JPH08225843A - Production of grain-oriented silicon steel sheet - Google Patents

Production of grain-oriented silicon steel sheet

Info

Publication number
JPH08225843A
JPH08225843A JP7049270A JP4927095A JPH08225843A JP H08225843 A JPH08225843 A JP H08225843A JP 7049270 A JP7049270 A JP 7049270A JP 4927095 A JP4927095 A JP 4927095A JP H08225843 A JPH08225843 A JP H08225843A
Authority
JP
Japan
Prior art keywords
temperature
inhibitor
rolling
grain
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7049270A
Other languages
Japanese (ja)
Inventor
Jiro Harase
二郎 原勢
Fumio Kurosawa
文夫 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7049270A priority Critical patent/JPH08225843A/en
Publication of JPH08225843A publication Critical patent/JPH08225843A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To stably produce a grain-oriented silicon steel sheet having high magnetic flux density by subjecting a silicon steel slab having a specified compsn. to hot rolling, cold rolling, nitriding treatment or the like under specified conditions. CONSTITUTION: As for a silicon steel slab having a compsn. contg., by weight, 0.015 to 0.100% C, 2.0 to 4.5% Si, 0.020 to 0.060% acid soluble Al, 0.005 to 0.010% N, 0.010 to 0.040% of one or more kinds of S and Se, 0.01 to 1% Cu, 0.01 to 0.5% Mn, 0.001 to 0.3% Sn, and the balance Fe, rough rolling is started in the temp. range of 1150 to 1400 deg.C, and finish rolling is executed to form into a hot rolled sheet having 2.5 to 1.0mm thickness. Next, it is heated at 950 to 1150 deg.C for 1 to 160 sec, is thereafter cooled at a cooling rate slower than that of air cooling, is subsequently cooled at a rate higher than that of air cooling and is rolled by cold rolling for one time to regulate its thickness to 0.30 to 0.10mm. Next, it is subjected to decarburizing annealiang, secondary heating and nitriding treatment under specified conditions, is coated with a separation agent for annealing and is subjected to secondary recrystallization annealing to produce a grain-oriented silicon steel sheet having high magnetic flux density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、厚さ0.30mmから
0.10mmのJIS C2553に規定するものより
薄手の範囲を含む方向性珪素鋼板(以下方向性電磁鋼板
という)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet (hereinafter referred to as grain-oriented electrical steel sheet) having a thickness of 0.30 mm to 0.10 mm, which is thinner than that defined in JIS C2553.

【0002】[0002]

【従来の技術】結晶粒成長を抑える析出物や溶質原子等
をインヒビターと呼ぶが、AlNを主たるインヒビター
として使用し、一次再結晶前の冷延率が75%以上95
%以下である方法で製造されている一方向性電磁鋼板に
は特公昭57−9419,62−54846,59−4
8935,60−48862,63−11406,63
−11407等で開示された製造法(以下A法と呼ぶ)
と特公昭61−60896,62−45285等で開示
された製造法(以下B法と呼ぶ)が知られている。
2. Description of the Related Art A precipitate or solute atom that suppresses grain growth is called an inhibitor. AlN is used as a main inhibitor, and the cold rolling rate before primary recrystallization is 75% or more.
% Or less, the grain-oriented electrical steel sheets manufactured by the method are Japanese Patent Publication No. 9419, 62-54846, 59-4.
8935,60-48862,63-11406,63
-114407 and other manufacturing methods (hereinafter referred to as method A)
And the manufacturing method disclosed in Japanese Patent Publication No. 61-60896, 62-45285 (hereinafter referred to as method B) is known.

【0003】A法では、二次再結晶粒成長に必要なイン
ヒビターとして微細分散させたAlNとMnSを主とし
て活用している。このためスラブ加熱時にこれら析出相
を完全に溶解させた後、熱延および熱延板焼鈍工程で微
細析出させる。このためスラブ加熱温度は1400℃程
度の高温にする必要がある。このように微細分散した析
出物が存在するため一次再結晶粒径は8μm程度と小さ
い。
In the method A, finely dispersed AlN and MnS are mainly used as inhibitors necessary for secondary recrystallized grain growth. For this reason, these precipitation phases are completely melted at the time of heating the slab, and then finely precipitated in the hot rolling and hot rolled sheet annealing steps. Therefore, it is necessary to set the slab heating temperature to a high temperature of about 1400 ° C. Due to the presence of such finely dispersed precipitates, the primary recrystallized grain size is as small as about 8 μm.

【0004】一方B法ではインヒビターとしてAlNを
主として使っている。このAlNの主たる部分は一次再
結晶後の窒化によって形成された鋼板表面相の窒化物を
二次再結晶焼鈍過程でAlNとして板厚方向にほぼ均等
に析出させることで構成される。B法ではスラブ加熱温
度が1150℃程度と低い。この段階ですでにAlNが
析出しているため一次再結晶焼鈍時には微細分散したA
lNやMnS析出物が殆ど存在しない。そのためA法と
ほぼ同一の840℃程度の一次再結晶焼鈍温度で一次再
結晶焼鈍後の結晶粒径は24μm程度と大きい。したが
ってB法では一次再結晶焼鈍後の状態でインヒビター強
度が弱いので二次再結晶焼鈍過程でインヒビターを強化
するため一次再結晶焼鈍後窒化処理を行い窒素量を20
0ppm程度とする。
On the other hand, in method B, AlN is mainly used as an inhibitor. The main part of this AlN is formed by substantially uniformly precipitating nitrides of the steel sheet surface phase formed by nitriding after primary recrystallization as AlN in the plate thickness direction in the secondary recrystallization annealing process. In the method B, the slab heating temperature is as low as about 1150 ° C. Since AlN has already precipitated at this stage, finely dispersed A during primary recrystallization annealing
Almost no 1N or MnS precipitates are present. Therefore, the crystal grain size after primary recrystallization annealing at a primary recrystallization annealing temperature of about 840 ° C., which is almost the same as in method A, is as large as about 24 μm. Therefore, in the method B, the inhibitor strength is weak in the state after the primary recrystallization annealing. Therefore, in order to strengthen the inhibitor in the secondary recrystallization annealing process, the nitriding treatment is performed after the primary recrystallization annealing so that the nitrogen content is 20%.
It is about 0 ppm.

【0005】A法はB法と比べて最終製品の磁束密度が
若干高いが、極めて高い温度でスラブを加熱する必要が
あり、Sを0.03%程度含有しているため熱延時耳割
れの発生が多いという欠点がある。B法はこのような高
温の加熱は必要なく、Sも低いため耳割れの発生もな
い。しかしA法と比較すると僅かながら磁束密度が低い
という欠点がある。
Although the magnetic flux density of the final product is slightly higher in the A method than in the B method, it is necessary to heat the slab at an extremely high temperature, and since S content is about 0.03%, there is a problem of ear cracking during hot rolling. It has the drawback of frequent occurrence. Method B does not require such high temperature heating, and since S is low, ear cracking does not occur. However, it has a drawback that the magnetic flux density is slightly lower than that of the method A.

【0006】ところでA法で薄手方向性電磁鋼板を製造
する場合、例えば熱延厚みを2.3mmとした場合、製
品板厚を0.15mmとすると冷延率は93.5%程度
と高くなる。このような高い冷延率では磁気特性が劣化
するため通常熱延板に冷間圧延を行った後高温の熱延板
焼鈍を行い、一次再結晶前の冷延率を87%程度にして
いる。したがって最終厚みにするまでに焼鈍を挟んだ2
回の冷延が必要である。
By the way, when a thin grain-oriented electrical steel sheet is manufactured by the method A, for example, when the hot rolling thickness is 2.3 mm and the product sheet thickness is 0.15 mm, the cold rolling rate becomes as high as about 93.5%. . Since magnetic properties deteriorate at such a high cold rolling rate, cold rolling is usually performed on a hot rolled sheet and then hot rolled sheet annealing is performed to make the cold rolling rate before primary recrystallization about 87%. . Therefore, 2 with annealing sandwiched to reach the final thickness
It requires cold rolling once.

【0007】このような冷間圧延工程を省略するために
は熱延板を最初から最終製品厚みに合わせて決めれば良
いが、熱延板の厚みを1.8mm以下薄くすればするほ
ど仕上げ圧延工程での鋼板の温度低下が著しく、この間
で析出物が大きく成長し、インヒビター効果が弱まり二
次再結晶が発現しがたくなるという問題が発生する。
In order to omit such a cold rolling step, the hot rolled sheet may be determined from the beginning according to the thickness of the final product. However, the thinner the hot rolled sheet is made to be 1.8 mm or less, the finish rolling is performed. There is a problem that the temperature of the steel sheet is remarkably lowered in the process, the precipitate grows large during this period, the inhibitor effect is weakened, and the secondary recrystallization is hard to occur.

【0008】一方B法では熱延工程ではインヒビターの
微細分散が不必要なため、熱延板の厚みを薄くすること
による温度降下は二次再結晶に影響を与えないので、最
終製品厚みに合った熱延板を使い1回の冷間圧延で製品
の製造が可能である。
On the other hand, in the method B, since the fine dispersion of the inhibitor is unnecessary in the hot rolling step, the temperature drop caused by reducing the thickness of the hot rolled sheet does not affect the secondary recrystallization, so that it is suitable for the final product thickness. It is possible to manufacture a product with one cold rolling using a hot rolled sheet.

