類以上の
膜厚を有する選択酸化膜を形成することができる。この
ように選択酸化膜を薄い部分10と厚い部分12とし、
かつ、薄い部分を活性領域側にしたことにより、最初か
ら1種類の厚い選択酸化膜を形成する従来の場合と比べ
て、バーズビークの伸びによる活性領域の減少を少なく
することができる。
After that, as shown in FIG. 2C, the selective oxidation film 10 having a thickness of 300 nm is again formed by the selective oxidation method.
Was further oxidized to form a silicon oxide film having a thickness t 2 of 400 nm, that is, a selective oxide film 12. In addition,
By repeating FIG. 2B and FIG. 2C, a selective oxide film having two or more kinds of film thickness can be formed. In this way, the selective oxide film is divided into a thin portion 10 and a thick portion 12,
In addition, since the thin portion is on the active region side, the reduction of the active region due to the elongation of the bird's beak can be reduced as compared with the conventional case where one kind of thick selective oxide film is formed from the beginning.

【0027】その後、図2(d)に示すように、熱燐酸
中でシリコン窒化膜9及び11をエッチング除去した。
ここで、その時の平面図の一例を図4に示す。参照符号
18はMOSトランジスタのソース/ドレイン領域およ
びゲート領域が形成される活性領域であり、シリコン基
板表面が露出している領域である。活性領域18に近い
部分の膜厚t1が300nmの選択酸化膜10と、活性
領域18から離れた部分の膜厚t2が400nmの選択
酸化膜12の配置は、図4に示すようになっている。
After that, as shown in FIG. 2D, the silicon nitride films 9 and 11 were removed by etching in hot phosphoric acid.
Here, an example of a plan view at that time is shown in FIG. Reference numeral 18 is an active region in which a source / drain region and a gate region of the MOS transistor are formed, and is a region where the surface of the silicon substrate is exposed. The arrangement of the selective oxide film 10 having a film thickness t 1 of 300 nm near the active region 18 and the selective oxide film 12 having a film thickness t 2 of 400 nm near the active region 18 is as shown in FIG. ing.

【0028】次に、図2(e)に示すように、ボロンイ
オンを200keVに加速し、1×1013cm-2のイオ
ン打込みを行ない、ボロンを1000℃、10分の熱処
理によって電気的に活性化させて高濃度埋込層13を形
成後、上記15nmのシリコン酸化膜8を除去した。
Next, as shown in FIG. 2 (e), boron ions are accelerated to 200 keV, ion implantation of 1 × 10 13 cm -2 is performed, and boron is electrically treated by heat treatment at 1000 ° C. for 10 minutes. After activation to form the high-concentration buried layer 13, the 15 nm silicon oxide film 8 was removed.

【0029】更に、図2(f)において、熱酸化法を用
いてゲート酸化膜となる10nmのシリコン酸化膜21
を形成後、化学気相成長法により燐が2×1020cm-3
導入されている200nmの厚さの多結晶シリコン膜2
2および200nmの厚さのシリコン酸化膜23を堆積
した。次いで、通常のホトエッチング工程により、シリ
コン酸化膜23と多結晶シリコン膜22とを加工して、
上部をシリコン酸化膜23で被覆した多結晶シリコン膜
22のゲート電極を形成した。その後、燐イオンを20
keVに加速し、1×1014cm-2のイオン打込みを行
ない、燐を1000℃、5秒の熱処理によって電気的に
活性化させて低濃度のn形ソース/ドレイン層24いわ
ゆるLDD(Lightly Doped Drain)層を形成した。次
に、化学気相成長法により100nmの厚さのシリコン
酸化膜を堆積後、異方性ドライエッチング法により膜厚
(この場合、100nm)分のエッチングを行ない、シ
リコン酸化膜23と多結晶シリコン膜22の側面にのみ
シリコン酸化膜25が残るように加工した。更に、ヒ素
イオンを25keVに加速して1×1015cm-2のイオ
ン打込みを行ない、ヒ素を1000℃、5秒の熱処理に
よって電気的に活性化させ、n形ソース/ドレイン層2
6を形成した。
Further, in FIG. 2F, a 10 nm silicon oxide film 21 to be a gate oxide film is formed by using a thermal oxidation method.
After the formation of phosphorus, the phosphorus content is 2 × 10 20 cm −3 by the chemical vapor deposition method.
The introduced polycrystalline silicon film 2 having a thickness of 200 nm
A silicon oxide film 23 having a thickness of 2 and 200 nm was deposited. Then, the silicon oxide film 23 and the polycrystalline silicon film 22 are processed by a normal photoetching process,
A gate electrode of the polycrystalline silicon film 22 having an upper portion covered with the silicon oxide film 23 was formed. Then, add phosphorus ions to 20
By accelerating to keV, ion implantation of 1 × 10 14 cm −2 , and phosphorus being electrically activated by heat treatment at 1000 ° C. for 5 seconds, a low concentration n-type source / drain layer 24 so-called LDD (Lightly Doped) Drain) layer was formed. Next, after depositing a silicon oxide film having a thickness of 100 nm by the chemical vapor deposition method, etching is performed by a film thickness (100 nm in this case) by the anisotropic dry etching method to obtain the silicon oxide film 23 and the polycrystalline silicon. The processing was performed so that the silicon oxide film 25 remained only on the side surface of the film 22. Further, arsenic ions are accelerated to 25 keV and ion implantation of 1 × 10 15 cm −2 is performed, and arsenic is electrically activated by a heat treatment at 1000 ° C. for 5 seconds, so that the n-type source / drain layer 2
6 was formed.

【0030】その後、図5の断面図に示すように、以下
の工程によりDRAM素子すなわちDRAMメモリセル
を作製した。なお、図5では、図2と異なり選択酸化膜
10,12により素子分離された1つの島の中にMOS
トランジスタが2個形成された図が示されている。ま
ず、化学気相成長法により100nmの厚さのシリコン
酸化膜27を堆積し、通常のホトエッチング工程によ
り、シリコン酸化膜27を加工してコンタクト穴を開け
た。その後、化学気相成長法により、燐が2×1020
-3導入されている400nmの厚さの多結晶シリコン
膜を堆積し、この多結晶シリコン膜を通常のホトエッチ
ング工程により加工して蓄積電極28を形成した。次
に、化学気相成長法により5nmの厚さのシリコン窒化
膜を堆積し、900℃、20分の熱酸化を実施してシリ
コン窒化酸化膜のキャパシタ絶縁膜29を形成した。こ
の時、図2(f)で示したヒ素のイオン打込みにより形
成したソース/ドレイン層26中に、蓄積電極28の多
結晶シリコン膜からの燐拡散も行なわれて蓄積電極28
とのオーミックコンタクトが取れると同時にn形ソース
/ドレイン層26aが形成される。このようにヒ素と燐
を不純物とするn形ソース/ドレイン層26aとしたこ
とにより、燐だけのn形ソース/ドレイン層の場合に比
べてDRAMメモリセルのMOSトランジスタの電流駆
動能力が大きくなる。
After that, as shown in the sectional view of FIG. 5, a DRAM element, that is, a DRAM memory cell was manufactured by the following steps. In FIG. 5, unlike in FIG. 2, the MOS is formed in one island separated by the selective oxide films 10 and 12.
A figure in which two transistors are formed is shown. First, a 100 nm-thickness silicon oxide film 27 was deposited by the chemical vapor deposition method, and the silicon oxide film 27 was processed by a normal photoetching process to open a contact hole. After that, by a chemical vapor deposition method, phosphorus is 2 × 10 20 c
A 400 nm-thick polycrystalline silicon film having m −3 introduced therein was deposited, and this polycrystalline silicon film was processed by a normal photoetching process to form a storage electrode 28. Next, a silicon nitride film having a thickness of 5 nm was deposited by chemical vapor deposition, and thermal oxidation was performed at 900 ° C. for 20 minutes to form a capacitor insulating film 29 of a silicon oxynitride film. At this time, phosphorus is also diffused from the polycrystalline silicon film of the storage electrode 28 in the source / drain layer 26 formed by ion implantation of arsenic shown in FIG.
At the same time that an ohmic contact with the n-type source / drain layer 26a is formed. By thus forming the n-type source / drain layer 26a containing arsenic and phosphorus as impurities, the current driving capability of the MOS transistor of the DRAM memory cell is increased as compared with the case of the n-type source / drain layer containing only phosphorus.