【0009】[0009]

【発明が解決しようとする課題】本発明は1回の冷間圧
延でA法と同等以上の高い磁束密度を持った方向性電磁
鋼板を安定して安価に製造する技術を提供するものであ
る。
DISCLOSURE OF THE INVENTION The present invention provides a technique for stably and inexpensively producing a grain-oriented electrical steel sheet having a high magnetic flux density equal to or higher than that of the A method by one cold rolling. .

【0010】[0010]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、重量%で(以下同じ)、C:0.0
15〜0.100%,Si:2.0〜4.5%,酸可溶
性Al(solAl):0.020〜0.060%,
N:0.005〜0.010%,S,Seの一方または
両方:0.010〜0.040%,Cu:0.01〜1
%,Mn:0.01〜0.5%,Sn:0.001〜
0.3%を含有し、残部はFeおよび不可避的不純物で
ある珪素鋼スラブを、1150℃から1400℃の温度
域で粗圧延を開始し、引き続き仕上げ圧延を行って厚さ
2.5mmから1.0mmの熱延板とした後、950℃
以上1150℃以下の温度で1秒以上60秒以下加熱後
空冷より遅い冷却速度好ましくは4℃/sec以下で9
00℃まで冷却後、空冷より速い速度好ましくは13℃
/sec以上で冷却し、1回の冷間圧延で厚み0.30
mmから0.10mmの範囲内に圧延後、830℃から
860℃の温度で20秒以上200秒以下脱炭雰囲気で
加熱(以下脱炭加熱と呼ぶ)後、粗圧延開始温度と鋼板
のSまたはSe量に応じて図1に示す温度領域で露点0
℃以下−40℃以上の還元性雰囲気で10秒以上180
秒以内加熱(以下二次加熱と呼ぶ)後全窒素量が100
ppm以上200ppm以下に調整した後焼鈍分離剤を
塗布することを特徴とする方向性珪素鋼板の製造方法で
ある。また前記珪素鋼スラブはさらに必要に応じて、B
i:0.0050〜0.15%,P:0.001〜0.
15%,Sb:0.001〜0.15%,Pb:0.0
01〜0.15%,B:0.0010〜0.1%の範囲
でこれらの1種またはそれ以上含有させることが効果的
である。
Means for Solving the Problems The present invention is to solve the above problems, and in% by weight (hereinafter the same), C: 0.0
15 to 0.100%, Si: 2.0 to 4.5%, acid-soluble Al (solAl): 0.020 to 0.060%,
N: 0.005 to 0.010%, one or both of S and Se: 0.010 to 0.040%, Cu: 0.01 to 1
%, Mn: 0.01 to 0.5%, Sn: 0.001 to
A silicon steel slab containing 0.3% and the balance being Fe and unavoidable impurities is roughly rolled in a temperature range of 1150 ° C. to 1400 ° C., followed by finish rolling to a thickness of 2.5 mm to 1 mm. After making a hot rolled sheet of 0.0mm, 950 ℃
After heating at a temperature of 1150 ° C. or more for 1 second or more and 60 seconds or less, a cooling rate slower than air cooling after heating, preferably 4 ° C./sec or less and 9
After cooling to 00 ℃, faster than air cooling, preferably 13 ℃
/ 0 sec / sec or more, thickness of 0.30 in one cold rolling
mm to 0.10 mm, after heating in a decarburizing atmosphere at a temperature of 830 ° C. to 860 ° C. for 20 seconds or more and 200 seconds or less (hereinafter referred to as decarburizing heating), the rough rolling start temperature and S of the steel sheet or Dew point 0 in the temperature range shown in FIG. 1 according to the Se amount
℃ or less -40 ℃ or more in reducing atmosphere of 10 seconds or more 180
After heating within seconds (hereinafter referred to as secondary heating), the total nitrogen content is 100
This is a method for producing a grain-oriented silicon steel sheet, which comprises applying an annealing separator after adjusting the content to be not less than 200 ppm and not more than 200 ppm. In addition, the silicon steel slab may further include B
i: 0.0050 to 0.15%, P: 0.001 to 0.
15%, Sb: 0.001 to 0.15%, Pb: 0.0
It is effective to contain one or more of these within the range of 01 to 0.15% and B: 0.0010 to 0.1%.

【0011】[0011]

【作用】本発明者等は方向性電磁鋼板の(110)[0
01]二次再結晶粒の優先発現の条件について研究を行
い以下の結論を得た。一般にインヒビターは一次再結
晶粒の成長を抑えて一次再結晶粒径を小さくし、二次
再結晶焼鈍過程でのマトリクス結晶粒の成長を抑えて二
次再結晶開始温度に影響を与え、発現する二次再結晶
方位の選択に影響を与える。
The present inventors have found that the grain-oriented electrical steel sheet (110) [0
01] The conditions for preferential expression of secondary recrystallized grains were studied, and the following conclusions were obtained. In general, the inhibitor suppresses the growth of primary recrystallized grains to reduce the primary recrystallized grain size, suppresses the growth of matrix crystal grains in the secondary recrystallization annealing process, and affects and initiates the secondary recrystallization start temperature. Affects the choice of secondary recrystallization orientation.

【0012】一次再結晶組織の形成から二次再結晶の完
了までに働くインヒビターの役割を理解しやすくする目
的で、ここでは一次再結晶粒径を決めるともいうべきイ
ンヒビターを一次インヒビターと呼ぶ。一次インヒビタ
ーは、溶解から一次再結晶までの工程で形成されたもの
であり、一次再結晶焼鈍後窒化処理することでインヒビ
ターを付与するB法と対比させて先天的インヒビターと
も呼ぶべきものである。一次インヒビター強度が強いほ
ど一次再結晶粒径が小さい。
In order to make it easier to understand the role of the inhibitor that acts from the formation of the primary recrystallized structure to the completion of the secondary recrystallization, the inhibitor which should also determine the primary recrystallized grain size is referred to as a primary inhibitor. The primary inhibitor is formed in a process from melting to primary recrystallization, and should be called an innate inhibitor in contrast to the B method in which the inhibitor is added by performing nitriding treatment after primary recrystallization annealing. The higher the primary inhibitor strength, the smaller the primary recrystallized grain size.

【0013】一次再結晶完了後二次再結晶発現までのイ
ンヒビターを二次インヒビターと呼ぶ。B法の窒化処理
の第一の目的は二次インヒビターを付与することであ
る。この窒化によるインヒビター付与は後天的インヒビ
ターとも呼ぶべきものである。二次再結晶粒の駆動力は
粒界エネルギーなので、駆動力が小さいすなわちマトリ
クス粒径が大きいほど、二次再結晶温度は高温となる。
同じ結晶粒径であれば二次インヒビター強度が強いほど
二次再結晶温度は高温となる。二次インヒビターの強さ
だけでは二次再結晶温度は決まらないが、ここでは結晶
粒径も考慮して、二次再結晶温度が低いとき二次インヒ
ビターが弱い、二次再結晶温度が高温ほど二次インヒビ
ターが強いと表現する。
An inhibitor from the completion of primary recrystallization to the appearance of secondary recrystallization is called a secondary inhibitor. The first purpose of the nitriding treatment of Method B is to provide a secondary inhibitor. This addition of inhibitor by nitriding should be called acquired inhibitor. Since the driving force of the secondary recrystallized grains is grain boundary energy, the smaller the driving force, that is, the larger the matrix grain size, the higher the secondary recrystallization temperature becomes.
If the crystal grain size is the same, the higher the secondary inhibitor strength, the higher the secondary recrystallization temperature. The secondary recrystallization temperature cannot be determined only by the strength of the secondary inhibitor, but here, considering the crystal grain size, the secondary inhibitor is weak when the secondary recrystallization temperature is low. Described as having a strong secondary inhibitor.

【0014】二次再結晶粒が選択的に成長している過程
でのインヒビター強度、すなわち二次再結晶方位の選択
に深く係わるインヒビター強度を三次インヒビター強度
と呼ぶ。三次インヒビター強度が強いほど、一般粒界と
対応粒界の粒界移動差が大きくなり、二次再結晶方位選
択性が強まる。二次再結晶開始時のインヒビター強度は
二次再結晶開始という点を強調すれば二次インヒビター
強度といえるし、二次再結晶粒が発生し成長しつつある
という点を強調すれば三次インヒビターともいえる。一
次再結晶焼鈍後窒化処理を行うB法では一次再結晶完了
時と二次再結晶焼鈍開始時ではインヒビター強度が著し
く異なるが、A法の場合一次インヒビター強度と、二次
再結晶焼鈍開始時の二次インヒビター強度とは同一であ
る。
The inhibitor strength during the process in which the secondary recrystallized grains are selectively grown, that is, the inhibitor strength which is deeply involved in the selection of the secondary recrystallized orientation is called the tertiary inhibitor strength. The stronger the tertiary inhibitor strength, the larger the grain boundary migration difference between the general grain boundary and the corresponding grain boundary, and the stronger the secondary recrystallization orientation selectivity. The inhibitor strength at the start of secondary recrystallization can be said to be the secondary inhibitor strength by emphasizing the initiation of secondary recrystallization, and also the tertiary inhibitor by emphasizing that secondary recrystallized grains are being generated and growing. I can say. In the method B in which the nitriding treatment is performed after the primary recrystallization annealing, the inhibitor strength is significantly different between the completion of the primary recrystallization and the start of the secondary recrystallization annealing. It is the same as the secondary inhibitor strength.