【0031】その後、化学気相成長法により、燐が2×
1020cm-3導入されている100nmの厚さの多結晶
シリコン膜を堆積し、この多結晶シリコン膜およびキャ
パシタ絶縁膜29を通常のホトエッチング工程により加
工して、プレート電極30を形成した。次に、化学気相
成長法により、燐が16モル%、ボロンが8モル%導入
されている400nmの厚さのガラス膜31を堆積し、
900℃、10分の熱処理を行ないガラス膜31の平坦
化を行なった後、通常のホトエッチング工程によりガラ
ス膜31を加工して、コンタクト穴を開けた。
After that, phosphorus is 2 × by a chemical vapor deposition method.
A 100 nm-thick polycrystalline silicon film having a thickness of 10 20 cm −3 was deposited, and the polycrystalline silicon film and the capacitor insulating film 29 were processed by a normal photoetching process to form a plate electrode 30. Next, by a chemical vapor deposition method, a glass film 31 having a thickness of 400 nm and containing 16 mol% of phosphorus and 8 mol% of boron is deposited,
After heat treatment was performed at 900 ° C. for 10 minutes to flatten the glass film 31, the glass film 31 was processed by a normal photoetching process to open a contact hole.

【0032】最後に、化学気相成長法により300nm
の厚さのタングステン膜を堆積し、このタングステン膜
を通常のホトエッチング工程により加工してビット配線
32を形成した。なお、この後に、配線形成工程がある
が、通常の工程によるものなので、本実施例の説明では
省略する。
Finally, 300 nm is formed by chemical vapor deposition.
A tungsten film having a thickness of 1 was deposited, and the tungsten film was processed by a normal photoetching process to form the bit wiring 32. After this, there is a wiring forming step, but since it is a normal step, it is omitted in the description of this embodiment.

【0033】以上のようにして作製した本実施例による
DRAM素子は、アクティブ領域に近い側の選択酸化膜
を薄く、離れた側を厚くしたことにより、選択酸化のと
きのバーズビークの伸びによる活性領域の減少を抑えら
れ、しかもソース/ドレイン層と高濃度埋込層との間の
距離が離れるので電界緩和され、従来よりも素子の微細
化に適している。さらに、ソース/ドレイン層と高濃度
埋込層との間の電界緩和により接合リーク電流が減少し
た結果、DRAM素子の情報保持時間は、選択酸化膜が
膜厚400nmの1種類である従来構造の場合に比べ
て、図6に示すように3〜5倍まで長くすることができ
た。なお、図6は、環境温度を70℃一定としたときの
情報保持時間のヒストグラムであり、この図は各DRA
M素子の最も情報保持時間の短いビットの情報保持時間
の分布を示している。
In the DRAM device according to this embodiment manufactured as described above, the selective oxide film on the side close to the active region is thin and the side remote from the active region is thick, so that the active region due to the extension of the bird's beak during the selective oxidation is formed. Is suppressed, and since the distance between the source / drain layer and the high-concentration buried layer is increased, the electric field is alleviated, which is more suitable for device miniaturization than in the past. Furthermore, as a result of the reduction of the junction leakage current due to the relaxation of the electric field between the source / drain layer and the high-concentration buried layer, the information retention time of the DRAM element is the same as that of the conventional structure in which the selective oxide film is one type having a thickness of 400 nm. As compared with the case, the length could be increased to 3 to 5 times as shown in FIG. Note that FIG. 6 is a histogram of information retention time when the environmental temperature is constant at 70 ° C.
The distribution of the information holding time of the bit having the shortest information holding time of the M element is shown.

【0034】<実施例2>次に、本発明に係る半導体素
子およびその製造方法について、別の実施例を説明す
る。図7は、本実施例におけるDRAM素子の構造を示
す断面図である。このDRAM素子の製造方法は、実施
例1の製造方法の図2(d)に示した選択酸化膜形成工
程までは同じである。すなわち、p形シリコン基板7に
15nmの厚さのシリコン酸化膜8を形成後、シリコン
窒化膜9を堆積してホトエッチング工程により加工し、
このシリコン窒化膜9をマスクに酸化を行い300nm
の厚さの選択酸化膜10を形成する。その後、再びシリ
コン窒化膜を堆積後異方性エッチングによりシリコン窒
化膜9の側壁にのみシリコン窒化膜11を残し、選択酸
化を再度行い400nmの厚さの選択酸化膜12を形成
後、シリコン窒化膜9,11を除去する工程までは実施
例1と同じである。
<Embodiment 2> Next, another embodiment of the semiconductor element and the manufacturing method thereof according to the present invention will be described. FIG. 7 is a sectional view showing the structure of the DRAM device according to the present embodiment. The manufacturing method of this DRAM element is the same up to the selective oxide film forming step shown in FIG. 2D of the manufacturing method of the first embodiment. That is, after a silicon oxide film 8 having a thickness of 15 nm is formed on a p-type silicon substrate 7, a silicon nitride film 9 is deposited and processed by a photoetching process,
This silicon nitride film 9 is used as a mask to perform oxidation to 300 nm
Forming a selective oxide film 10 having a thickness of. After that, a silicon nitride film is deposited again and anisotropic etching is performed to leave the silicon nitride film 11 only on the sidewalls of the silicon nitride film 9, and selective oxidation is performed again to form a selective oxide film 12 having a thickness of 400 nm. The process up to the steps of removing 9 and 11 is the same as that of the first embodiment.

【0035】この後、ボロンイオンを150keVに加
速し、1×1012cm-2のイオン打込みを行い、さらに
ボロンイオンを200keVに加速し、5×1012cm
-2のイオン打込みを行った後、ボロンを1000℃、1
0分の熱処理によって電気的に活性化させて2種類の高
濃度埋込層33,34を形成した。
After that, boron ions are accelerated to 150 keV, ion implantation of 1 × 10 12 cm -2 is performed, and boron ions are further accelerated to 200 keV to 5 × 10 12 cm.
After ion implantation of -2 , boron is heated at 1000 ° C for 1
Two kinds of high-concentration buried layers 33 and 34 were formed by being electrically activated by heat treatment for 0 minutes.

【0036】その後の工程は、再び実施例1と同じにし
てMOSトランジスタを形成すればよい。しかしなが
ら、本実施例では、n形ソース/ドレイン層の形成に実
施例1で行なったヒ素打込みを行っていない。これは、
ヒ素イオン打込み工程時に、多結晶シリコン膜22の側
面に形成したシリコン酸化膜25が削られて低濃度のソ
ース/ドレイン層24と高濃度のソース/ドレイン層2
6とのずれが問題となるような厳しい精度が要求される
場合に適している。この場合、n形ソース/ドレイン層
19は、蓄積電極28の多結晶シリコン膜からの燐拡散
によって形成し、ビット配線32とのオーミックコンタ
クトをとるn形拡散層20は、ガラス膜31のコンタク
ト穴の加工後、燐イオンを60keVに加速し、5×1
15cm-2のイオン打込みした後、900℃で10分の
熱処理により形成した。
In the subsequent steps, the MOS transistor may be formed again in the same manner as in the first embodiment. However, in the present embodiment, the arsenic implantation performed in the first embodiment is not performed to form the n-type source / drain layer. this is,
During the arsenic ion implantation step, the silicon oxide film 25 formed on the side surface of the polycrystalline silicon film 22 is removed, so that the low concentration source / drain layer 24 and the high concentration source / drain layer 2 are removed.
It is suitable when strict accuracy is required such that the deviation from 6 becomes a problem. In this case, the n-type source / drain layer 19 is formed by phosphorus diffusion from the polycrystalline silicon film of the storage electrode 28, and the n-type diffusion layer 20 that makes ohmic contact with the bit line 32 is the contact hole of the glass film 31. After processing, phosphorous ions are accelerated to 60 keV and 5 × 1
After ion implantation of 0 15 cm -2 , it was formed by heat treatment at 900 ° C. for 10 minutes.