【0015】上に述べたように一次再結晶粒径は一次イ
ンヒビターの強度でほぼ決まる。A法で例えばMnSの
みをインヒビターとした場合は18μm、AlNのみで
は14μm、AlNとMnSを併用している通常のA法
では8μmとなる。またスラブ加熱温度が1150℃と
低いB法の場合は同じAlNを使っているが、AlNの
析出サイズが大きいため一次インヒビターが弱いので一
次再結晶粒径は24μm程度と大きい。
As described above, the primary recrystallized grain size is almost determined by the strength of the primary inhibitor. In the method A, for example, when only MnS is used as an inhibitor, the thickness is 18 μm, when only AlN is 14 μm, and when the normal method A using AlN and MnS together is 8 μm. Further, the same AlN is used in the case of the B method in which the slab heating temperature is as low as 1150 ° C. However, the primary recrystallized grain size is as large as about 24 μm because the primary inhibitor is weak due to the large precipitation size of AlN.

【0016】本発明鋼のスラブ加熱温度はB法より高
く、A法と同様またはA法より低い。本発明鋼のスラブ
加熱温度をB法より高くした理由を述べる。SとSeは
冶金的にほぼ等価の働きをするので以下の説明ではSに
限定して説明する。本発明鋼はインヒビターとしてSを
0.010%〜0.040%の範囲で含有している。こ
のように高いSを完全に溶解するためにはスラブ加熱温
度を1300℃以上の高温とする必要がある。しかしS
を完全に固溶させた場合、硫化物は熱間圧延中に微細均
一に析出し、一次インヒビター強度が強くなりすぎて一
次再結晶後結晶粒径が小さくなり後述する欠点が生じ
る。
The slab heating temperature of the steel of the present invention is higher than that of the B method and is the same as that of the A method or lower than that of the A method. The reason why the slab heating temperature of the steel of the present invention is higher than that of the B method will be described. Since S and Se have metallurgical equivalent functions, the following description will be limited to S. The steel of the present invention contains S as an inhibitor in the range of 0.010% to 0.040%. In order to completely dissolve such high S, it is necessary to set the slab heating temperature to a high temperature of 1300 ° C. or higher. But S
Is completely dissolved, the sulfide is finely and uniformly precipitated during hot rolling, the primary inhibitor strength becomes too strong, and the crystal grain size after primary recrystallization becomes small, which causes the drawbacks described later.

【0017】そこで本発明においては、粗圧延段階また
は仕上げ熱延工程で比較的粗大に析出するように粗圧延
温度を下げ熱延板の厚みを薄くして、仕上げ圧延中の温
度降下を大きくするようにした。このような条件で熱延
板を作れば熱延工程でA法と比べて比較的大きな硫化物
が析出し、一次インヒビター強度を弱め一次再結晶焼鈍
過程で結晶粒径の調節が可能となった。しかし粗圧延温
度を1150℃未満の低温とした場合は硫化物の分散が
不均一でかつサイズが大きくなり過ぎて三次インヒビタ
ー強度が弱くなり磁束密度が低くなるので粗圧延開始温
度を1150℃以上とした。
Therefore, in the present invention, the temperature of the rough rolling is lowered so as to precipitate relatively coarsely in the rough rolling stage or the finish hot rolling step, and the thickness of the hot rolled sheet is reduced to increase the temperature drop during the finish rolling. I did it. When a hot-rolled sheet is produced under such conditions, a relatively large amount of sulfide is precipitated in the hot-rolling process as compared with the method A, and the primary inhibitor strength is weakened, and the grain size can be adjusted in the primary recrystallization annealing process. . However, when the rough rolling temperature is lower than 1150 ° C, the sulfide dispersion is non-uniform and the size becomes too large, the tertiary inhibitor strength becomes weak and the magnetic flux density becomes low. did.

【0018】また粗圧延開始温度を1400℃以下とし
たのは、粗圧延開始温度をこれより高くし本発明で規定
した熱延厚みとした場合、熱延工程で硫化物が微細すぎ
て一次インヒビターが強すぎ、高い磁束密度が得られな
いためである。このように成分および熱延条件を調整後
図1で示した範囲で二次加熱を行うと一次再結晶粒径を
A法と比較して大きくでき、三次インヒビター強度はA
法同様またはそれ以上に強化でき集積度の高い(11
0)[001]二次再結晶組織が発達する。
Further, the rough rolling start temperature is set to 1400 ° C. or lower because when the rough rolling start temperature is set higher than this and the hot rolled thickness is defined in the present invention, the sulfides are too fine in the hot rolling step and the primary inhibitor is produced. Is too strong and a high magnetic flux density cannot be obtained. When the secondary heating is carried out within the range shown in FIG. 1 after adjusting the components and hot rolling conditions in this way, the primary recrystallized grain size can be increased as compared with Method A, and the tertiary inhibitor strength is A
It can be strengthened to the same level as the law or higher
0) The [001] secondary recrystallized structure develops.

【0019】二次再結晶焼鈍により粒界移動による粒成
長が僅かに起きるが、ある温度に達すると一般粒界と対
応粒界の粒界移動速度に大きな差がある状態に達する。
この状態で、対応粒界と接する確率の最も高い結晶方位
が周囲の結晶粒を食べて大きくなり、サイズ効果(寸法
の優位性)を得て異常成長を開始する。すなわち二次再
結晶の発現である。
Grain growth due to grain boundary migration occurs slightly due to the secondary recrystallization annealing, but when a certain temperature is reached, there is a large difference in grain boundary migration speed between the general grain boundary and the corresponding grain boundary.
In this state, the crystal orientation with the highest probability of contact with the corresponding grain boundary eats the surrounding crystal grains and becomes large, and the size effect (dimensional advantage) is obtained to start abnormal growth. That is, it is the manifestation of secondary recrystallization.

【0020】二次再結晶粒成長過程で動きやすい対応粒
界にはΣ5対応粒界からΣ33対応粒界まで存在する
が、方向性電磁鋼板の二次再結晶に関与する存在頻度の
高い対応粒界はΣ5,Σ7,Σ9の3種類であり、この
中でΣ7粒界は一方向性電磁鋼板で存在頻度が低いので
Σ5粒界とΣ9粒界を考慮すればよい。本発明の一次再
結晶板では(110)[001]方位粒は他の方位と比
べてΣ9対応粒界を形成する確率が最も高い。また理想
(110)[001]方位からはずれた方位ではΣ5対
応粒界を形成する確率も高い。
Corresponding grains having a high frequency of occurrence that are involved in the secondary recrystallization of the grain-oriented electrical steel sheet are present in the corresponding grain boundaries that easily move during the secondary recrystallization grain growth process, from grain boundaries corresponding to Σ5 to grain boundaries corresponding to Σ33. There are three types of boundaries, Σ5, Σ7, and Σ9. Among them, the Σ7 grain boundary is a unidirectional electrical steel sheet and its existence frequency is low, so the Σ5 grain boundary and the Σ9 grain boundary may be considered. In the primary recrystallized plate of the present invention, the (110) [001] oriented grain has the highest probability of forming a Σ9-corresponding grain boundary as compared with other orientations. In addition, there is a high probability that a Σ5-corresponding grain boundary is formed in an orientation deviating from the ideal (110) [001] orientation.

【0021】Σ5対応粒界とΣ9対応粒界では動きやす
くなる温度領域が若干異なっており、Σ5粒界とΣ9粒
界が共存する場合は、Σ5粒界がより低温で優先的に動
きやすくなる。したがって(110)[001]集積度
の高い二次再結晶粒が優先的に成長するためには、Σ5
粒界が優先的に動きやすくなる温度域では二次インヒビ
ターが強く二次再結晶が発現することを防止する必要が
ある。
The Σ5 compatible grain boundary and the Σ9 compatible grain boundary have slightly different temperature regions in which they easily move. When the Σ5 grain boundary and the Σ9 grain boundary coexist, the Σ5 grain boundary becomes easier to move preferentially at a lower temperature. . Therefore, in order to preferentially grow the secondary recrystallized grains with high (110) [001] integration, Σ5
In the temperature range where the grain boundaries preferentially move, the secondary inhibitor is strongly required to prevent secondary recrystallization from occurring.

【0022】A法は一次結晶粒径が小さいので二次イン
ヒビターが弱く低温で二次再結晶が発現する。A法では
Alが0.022%から0.030%の範囲にあるが、
その範囲でAlが低いと一次再結晶粒径は1〜2μm程
度小さくなる。もう少し厳密には鋼中のNがすべてAl
Nになったとすると仮定した場合、(1)式で表せるA
R (窒化物を形成しない固溶Al量を示す指標ともい
える値)が大きいほど一次再結晶焼鈍時の結晶粒径が大
きくなる、すなわち一次インヒビター強度が弱くなる傾
向があることを見いだした。 AlR [ppm]=solAl[ppm]−(27/14)N[ppm] ・・・(1)
Since the primary crystal grain size of Method A is small, the secondary inhibitor is weak and secondary recrystallization occurs at low temperature. In method A, Al is in the range of 0.022% to 0.030%,
If Al is low in this range, the primary recrystallized grain size becomes small by about 1 to 2 μm. More strictly speaking, all N in the steel is Al
If it is assumed that N, then A can be expressed by equation (1).
It has been found that as l R (a value that can be said to be an index indicating the amount of solid solution Al that does not form a nitride) increases, the crystal grain size during primary recrystallization annealing increases, that is, the primary inhibitor strength tends to decrease. Al R [ppm] = solAl [ppm] − (27/14) N [ppm] (1)

【0023】例えばNが100ppmでsolAlが
0.0240%でも、Nが50ppmでsolAlが
0.0143%でも、Nが140ppmでsolAlが
0.0317%でもいずれもAlR は47となり、Al
が0.0143から0.0317%と大きく変化しても
一次再結晶粒径は同一となる。したがって一次インヒビ
ター強度を考える場合はAlR の考慮が必要である。し
かしながら脱Alによる二次インヒビター強度の低下は
Alの絶対量が小さいほど顕著であり、二次再結晶粒の
方位選択性に直接影響する三次インヒビター強度もAl
R が同じであればAlの絶対量が少ない場合は弱くな
る。
For example, if N is 100 ppm and solAl is 0.0240%, if N is 50 ppm and solAl is 0.0143%, or if N is 140 ppm and solAl is 0.0317%, Al R is 47 and Al
, The primary recrystallized grain size remains the same even when the value changes from 0.0143 to 0.0317%. Therefore, it is necessary to consider Al R when considering the primary inhibitor strength. However, the decrease in secondary inhibitor strength due to de-Al is more remarkable as the absolute amount of Al is smaller, and the tertiary inhibitor strength, which directly affects the orientation selectivity of the secondary recrystallized grains, is also reduced.
If R is the same, it becomes weak if the absolute amount of Al is small.

【0024】二次再結晶焼鈍過程でAlが酸化され鋼板
表面近傍のAl量が減少し、この部分のインヒビター強
度が弱くなる。したがってこの部分から二次再結晶が発
現するが、AlR が小さく駆動力が大きい時、もともと
Alの絶対値が小さい場合は、二次再結晶が発現する温
度は925℃以下の低温であり、この温度ではΣ5粒界
が優先的に動くため、発現する二次再結晶方位は理想G
oss方位から10°以上離れた方位となる。
During the secondary recrystallization annealing process, Al is oxidized and the amount of Al in the vicinity of the surface of the steel sheet is reduced, so that the inhibitor strength of this portion is weakened. Therefore, secondary recrystallization appears from this portion, but when Al R is small and the driving force is large and the absolute value of Al is originally small, the temperature at which secondary recrystallization appears is a low temperature of 925 ° C. or lower, At this temperature, the Σ5 grain boundary moves preferentially, so the secondary recrystallization orientation that develops is ideal G
The azimuth is 10 degrees or more away from the oss azimuth.

【0025】一方Alが0.033%以上と高く、かつ
AlR が大きい時、一次粒径が大きくなるので駆動力
が減少するためと、Alの濃度そのものが高いので、
直ちにAlNが形成されてインヒビター強度が低下しな
いため、二次インヒビターが相対的に強くなり低温での
二次再結晶の発現は防止できる。そのためΣ5粒界の優
先的粒界移動に基づく方位の悪い二次再結晶の発現は防
止できる。
On the other hand, when Al is as high as 0.033% or more and Al R is large, the driving force is decreased because the primary particle size becomes large, and the Al concentration itself is high.
Since AlN is immediately formed and the inhibitor strength does not decrease, the secondary inhibitor becomes relatively strong, and the occurrence of secondary recrystallization at low temperature can be prevented. Therefore, it is possible to prevent the occurrence of secondary recrystallization having a bad orientation due to the preferential grain boundary movement of the Σ5 grain boundary.

【0026】しかしながら二次再結晶温度が1100℃
以上の高温ではAlの酸化が急激に起き、三次インヒビ
ター強度が急激に低下して選択的な粒界移動が起き難く
なり、二次再結晶が発現しなくいわゆる細粒組織とな
る。したがってA法で(110)[001]方位の集積
度の高い二次再結晶を発現させるためには、低温で二次
再結晶が発現することを防ぐことと、高温で三次インヒ
ビター強度が急激に低下して細粒が発生するのを防ぐた
め、Al含有量とAlR 値を極めて狭い範囲に管理する
必要がある。
However, the secondary recrystallization temperature is 1100 ° C.
At the above high temperature, Al is rapidly oxidized, the tertiary inhibitor strength is rapidly reduced, and selective grain boundary migration becomes difficult to occur, so that secondary recrystallization does not occur and a so-called fine grain structure is formed. Therefore, in order to develop the secondary recrystallization having a high degree of integration of the (110) [001] orientation by the method A, it is necessary to prevent the secondary recrystallization from appearing at a low temperature and to rapidly increase the tertiary inhibitor strength at a high temperature. In order to prevent the decrease and the generation of fine particles, it is necessary to control the Al content and the Al R value within an extremely narrow range.

【0027】一方B法ではAlが低く表面相近傍でAl
が減少しても粒径が大きいためΣ5粒界が優先的に動
きやすくなる925℃以下の低温では二次再結晶が発現
しない、表面相から窒化してあるので、脱Alが起き
ても、直ちにAlNが形成されるため表面相近傍のイン
ヒビターの低下を防止でき、925℃以下の低温では二
次再結晶の発現を防止できる。
On the other hand, in the method B, the Al content is low, and Al near the surface phase
, The grain size is large even if it decreases, so that the Σ5 grain boundary preferentially moves. Secondary recrystallization does not occur at a low temperature of 925 ° C. or less. Since AlN is immediately formed, it is possible to prevent the decrease of the inhibitor in the vicinity of the surface phase and prevent the occurrence of secondary recrystallization at a low temperature of 925 ° C. or lower.

【0028】しかしながらB法では一次インヒビター強
度が弱いため、仕上げ熱延開始温度や固溶Al、一次再
結晶焼鈍温度のばらつき等により一次再結晶粒径は変動
しやすい。一次再結晶粒径が大きすぎる場合や、窒化量
が多すぎる場合、二次再結晶温度が1100℃以上とな
りAlの酸化速度が著しく速まり、三次インヒビター強
度が急激に減少し、Σ9粒界の選択的移動速度が相対的
に遅くなり、(110)[001]方位二次再結晶の集
積度が低下する。
However, since the primary inhibitor strength is weak in the B method, the primary recrystallized grain size is likely to vary due to variations in the finish hot rolling start temperature, solid solution Al, primary recrystallization annealing temperature, and the like. If the primary recrystallization grain size is too large or the nitriding amount is too large, the secondary recrystallization temperature becomes 1100 ° C. or higher, the oxidation rate of Al remarkably increases, the tertiary inhibitor strength decreases sharply, and the Σ9 grain boundary The selective moving speed becomes relatively slow, and the integration degree of the (110) [001] -oriented secondary recrystallization decreases.

【0029】A法ではB法と比べて低温で二次再結晶が
発現するが、発現する二次再結晶方位の(110)[0
01]方位集積度はB法と同等またはそれ以上である。
この理由はA法では微細分散したAlNに加えて微細分
散したMnSが存在するので、インヒビターが主として
AlNのみで構成されているB法と比べて三次インヒビ
ター強度がB法と同等またはそれ以上の強さのためであ
る。
In method A, secondary recrystallization occurs at a lower temperature than method B, but the secondary recrystallization orientation (110) [0]
01] The orientation integration degree is equal to or higher than that of the B method.
The reason for this is that in method A, since finely dispersed MnS exists in addition to finely dispersed AlN, the tertiary inhibitor strength is equal to or higher than that in method B as compared with method B in which the inhibitor is mainly composed of only AlN. Because it is.

【0030】B法では一次再結晶後窒化することと、一
次再結晶粒径が大きいので二次再結晶発現までほとんど
粒成長は認められず、二次再結晶開始温度はA法と比べ
て高い。すなわち二次インヒビターの強さはA法より強
い。しかし発現する二次再結晶粒の方位集積度はA法と
同等または僅かに劣る。これは三次インヒビターはA法
と同等または若干弱いためである。
In method B, nitriding is performed after primary recrystallization, and since the primary recrystallization grain size is large, almost no grain growth is observed until secondary recrystallization occurs, and the secondary recrystallization starting temperature is higher than in method A. . That is, the strength of the secondary inhibitor is stronger than that of Method A. However, the degree of orientation integration of the secondary recrystallized grains that appear is equal to or slightly inferior to that of the method A. This is because the tertiary inhibitor is equal to or slightly weaker than Method A.