【0037】このようにして本実施例で作製したDRA
M素子は、実施例1と同様の効果を有し、更にDRAM
素子の情報保持時間は高濃度埋込層を最適にできるの
で、選択酸化膜の膜厚が400nmの1種類である従来
構造の場合に比べて、図6に実施例1の結果と合わせて
示すように、5〜10倍まで長くすることができた。
The DRA produced in this way in this way
The M element has the same effect as that of the first embodiment, and further the DRAM
Since the high-concentration buried layer can be optimized for the information retention time of the element, FIG. 6 shows the results of Example 1 in comparison with the case of the conventional structure in which the thickness of the selective oxide film is 400 nm. Thus, it was possible to increase the length to 5 to 10 times.

【0038】以上、本発明の好適な実施例について説明
したが、本発明は前記実施例に限定されることなく、本
発明の精神を逸脱しない範囲内において種々の設計変更
をなし得ることは勿論であり、例えば、フラッシュメモ
リの選択酸化膜と高濃度埋込層に適用すれば、消去時に
電界が強くかかるソースと高濃度埋込層との間の電界を
緩和してソースのリーク電流を小さくできるので、確実
に消去動作を行なうことができる。
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and it is needless to say that various design changes can be made without departing from the spirit of the present invention. Therefore, for example, when applied to the selective oxide film and the high-concentration buried layer of the flash memory, the electric field between the source and the high-concentration buried layer to which the electric field is strongly applied at the time of erasing is relaxed to reduce the leak current of the source. Therefore, the erase operation can be surely performed.

【0039】[0039]

【発明の効果】本発明によれば、選択酸化膜の膜厚を活
性領域側に近い部分を薄く、離れた方の膜厚を厚くした
ことにより、バーズビークによる活性領域の減少を防止
することができる。
According to the present invention, by reducing the thickness of the selective oxide film near the active region side and increasing the film thickness away from the active region side, the reduction of the active region due to bird's beak can be prevented. it can.

【0040】また、選択酸化膜の膜厚を活性領域側に近
い部分を薄く、離れた方の膜厚を厚くし、かつ、選択酸
化膜下の部分の高濃度埋込層の基板表面からの深さは活
性領域に近い側を深くしたことにより、半導体素子の微
細化、低電界、および寄生素子動作耐性向上に効果があ
る。特に、選択酸化膜下の高濃度埋込層の濃度を、選択
酸化膜の厚い側よりも薄い側の方を低く形成したことに
より、半導体素子の微細化、低電界、および寄生素子耐
性向上をより一層図ることができる。
Further, the thickness of the selective oxide film is made thinner at the portion close to the active region side and thicker at the distant side, and the portion under the selective oxide film from the substrate surface of the high-concentration buried layer is formed. By increasing the depth on the side close to the active region, it is effective for miniaturization of the semiconductor element, low electric field, and improvement of parasitic element operation resistance. In particular, by forming the concentration of the high-concentration buried layer below the selective oxide film lower on the thin side than on the thick side of the selective oxide film, miniaturization of semiconductor elements, low electric field, and improvement of parasitic element resistance can be achieved. It can be further improved.