【0031】本発明鋼の場合は一次インヒビター強度は
硫化物の析出サイズが大きいのでA法より弱いが、B法
と比べて均一に分散したMn,Cu等の硫化物が多量に
存在することと、その硫化物を核としたAlNの微細分
散が図られているので、一次インヒビターはB法と比べ
て強く、さらに必要に応じてP,Sn,Pb,B,Sb
を添加しているのでこれらの効果および一次再結晶後の
窒化効果等で三次インヒビターはB法より強いだけでな
くA法より強くなっている。一次再結晶粒径が大きいの
で低温で二次再結晶が発現するおそれがないこと、三次
インヒビターが強いことから、急激にインヒビター強度
が弱まるおそれが少ないので、A法の如くAlR の値を
厳密に制御する必要はない。
In the case of the steel of the present invention, the primary inhibitor strength is weaker than that of the A method because the precipitation size of sulfide is large, but compared with the B method, a large amount of uniformly dispersed sulfides such as Mn and Cu are present. Since the fine dispersion of AlN with the sulfide as the nucleus is achieved, the primary inhibitor is stronger than the B method, and if necessary, P, Sn, Pb, B, Sb is used.
In addition to these effects, the tertiary inhibitor is not only stronger than the B method but also stronger than the A method due to these effects and the nitriding effect after primary recrystallization. Since primary recrystallization grain diameter is large that no risk of expression of secondary recrystallization at a low temperature, since the tertiary inhibitor is strong, rapidly because a possibility that the inhibitor strength is weakened less strictly a value as Method A Al R There is no need to control.

【0032】しかし本発明材をA法、B法で通常採用さ
れている一次再結晶焼鈍を行う場合は結晶粒径が小さ
く、結果として二次インヒビターが弱くなり低温で二次
再結晶が発現する危険がある。本発明で一次再結晶焼鈍
過程で二次加熱を行う第一の理由は結晶粒径を調節する
ためである。A法では一次インヒビターが強すぎてこの
ような二次加熱を行っても一次再結晶粒径はほとんど変
化しない。B法では一次インヒビターが弱いので、図1
に示すような高温の二次加熱を行わないでも一次再結晶
粒径は大きくなる。
However, when the material of the present invention is subjected to the primary recrystallization annealing which is usually employed in the methods A and B, the grain size is small and, as a result, the secondary inhibitor becomes weak and the secondary recrystallization appears at low temperature. There is danger. The first reason for performing the secondary heating in the primary recrystallization annealing process in the present invention is to control the crystal grain size. In the method A, the primary inhibitor is too strong, and even if such secondary heating is performed, the primary recrystallized grain size hardly changes. In method B, the primary inhibitor is weak, so
The primary recrystallized grain size becomes large even if the high temperature secondary heating as shown in FIG.

【0033】したがって本発明材の一次再結晶後の結晶
粒径はA法より大きくB法より小さい。本発明法の場合
の二次再結晶開始温度はB法と比べて結晶粒径が小さい
にも関わらずほぼ同等か若干低く、A法のそれと比べる
と高い。この理由は、A法と比べると粒径が大きいため
である。また粒径はB法と比べては小さいが、析出物や
溶質原子の量が多いため、二次インヒビターの強度はB
法より若干弱い程度で、二次再結晶開始温度はB法とほ
ぼ同等または若干低い程度である。
Therefore, the grain size after primary recrystallization of the material of the present invention is larger than that of method A and smaller than that of method B. The secondary recrystallization starting temperature in the case of the method of the present invention is almost the same as or slightly lower than that of the method B, although it is smaller than that of the method B, and higher than that of the method A. The reason for this is that the particle size is larger than in method A. Although the particle size is smaller than that of the B method, the strength of the secondary inhibitor is B because the amount of precipitates and solute atoms is large.
The temperature is slightly weaker than that of Method B, and the secondary recrystallization starting temperature is about the same as or slightly lower than that of Method B.

【0034】本発明法で発現する二次再結晶の(11
0)[001]方位集積度はA,Bいずれの方法より若
干良好である。その理由は、三次インヒビターがA,B
いずれの方法より強いためである。
(11) of the secondary recrystallization developed by the method of the present invention
0) [001] orientation integration is slightly better than either method A or B. The reason is that the tertiary inhibitor is A, B
This is because it is stronger than either method.

【0035】本発明で一次再結晶過程で二次加熱を行う
第二の理由は、表面酸化物の量と形態を制御するためで
ある。そのため二次加熱時の雰囲気を還元性として露点
を0℃以下−40℃以上としている。この理由はこれ以
上露点を高温とする場合は脱炭焼鈍過程で形成されたF
eOの還元が不十分でFeOの量が多すぎ二次再結晶焼
鈍過程でグラス皮膜の形成に悪影響を与えるためであ
り、露点が−40℃以下では鋼板表面に多量のSiO2
が形成され、このSiO2 が鋼板中のAlと反応して鋼
中のAl量が減少し、その結果三次インヒビター強度が
弱くなり(110)[001]方位二次再結晶の集積度
が低下し磁束密度が下がるためである。最適なFeO量
とSiO2 量をそのつど測定して露点を決めることは困
難であるので、目安としては一次再結晶焼鈍後の鋼板の
酸素量を500から800ppmに納まるように二次加
熱の露点を決めればよい。これ未満の酸素量では皮膜形
成が不十分であり、これを超える酸素量ではAlの選択
酸化により三次インヒビター強度が低下するためであ
る。
The second reason for carrying out the secondary heating in the primary recrystallization process in the present invention is to control the amount and morphology of the surface oxide. Therefore, the dew point is set to 0 ° C. or lower and −40 ° C. or higher by reducing the atmosphere during the secondary heating. The reason for this is that when the dew point is raised to a higher temperature, the F formed in the decarburization annealing process
This is because the reduction of eO is insufficient and the amount of FeO is too large, which adversely affects the formation of the glass film in the secondary recrystallization annealing process. When the dew point is -40 ° C or less, a large amount of SiO 2 is formed on the surface of the steel sheet.
This SiO 2 reacts with Al in the steel sheet to reduce the amount of Al in the steel, and as a result, the strength of the tertiary inhibitor becomes weak and the degree of accumulation of (110) [001] orientation secondary recrystallization decreases. This is because the magnetic flux density decreases. Since it is difficult to determine the dew point by measuring the optimum FeO amount and SiO 2 amount each time, as a guideline, the dew point of secondary heating should be set so that the oxygen amount of the steel sheet after primary recrystallization annealing falls within 500 to 800 ppm. Just decide. This is because if the amount of oxygen is less than this, the film formation is insufficient, and if the amount of oxygen exceeds this, the tertiary inhibitor strength decreases due to the selective oxidation of Al.

【0036】以下その他の条件を限定した理由を説明す
る。本発明法に従って処理すればCは0.015%未満
でも磁束密度の高い二次再結晶が得られるが、粗圧延開
始温度が1300℃以上の場合、二次再結晶が不完全に
なりいわゆる細粒と呼ばれる(110)[001]方位
でない結晶粒が形成されるため下限を0.015%とし
た。また上限を0.1%としたのはこれを超えるCでは
一次再結晶焼鈍の脱炭時間が長くなり経済的でないため
である。
The reason for limiting the other conditions will be described below. If the treatment according to the method of the present invention is performed, secondary recrystallization having a high magnetic flux density can be obtained even if C is less than 0.015%. However, when the rough rolling start temperature is 1300 ° C. or higher, the secondary recrystallization becomes incomplete and so-called fine recrystallization is performed. The lower limit was set to 0.015% because crystal grains called (110) [001] orientation called grains are formed. Further, the upper limit is set to 0.1% because if it exceeds C, the decarburization time of the primary recrystallization annealing becomes long and it is not economical.

【0037】Siは含有量が多いほど固有抵抗が増加し
て製品の渦流損を減少させるので、渦流損を減少させる
ためにはSiは多いほど良い。Siを2%以上と限定し
たのはこれ未満では渦流損が大きく好ましくないので下
限を2%としたものである。しかしSiは添加量が増す
ほど冷間圧延工程で割れやすくなる。Siが4.5%を
超えると冷間圧延に特別の工夫が必要で経済的に製造す
るという本発明の目的にそれるので上限を4.5%とし
た。
As the content of Si increases, the specific resistance increases and the eddy current loss of the product decreases. Therefore, the more Si, the better in order to reduce the eddy current loss. The reason why Si is limited to 2% or more is that the lower limit is 2% because eddy current loss is large and it is not preferable if Si is less than this. However, Si becomes more likely to crack in the cold rolling process as the added amount increases. If the Si content exceeds 4.5%, the cold rolling requires special measures and the production of the steel is economically disadvantageous. Therefore, the upper limit is set to 4.5%.

【0038】Alは(Al,Si)Nを形成しインヒビ
ターとして働くが、酸可溶性Alとして0.02%以上
ないとその効果が発揮されないので下限を0.02%と
した。上限を0.06%としたのは、これを超えるAl
が存在するとインヒビターとして有効に働かなくなるた
めである。
Although Al forms (Al, Si) N and acts as an inhibitor, the effect is not exhibited unless the acid-soluble Al is 0.02% or more, so the lower limit was made 0.02%. The upper limit of 0.06% is Al exceeding this
This is because the presence of the compound makes it ineffective as an inhibitor.