【0041】本発明をDRAM素子に適用した場合に
は、微細化、低電界、及び寄生素子動作耐性の向上と同
時に、情報保持時間の向上に効果を奏する。従って、高
性能のDRAM素子を提供することができる。DRAM
素子では、蓄積電極形成前のコンタクト穴加工での合わ
せズレが微細化が進むにつれて顕著になるが、本発明に
よれば、その合わせズレを許容できるように選択酸化膜
及び高濃度埋込層を配置しているので、微細化が進めば
進むほど、低電界及び情報保持特性の向上に効果が現わ
れる。
When the present invention is applied to a DRAM device, it is effective in improving the miniaturization, the low electric field, and the operation resistance of the parasitic device, and at the same time, the information holding time. Therefore, a high performance DRAM device can be provided. DRAM
In the element, the misalignment in the contact hole processing before forming the storage electrode becomes more remarkable as the miniaturization progresses. According to the present invention, the selective oxide film and the high-concentration buried layer are provided so that the misalignment can be allowed. Since they are arranged, the more the miniaturization progresses, the more the effect of improving the low electric field and the information retention characteristic appears.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体素子の基本構造を示す断面
図であり、(a)は厚さの異なる選択酸化膜を有する構
造を示す断面図、(b)は厚さの異なる選択酸化膜と深
さの異なる高濃度埋込層を有する断面図、(c)は厚さ
の異なる選択酸化膜と深さ及び濃度の異なる高濃度埋込
層を有する断面図である。
1A and 1B are cross-sectional views showing a basic structure of a semiconductor device according to the present invention, FIG. 1A is a cross-sectional view showing a structure having selective oxide films having different thicknesses, and FIG. 1B is a selective oxide film having different thicknesses. And (c) is a sectional view having a high-concentration buried layer having a different depth, and (c) is a sectional view having a high-concentration buried layer having a different depth and a different concentration.

【図2】図1(a),(b)に示した本発明に係る半導
体素子の製造方法の一実施例を主要工程順に断面構造で
示した工程図である。
FIG. 2 is a process diagram showing a cross-sectional structure of one embodiment of the method for manufacturing a semiconductor device according to the present invention shown in FIGS.

【図3】図1(c)に示した本発明に係る半導体装置の
製造方法の別の実施例の途中工程を示す断面図である。
FIG. 3 is a cross-sectional view showing an intermediate step of another embodiment of the method of manufacturing the semiconductor device according to the present invention shown in FIG. 1 (c).

【図4】図2(d)の製造工程における選択酸化膜のパ
ターン配置例を示す平面図である。
FIG. 4 is a plan view showing a pattern arrangement example of a selective oxide film in the manufacturing process of FIG.

【図5】本発明に係る図1(b)に示した半導体素子の
基本構造を適用したDRAM素子の断面図である。
5 is a cross-sectional view of a DRAM device to which the basic structure of the semiconductor device shown in FIG. 1B according to the present invention is applied.

【図6】本発明をDRAM素子に適用した場合の情報保
持時間特性を、従来例と比較して示したヒストグラムで
ある。
FIG. 6 is a histogram showing information retention time characteristics when the present invention is applied to a DRAM device, compared with a conventional example.

【図7】本発明に係る図1(c)に示した半導体素子の
基本構造を適用したDRAM素子の断面図である。
7 is a sectional view of a DRAM device to which the basic structure of the semiconductor device shown in FIG. 1C according to the present invention is applied.

【符号の説明】[Explanation of symbols]

1,7…シリコン基板、 2,10,12…選択酸化膜、 3,18…活性領域、 4,5,6,13,14,15…高濃度埋込層、 8,21,23,25,27…シリコン酸化膜、 9,11…シリコン窒化膜、 16,19,20,26,26a…ソース/ドレイン領
域、 17…ゲート電極 22,28,30…多結晶シリコン膜、 24,41…低濃度ソース/ドレイン領域、 29…キャパシタ絶縁膜(シリコン窒化酸化膜)、 31…ガラス膜、 32…ビット配線、 33,34…高濃度埋込層、 40…ゲート酸化膜。
1, 7 ... Silicon substrate, 2, 10, 12 ... Selective oxide film, 3, 18 ... Active region, 4, 5, 6, 13, 14, 15 ... High-concentration buried layer, 8, 21, 23, 25, 27 ... Silicon oxide film, 9, 11 ... Silicon nitride film, 16, 19, 20, 26, 26a ... Source / drain region, 17 ... Gate electrode 22, 28, 30 ... Polycrystalline silicon film, 24, 41 ... Low concentration Source / drain regions, 29 ... Capacitor insulating film (silicon oxynitride film), 31 ... Glass film, 32 ... Bit wiring, 33, 34 ... High-concentration buried layer, 40 ... Gate oxide film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大倉 理 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 西田 高 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Osamu Okura 1-280 Higashi Koikeku, Kokubunji, Tokyo Metropolitan Research Center, Hitachi Ltd. (72) Takashi Nishida 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Co., Ltd. Central Research Center

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】素子分離用の選択酸化膜を有する半導体素
子において、選択酸化膜は少なくとも2種類の膜厚を有
すると共に、MOSトランジスタのソース/ドレイン領
域及びゲート領域が形成される活性領域に近い側の膜厚
が薄く形成されていることを特徴とする半導体素子。
1. In a semiconductor device having a selective oxide film for device isolation, the selective oxide film has at least two kinds of film thickness and is close to an active region where a source / drain region and a gate region of a MOS transistor are formed. A semiconductor element having a thin side film.
【請求項2】高濃度埋込層と素子分離用の選択酸化膜を
有する半導体素子において、高濃度埋込層の選択酸化膜
下の部分は、基板表面からの深さが少なくとも2種類の
深さを有すると共に、MOSトランジスタのソース/ド
レイン領域及びゲート領域が形成される活性領域に近い
側の前記深さが深く形成されていることを特徴とする半
導体素子。
2. In a semiconductor element having a high-concentration buried layer and a selective oxide film for element isolation, a portion below the selective oxide film of the high-concentration buried layer has a depth of at least two kinds from a substrate surface. And a deeper depth on the side closer to the active region where the source / drain region and gate region of the MOS transistor are formed.
【請求項3】高濃度埋込層と素子分離用の選択酸化膜を
有する半導体素子において、選択酸化膜は少なくとも2
種類の膜厚を有し、MOSトランジスタのソース/ドレ
イン領域及びゲート領域が形成される活性領域に近い側
の膜厚が薄く形成されていると共に、高濃度埋込層の選
択酸化膜下の部分は基板表面からの高濃度埋込層の深さ
が少なくとも2種類の深さを有し、高濃度埋込層の濃度
は前記選択酸化膜の厚い側よりも薄い側の下の方が低く
形成されていることを特徴とする半導体素子。
3. A semiconductor device having a high-concentration buried layer and a selective oxide film for device isolation, wherein the selective oxide film is at least 2.
Part of the high-concentration buried layer under the selective oxide film, which has different kinds of film thickness, and is formed thin on the side close to the active region where the source / drain region and gate region of the MOS transistor are formed. Has a depth of at least two kinds of the high-concentration buried layer from the substrate surface, and the concentration of the high-concentration buried layer is formed lower on the thin side than on the thick side of the selective oxide film. A semiconductor device characterized in that
【請求項4】高濃度埋込層の導電形は、MOSトランジ
スタのソース/ドレイン領域の導電形と反対導電形であ
る請求項2又は請求項3記載の半導体素子。
4. The semiconductor device according to claim 2, wherein the conductivity type of the high-concentration buried layer is opposite to the conductivity type of the source / drain regions of the MOS transistor.
【請求項5】半導体素子はDRAM素子であることを特
徴とする請求項1〜4のいずれか1項に記載の半導体素
子。
5. The semiconductor device according to claim 1, wherein the semiconductor device is a DRAM device.
【請求項6】シリコン窒化膜をマスクに選択酸化を行っ
て素子分離用の選択酸化膜を形成する工程を有する半導
体素子の製造方法において、シリコン窒化膜をマスクに
第1の選択酸化を行い第1の厚さの選択酸化膜を形成す
る工程1と、次いで、前記シリコン窒化膜の側壁にシリ
コン窒化膜を形成する工程2と、再度シリコン窒化膜を
マスクに第2の選択酸化を行い第1の厚さよりも厚い第
2の厚さの選択酸化膜を形成する工程3とを有し、前記
工程2と工程3を工程順に少なくとも1回は行なうこと
を特徴とする半導体素子の製造方法。
6. A method of manufacturing a semiconductor device, comprising a step of selectively oxidizing a silicon nitride film as a mask to form a selective oxide film for element isolation, wherein a first selective oxidation is performed by using the silicon nitride film as a mask. Step 1 of forming a selective oxide film having a thickness of 1 and then Step 2 of forming a silicon nitride film on the side wall of the silicon nitride film, and second selective oxidation by again using the silicon nitride film as a mask. And a step 3 of forming a selective oxide film having a second thickness larger than the above thickness, and the steps 2 and 3 are performed at least once in the order of steps.
【請求項7】請求項6に記載の半導体素子の製造方法に
より形成した少なくとも2種類の膜厚を有する選択酸化
膜を通して不純物イオン打込みを行ない高濃度埋込層を
形成する工程を更に有することを特徴とする半導体素子
の製造方法。
7. A method further comprising the step of implanting impurity ions through a selective oxide film having at least two different film thicknesses formed by the method for manufacturing a semiconductor device according to claim 6 to form a high-concentration buried layer. A method for manufacturing a characteristic semiconductor device.
【請求項8】請求項7に記載の半導体素子の製造方法に
おいて、不純物イオン打込みを、少なくとも2種類の打
込みエネルギと少なくとも2種類の打込み量で行うこと
を特徴とする半導体素子の製造方法。
8. The method of manufacturing a semiconductor element according to claim 7, wherein the impurity ion implantation is performed with at least two types of implantation energy and at least two types of implantation amount.
【請求項9】半導体素子はDRAM素子であることを特
徴とする請求項6〜8のいずれか1項に記載の半導体素
子の製造方法。
9. The method of manufacturing a semiconductor device according to claim 6, wherein the semiconductor device is a DRAM device.
JP6155636A 1994-07-07 1994-07-07 Semiconductor element and manufacture thereof Pending JPH0823035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6155636A JPH0823035A (en) 1994-07-07 1994-07-07 Semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6155636A JPH0823035A (en) 1994-07-07 1994-07-07 Semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0823035A true JPH0823035A (en) 1996-01-23