【0039】Nは(Al,Si)Nを形成しインヒビタ
ーとして働くが、スラブの段階で0.005%以上ない
とその効果が発揮されないので下限を0.005%とし
た。上限を0.01%としたのは、これを超えても磁気
特性の向上は認められないので上限を0.01%とし
た。
N forms (Al, Si) N and acts as an inhibitor, but its effect is not exhibited unless it is 0.005% or more at the stage of slab, so the lower limit was made 0.005%. The upper limit of 0.01% is set to 0.01% because improvement in magnetic properties is not observed even if the upper limit is exceeded.

【0040】以下の元素は一次インヒビターを強化する
働きがあるが主に三次インヒビターを強化する目的で添
加したものである。SまたはSeはこれらの一方または
両方が合わせて0.010〜0.040%の範囲にあれ
ばよい。このように限定したのは本発明素材成分におい
てはSまたはSeが0.010%未満では三次インヒビ
ターが弱く(110)[001]からはずれた二次再結
晶粒の発現が多くなるためである。Se,Sは多いほど
三次インヒビターを強化する効果があり、磁束密度が向
上するが、0.040%を超えると熱延時に耳割れが発
生しやすくなるので上限を0.040%とした。
The following elements have the function of strengthening the primary inhibitor, but are added mainly for the purpose of strengthening the tertiary inhibitor. One or both of S and Se may be in the range of 0.010 to 0.040% in total. The reason for this limitation is that in the material component of the present invention, when S or Se is less than 0.010%, the tertiary inhibitor is weak and secondary recrystallized grains deviating from (110) [001] increase. The higher the content of Se and S, the stronger the effect of strengthening the tertiary inhibitor, and the higher the magnetic flux density. However, if it exceeds 0.040%, ear cracks tend to occur during hot rolling, so the upper limit was made 0.040%.

【0041】CuはS,Seと析出物を形成したりまた
は単独で三次インヒビターを強化する働きがあるが、
0.01%未満ではその効果が小さいので下限を0.0
1%とした。1%を超えて添加しても三次インヒビター
強化効果があるが、それ以上添加するのは経済的でない
ので上限を1%とした。
Cu has a function of forming a precipitate with S and Se or strengthening the tertiary inhibitor by itself,
If less than 0.01%, the effect is small, so the lower limit is 0.0
It was set to 1%. Although addition of more than 1% has the effect of strengthening the tertiary inhibitor, it is not economical to add more than that, so the upper limit was made 1%.

【0042】MnはS,Seと析出物を形成して三次イ
ンヒビターを強化する働きがあるが、0.01%未満で
はその効果が小さいので下限を0.01%とした。0.
5%を超えて添加しても三次インヒビター強化効果があ
るが、それ以上添加するのは経済的でないので上限を
0.5%とした。
Mn has a function of forming a precipitate with S and Se to strengthen the tertiary inhibitor, but if it is less than 0.01%, its effect is small, so the lower limit was made 0.01%. 0.
Addition of more than 5% has the effect of strengthening the tertiary inhibitor, but it is not economical to add more than that, so the upper limit was made 0.5%.

【0043】Snは三次インヒビターを強くする働きが
あるが、0.001%未満では効果が小さいので下限を
0.001%とした。Snは0.3%を超えても効果は
あるがこれ以上添加することは経済的でないので上限を
0.3%とした。
Sn has a function of strengthening the tertiary inhibitor, but if it is less than 0.001%, the effect is small, so the lower limit was made 0.001%. Sn is effective even if it exceeds 0.3%, but it is not economical to add more than this, so the upper limit was made 0.3%.

【0044】以下の元素は必要に応じてこれらの1種ま
たはそれ以上含有させるものである。Biは三次インヒ
ビターを強くする働きがあるが、0.0050%未満で
は効果が小さいので下限を0.005%とした。Biは
0.15%を超えても効果はあるがこれ以上添加するこ
とは経済的でないので上限を0.15%とした。
The following elements are contained in one or more of these as required. Bi has a function of strengthening the tertiary inhibitor, but the effect is small at less than 0.0050%, so the lower limit was made 0.005%. Although Bi is effective even if it exceeds 0.15%, it is not economical to add more than Bi, so the upper limit was made 0.15%.

【0045】Pは三次インヒビターを強くする働きがあ
るが、0.001%未満では効果が小さいので下限を
0.001%とした。Pは0.15%を超えても効果は
あるがこれ以上添加することは経済的でないので上限を
0.15%とした。
P has the function of strengthening the tertiary inhibitor, but if it is less than 0.001%, the effect is small, so the lower limit was made 0.001%. P is effective even if it exceeds 0.15%, but it is not economical to add more than this, so the upper limit was made 0.15%.

【0046】Sbは三次インヒビターを強くする働きが
あるが、0.001%未満では効果が小さいので下限を
0.001%とした。Sbは0.15%を超えても効果
はあるがこれ以上添加することは経済的でないので上限
を0.15%とした。
Sb has the function of strengthening the tertiary inhibitor, but if it is less than 0.001%, the effect is small, so the lower limit was made 0.001%. Sb is effective even if it exceeds 0.15%, but it is not economical to add more than this, so the upper limit was made 0.15%.

【0047】Pbは三次インヒビターを強くする働きが
あるが、0.001%未満では効果が小さいので下限を
0.001%とした。Pbは0.15%を超えても効果
はあるがこれ以上添加することは経済的でないので上限
を0.15%とした。
Pb has a function of strengthening the tertiary inhibitor, but if it is less than 0.001%, the effect is small, so the lower limit was made 0.001%. Pb is effective even if it exceeds 0.15%, but it is not economical to add more than this, so the upper limit was made 0.15%.

【0048】Bは三次インヒビターを強くする働きがあ
るが、0.001%未満では効果が小さいので下限を
0.001%とした。Bは0.1%を超えても効果はあ
るがこれ以上添加することは経済的でないので上限を
0.1%とした。
B has a function of strengthening the tertiary inhibitor, but if it is less than 0.001%, the effect is small, so the lower limit was made 0.001%. B is effective even if it exceeds 0.1%, but it is not economical to add more than 0.1%, so the upper limit was made 0.1%.

【0049】粗熱延開始温度を1150℃以上としたの
はこれ未満の温度では熱延時の圧延力が大きくなり不経
済のためと、硫化物のサイズが大きくなりすぎ三次イン
ヒビターの強度が弱まり高い磁束密度が得られないため
である。一方1400℃を超えても熱延仕上げ厚みを
1.6mm以下とすれば硫化物のサイズが大きくなり高
い磁束密度が得られるが、熱的に経済的でないので上限
を1400℃以下とした。
The reason why the crude hot rolling start temperature is set to 1150 ° C. or higher is that it is uneconomical because the rolling force at the time of hot rolling becomes large at a temperature lower than this temperature. This is because the magnetic flux density cannot be obtained. On the other hand, if the hot-rolled finish thickness is 1.6 mm or less and the sulfide size increases and a high magnetic flux density can be obtained even if it exceeds 1400 ° C, the upper limit is set to 1400 ° C or less because it is not thermally economical.

【0050】熱延板の厚みを2.5mm以下としたのは
これを超える厚みでは1回の冷間圧延では高い磁束密度
が得られなくなるので2.5mm以下とした。1mm以
上としたのはこれより薄い熱延板では高い磁束密度が得
にくいことによる。熱延板焼鈍の温度を950℃以上と
したのは950℃未満では高い磁束密度が得られないか
らであり、1150℃以下としたのはこれを超える温度
でも高い磁束密度は得られるが、1150℃以下の温度
でも高い磁束密度が得られるので、熱的に不経済となる
ので1150℃以下とした。900℃まで空冷より遅い
速度、好ましくは4℃/sec以下で冷却するのはこれ
より速い速度では磁束密度が下がるためであり、この温
度から空冷より速い速度、好ましくは13℃/sec以
上で冷却するのは、空冷より遅い速度で冷却すると磁束
密度が低下するためである。
The thickness of the hot-rolled sheet is set to 2.5 mm or less because a magnetic flux density cannot be obtained by one cold rolling if the thickness exceeds this value, which is set to 2.5 mm or less. The thickness of 1 mm or more is because it is difficult to obtain a high magnetic flux density with a hot rolled sheet thinner than this. The reason why the temperature of hot-rolled sheet annealing is 950 ° C. or higher is that a high magnetic flux density cannot be obtained below 950 ° C., and the temperature of 1150 ° C. or lower gives a high magnetic flux density at a temperature higher than 1150 ° C. Since a high magnetic flux density can be obtained even at a temperature of ℃ or less, it is thermally uneconomical. Cooling at a rate slower than air cooling up to 900 ° C., preferably 4 ° C./sec or less is because the magnetic flux density decreases at a faster rate, and cooling from this temperature is faster than air cooling, preferably 13 ° C./sec or more. This is because the magnetic flux density decreases when cooled at a slower rate than air cooling.

【0051】製品厚みを0.30mm以下としたのはこ
れより厚い場合も高い磁束密度は得られるが、鉄損が悪
くなるので0.30mmとした。また製品板厚を0.1
0mm以上としたのはこれより薄い場合二次再結晶が不
完全で磁束密度が低下するためである。
A product thickness of 0.30 mm or less is set to 0.30 mm because a high magnetic flux density can be obtained even when the product thickness is thicker than this, but iron loss is deteriorated. In addition, the product plate thickness is 0.1
The reason why the thickness is 0 mm or more is that when the thickness is smaller than this, secondary recrystallization is incomplete and the magnetic flux density decreases.