Family

ID=15610313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6155636A Pending JPH0823035A (en) 1994-07-07 1994-07-07 Semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0823035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994731A (en) * 1996-07-19 1999-11-30 Nec Corporation Semiconductor device and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994731A (en) * 1996-07-19 1999-11-30 Nec Corporation Semiconductor device and fabrication method thereof

Similar Documents

Publication Publication Date Title
US5424229A (en) Method for manufacturing MOSFET having an LDD structure
JPH02250331A (en) Semiconductor device and its manufacture
JPH0574806A (en) Semiconductor device and manufacture thereof
US5518944A (en) MOS transistor and its fabricating method
US5913122A (en) Method of making high breakdown voltage twin well device with source/drain regions widely spaced from FOX regions
US5432105A (en) Method for fabricating self-aligned polysilicon contacts on FET source/drain areas
JPS6055665A (en) Manufacture of semiconductor device
US20070187752A1 (en) Memory cell with a vertical transistor and fabrication method thereof
JPH10189917A (en) Nonvolatile semiconductor storage device and its manufacture
US7071068B2 (en) Transistor and method for fabricating the same
JPH06224216A (en) Transistor and its preparation
JP3057792B2 (en) Method for manufacturing thin film transistor
JP2924947B2 (en) Method for manufacturing semiconductor device
JPH0823035A (en) Semiconductor element and manufacture thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JP2557206B2 (en) Method for manufacturing semiconductor device
JPH1140775A (en) Semiconductor device and its manufacture
JP3113011B2 (en) Method for manufacturing semiconductor device
JPS60241259A (en) Manufacture of read only memory
JPH07106557A (en) Semiconductor device and manufacture of the same
KR100250098B1 (en) Isolation area and method
JPH08213601A (en) Semiconductor device and its manufacturing method
JPH06216333A (en) Manufacture of semiconductor storage device
JPH06244415A (en) Semiconductor device and manufacture thereof
JP3848782B2 (en) Manufacturing method of semiconductor device