【0052】一次再結晶焼鈍の脱炭焼鈍温度を830℃
から860℃の間に限定したのはこの温度域で最も効率
的に脱炭可能なためであり、この温度域を外れると脱炭
しにくいためである。時間を20秒以上200秒以下と
したのは20秒未満では0.0020%以下まで脱炭で
きないためであり、200秒以下としたのはこれを超え
て長い時間加熱しても鋼板のC量はほとんど変化せず不
経済なためである。
The decarburization annealing temperature of the primary recrystallization annealing is set to 830 ° C.
To 860 ° C. is because decarburization is most efficient in this temperature range, and decarburization is hard to occur outside this temperature range. The reason why the time is set to 20 seconds or more and 200 seconds or less is that it is impossible to decarburize to 0.0020% or less when the time is less than 20 seconds, and the reason why the time is 200 seconds or less is that the C content of the steel sheet is longer even if heated for a long time. Is almost unchanged and uneconomical.

【0053】図1は本発明法の二次加熱温度領域を示
し、図の領域AはSまたはSeが0.015%以下の領
域であり、Bは0.015%を超えて0.030%ま
で、Cは0.030%を超えて0.040%の場合の領
域を示す。粗圧延開始温度とSまたはSeの含有量で二
次加熱温度を変える必要があることを示すが、図1の二
次加熱条件をSまたはSe量によりA,B,Cに分けた
のはSまたはSeが多いほど一次再結晶での粒成長がし
にくくなるので、このような領域で二次加熱を行わない
と磁束密度の高い二次再結晶組織が得られないためであ
る。加熱時間10秒以上としたのはこれより短いと磁束
密度がばらつく傾向が見られるためであり、180秒以
下としたのはこれより長く加熱しても磁束密度の向上は
見られず、経済的でないためである。
FIG. 1 shows the secondary heating temperature region of the method of the present invention. Region A of the diagram is a region in which S or Se is 0.015% or less, and B is more than 0.015% and 0.030%. Up to 0.030% to 0.040%, the area is 0.040%. It is shown that the secondary heating temperature needs to be changed depending on the rough rolling start temperature and the content of S or Se. The secondary heating condition in FIG. 1 is divided into A, B, and C by the amount of S or Se. Alternatively, the larger the amount of Se, the more difficult it is for grain growth in primary recrystallization, so that secondary recrystallization structure having a high magnetic flux density cannot be obtained unless secondary heating is performed in such a region. The heating time is set to 10 seconds or more because the magnetic flux density tends to fluctuate if the heating time is shorter than this, and the heating time is set to 180 seconds or less, the magnetic flux density is not improved even if the heating time is longer than this, which is economical. Because it is not.

【0054】一次再結晶後の全窒素量が100ppm以
上200ppm以下に入るように必要に応じて窒化処理
を行って調整するが、一次再結晶焼鈍後窒素量を100
ppm以上としたのは100ppm未満では三次インヒ
ビターが弱く高い磁束密度が得られないためである。ま
た200ppm以下と限定したのはこれより高くしても
高い磁束密度が得られるがこれ以上窒素量を高めるため
に窒化処理を施すことは経済的でないためである。
If necessary, a nitriding treatment is performed so as to adjust the total nitrogen amount after the primary recrystallization to 100 ppm or more and 200 ppm or less. The nitrogen amount after the primary recrystallization annealing is 100%.
The reason why the content is higher than or equal to ppm is that the tertiary inhibitor is weak and a high magnetic flux density cannot be obtained if the content is less than 100 ppm. Further, the reason for limiting the content to 200 ppm or less is that a higher magnetic flux density can be obtained even if the content is higher than this, but it is not economical to perform the nitriding treatment to increase the nitrogen content further.

【0055】[0055]

【実施例】以下本発明を実施例に従って具体的に説明す
る。 (実施例1)C:0.070%,Si:3.27%,M
n:0.073%,P:0.060%,solAl:
0.0270%,S:0.030%,Sn:0.13
%,Cu:0.08%,N:0.0070%を主成分と
したスラブを1200℃の温度で粗圧延を開始し、仕上
げ圧延を経て厚さ1.35mmの熱延板とした。その鋼
板を1130℃で10秒加熱後120秒かけて900℃
まで冷却後水冷した。次いで酸洗後冷間圧延を行い厚さ
0.19mmとした。この場合、冷間圧延途中板厚1.
55mm,1.2mm,0.8mm,0.6mm,0.
4mm,0.3mmの各厚みで250℃20分保持した
条件で冷延を行い厚み0.19mmとした。
EXAMPLES The present invention will be described in detail below with reference to examples. (Example 1) C: 0.070%, Si: 3.27%, M
n: 0.073%, P: 0.060%, solAl:
0.0270%, S: 0.030%, Sn: 0.13
%, Cu: 0.08%, N: 0.0070% as a main component, rough rolling was started at a temperature of 1200 ° C., and finish rolling was performed to obtain a hot rolled sheet having a thickness of 1.35 mm. The steel sheet is heated at 1130 ° C for 10 seconds and then 900 ° C over 120 seconds.
After cooling to water, it was cooled with water. Then, after pickling, cold rolling was performed to a thickness of 0.19 mm. In this case, the plate thickness 1.
55 mm, 1.2 mm, 0.8 mm, 0.6 mm, 0.
Cold rolling was carried out under the conditions of holding each thickness of 4 mm and 0.3 mm for 20 minutes at 250 ° C. to obtain a thickness of 0.19 mm.

【0056】次いで850℃の温度で露点66℃,75
%H2 −N2 雰囲気中で120秒加熱後引き続き900
℃の温度で15秒間、露点−20℃,75%H2 −N2
雰囲気中で加熱後、750℃の温度で60秒間6%NH
3 を含んだ雰囲気中で窒化処理を行い窒素量を120p
pmとした。次にMgO100部に対しTiO2 を5
部、Sb2 (SO43 を0.3部、NaBO3 を0.
3部の割合で混合した焼鈍分離剤を塗布し、95%N2
−H2 の雰囲気で昇温速度15℃/hrで1200℃ま
で加熱し、100%H2 雰囲気で20時間加熱後冷却し
た。次いで歪取り焼鈍を行い磁束密度を測定した結果を
本発明品(1)として表1に示す。
Then, at a temperature of 850 ° C., a dew point of 66 ° C., 75
After heating for 120 seconds in a% H 2 —N 2 atmosphere, continue to 900
15 seconds at a temperature of ℃, dew point -20 ℃, 75% H 2 -N 2
After heating in the atmosphere, 6% NH for 60 seconds at 750 ° C
Nitrogen treatment is performed in an atmosphere containing 3 and the amount of nitrogen is 120 p.
pm. Next, 5 parts of TiO 2 was added to 100 parts of MgO.
Part, Sb 2 (SO 4) 3 and 0.3 part, the NaBO 3 0.
The annealing separating agent mixed at a ratio of 3 parts was applied, and 95% N 2 was applied.
It was heated to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of —H 2 , heated in a 100% H 2 atmosphere for 20 hours, and then cooled. Then, the result of strain relief annealing and measurement of the magnetic flux density is shown in Table 1 as the product (1) of the present invention.

【0057】[0057]

【表1】 [Table 1]

【0058】比較のため同一スラブを1350℃で2時
間加熱後熱延を開始し厚さ1.55mmと2.3mmの
熱延板とした。2.3mmに圧延した熱延板は1000
℃で5分加熱後水冷した後冷間圧延を行って厚さ1.5
5mmとした。次いでこれら素材は本発明と同一の焼鈍
冷延を行って、厚さ0.19mmとした。次いで850
℃の温度で露点66℃,75%H2 −N2 雰囲気中で1
20秒加熱した。
For comparison, the same slab was heated at 1350 ° C. for 2 hours and then hot rolling was started to obtain hot-rolled sheets having thicknesses of 1.55 mm and 2.3 mm. The hot rolled sheet rolled to 2.3 mm is 1000
After heating at ℃ for 5 minutes, water-cooling and cold-rolling to a thickness of 1.5
It was set to 5 mm. Then, these materials were annealed and cold rolled in the same manner as in the present invention to have a thickness of 0.19 mm. Then 850
Dew point 66 ° C at 75 ° C, 75% in H 2 -N 2 atmosphere 1
Heated for 20 seconds.

【0059】次いで本発明と同一の焼鈍分離剤を塗布
し、15%N2 −H2 の雰囲気で昇温速度15℃/hr
で1200℃まで加熱し、100%H2 雰囲気で20時
間加熱後冷却した。次いで歪取り焼鈍を行い磁束密度を
測定し比較例(1)として表1に示す。表1に示したご
とく本発明で作成した電磁鋼板は著しく磁束密度が高
い。本発明と同じ厚みに冷延した比較材(1)は二次再
結晶した部分にいわゆる細粒と呼ばれる部分が発生し磁
束密度が著しく低かった。また2.3mmの熱延板を2
回冷延で最終厚みとした材料(比較材(2)と呼ぶ)は
100%二次再結晶が発現していたが本発明品と比べ若
干磁束密度が低かった。
Next, the same annealing separator as that of the present invention was applied, and the temperature rising rate was 15 ° C./hr in an atmosphere of 15% N 2 —H 2.
To 1200 ° C., heated in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing is performed and the magnetic flux density is measured and shown in Table 1 as Comparative Example (1). As shown in Table 1, the magnetic steel sheet produced by the present invention has a remarkably high magnetic flux density. In the comparative material (1) cold-rolled to the same thickness as the present invention, so-called fine grains were generated in the secondary recrystallized portion, and the magnetic flux density was extremely low. In addition, 2.3 mm hot rolled plate
The material (referred to as comparative material (2)) having the final thickness after the cold rolling exhibited 100% secondary recrystallization, but the magnetic flux density was slightly lower than that of the product of the present invention.

【0060】(実施例2)C:0.091%,Si:
3.25%,Mn:0.071%,P:0.016%,
solAl:0.0238%,S:0.014%,S
e:0.014%,Sn:0.12%,Cu:0.08
%,N:0.0082%,Sb:0.024%を主成分
としたスラブを1250℃の温度で粗圧延を開始し、仕
上げ圧延を経て厚さ1.40mmの熱延板とした。その
鋼板を120秒で1130℃まで加熱後120秒かけて
900℃まで冷却後水冷した。次いで酸洗後冷間圧延を
行い厚さ0.145mmとした。この場合冷間圧延途中
板厚1.55mm,1.2mm,0.8mm,0.6m
m,0.4mm,0.3mmの各厚みで250℃20分
保持した条件で冷延を行った。
(Example 2) C: 0.091%, Si:
3.25%, Mn: 0.071%, P: 0.016%,
solAl: 0.0238%, S: 0.014%, S
e: 0.014%, Sn: 0.12%, Cu: 0.08
%, N: 0.0082%, Sb: 0.024% as a main component, rough rolling was started at a temperature of 1250 ° C., and finish rolling was performed to obtain a hot-rolled sheet having a thickness of 1.40 mm. The steel sheet was heated to 1130 ° C for 120 seconds, cooled to 900 ° C over 120 seconds, and then water-cooled. Then, after pickling, cold rolling was performed to a thickness of 0.145 mm. In this case, plate thickness during cold rolling: 1.55mm, 1.2mm, 0.8mm, 0.6m
Cold rolling was carried out under the conditions that the thicknesses of m, 0.4 mm and 0.3 mm were held at 250 ° C. for 20 minutes.

【0061】次いで850℃の温度で露点66℃,75
%H2 −N2 雰囲気中で100秒加熱後引き続き900
℃の温度で15秒間、露点−20℃,75%H2 −N2
雰囲気中で加熱後、750℃の温度で6%NH3 を含ん
だ雰囲気中で窒化処理を行い窒素量を120ppmとし
た。次にMgO100部に対しTiO2 を5部、Sb2
(SO43 を0.3部、NaBO3 を0.3部の割合
で混合した焼鈍分離剤を塗布し15%N2 −H2 の雰囲
気で昇温速度15℃/hrで1200℃まで加熱し、1
00%H2 雰囲気で20時間加熱後冷却した。次いで歪
取り焼鈍を行い磁束密度を測定した結果を本発明品
(2)として表2に示す。
Then, at a temperature of 850 ° C., a dew point of 66 ° C., 75
% H 2 -N continued after heating for 100 seconds in a 2 atmosphere 900
15 seconds at a temperature of ℃, dew point -20 ℃, 75% H 2 -N 2
After heating in the atmosphere, nitriding was performed at a temperature of 750 ° C. in an atmosphere containing 6% NH 3 to adjust the amount of nitrogen to 120 ppm. Next, to 100 parts of MgO, 5 parts of TiO 2 and Sb 2
(SO 4 ) 3 was mixed at 0.3 parts and NaBO 3 was mixed at a ratio of 0.3 parts, and the annealing separator was applied and the temperature rising rate was 15 ° C./hr up to 1200 ° C. in an atmosphere of 15% N 2 —H 2. Heat 1
It was heated in a 00% H 2 atmosphere for 20 hours and then cooled. Next, the results of strain relief annealing and measurement of the magnetic flux density are shown in Table 2 as the product (2) of the present invention.

【0062】[0062]

【表2】 [Table 2]

【0063】比較のため同一スラブを1350℃で2時
間加熱後熱延を開始し厚さ1.45mmと1.80mm
の熱延板とした。1.80mmに圧延した熱延板は12
0秒で1000℃まで加熱し900℃まで空冷した後水
冷した。次いで冷間圧延を行って厚さ1.12mmとし
た。次いでこれら素材は本発明と同一の焼鈍冷延を行っ
て、厚さ0.145mmとした。次いで850℃の温度
で露点66℃,75%H2 −N2 雰囲気中で120秒加
熱した。
For comparison, the same slab was heated at 1350 ° C. for 2 hours and then hot rolling was started to obtain thicknesses of 1.45 mm and 1.80 mm.
It was a hot rolled sheet. The hot rolled sheet rolled to 1.80 mm is 12
It was heated to 1000 ° C. in 0 seconds, air-cooled to 900 ° C., and then water-cooled. Then, cold rolling was performed to a thickness of 1.12 mm. Then, these materials were annealed and cold rolled in the same manner as in the present invention to have a thickness of 0.145 mm. Next, it was heated at a temperature of 850 ° C. in a 75% H 2 —N 2 atmosphere with a dew point of 66 ° C. for 120 seconds.

【0064】次いで本発明と同一の焼鈍分離剤を塗布
し、15%N2 −H2 の雰囲気で昇温速度25℃/hr
で1200℃まで加熱し、100%H2 雰囲気で20時
間加熱後冷却した。次いで歪取り焼鈍を行い磁束密度を
測定し比較例(3)として表2に示す。表2に示したご
とく本発明方法で作成した電磁鋼板は著しく磁束密度が
高い。本発明と同じ厚みに熱延した比較材(3)は二次
再結晶した部分にいわゆる細粒と呼ばれる部分が全面積
の10%発生し磁束密度が著しく低かった。また1.8
mmに熱延後2回冷延で最終厚みとした材料(比較材
(4)と呼ぶ)は100%二次再結晶が発現していたが
本発明品と比べ若干磁束密度が低かった。比較材と比べ
て熱延温度が低いにもかかわらず本発明は100%二次
再結晶が発現し磁束密度も高い。
Next, the same annealing separator as that of the present invention was applied, and the temperature rising rate was 25 ° C./hr in an atmosphere of 15% N 2 —H 2.
To 1200 ° C., heated in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing is performed and the magnetic flux density is measured and shown in Table 2 as Comparative Example (3). As shown in Table 2, the magnetic steel sheet produced by the method of the present invention has a remarkably high magnetic flux density. In the comparative material (3) hot-rolled to the same thickness as the present invention, so-called fine grains were generated in 10% of the total area in the secondary recrystallized portion, and the magnetic flux density was extremely low. Also 1.8
A material (referred to as Comparative Material (4)) having a final thickness of 2 times cold rolling after hot rolling to 100 mm exhibited 100% secondary recrystallization, but had a slightly lower magnetic flux density than the product of the present invention. Although the hot rolling temperature is lower than that of the comparative material, the present invention exhibits 100% secondary recrystallization and high magnetic flux density.

【0065】(実施例3)C:0.084%,Si:
3.24%,Mn:0.068%,P:0.011%,
solAl:0.0253%,S:0.026%,S
n:0.11%,Cu:0.09%,N:0.0071
%,Sb:0.025%を主成分としたスラブを125
0℃の温度で粗圧延を開始し、仕上げ圧延を経て厚さ
1.40mmの熱延板とした。その鋼板を120秒で1
130℃まで加熱後120秒かけて900℃まで冷却後
水冷した。次いで酸洗後冷間圧延を行い厚さ0.145
mmとした。この場合冷間圧延途中板厚1.55mm,
1.2mm,0.8mm,0.6mm,0.4mm,
0.3mmの各厚みで250℃20分保持した条件で冷
延を行った。
(Example 3) C: 0.084%, Si:
3.24%, Mn: 0.068%, P: 0.011%,
solAl: 0.0253%, S: 0.026%, S
n: 0.11%, Cu: 0.09%, N: 0.0071
%, Sb: 125 slabs containing 0.025% as a main component
Rough rolling was started at a temperature of 0 ° C., and finish rolling was performed to obtain a hot-rolled sheet having a thickness of 1.40 mm. 1 in 120 seconds
After heating to 130 ° C., it was cooled to 900 ° C. over 120 seconds and then cooled with water. Then, after pickling, cold rolling is performed to a thickness of 0.145.
mm. In this case, the plate thickness during cold rolling is 1.55 mm,
1.2mm, 0.8mm, 0.6mm, 0.4mm,
Cold rolling was performed under the condition of holding each thickness of 0.3 mm at 250 ° C. for 20 minutes.

【0066】次いで850℃の温度で露点66℃,75
%H2 −N2 雰囲気中で100秒加熱後引き続き930
℃の温度で15秒間、露点−20℃,75%H2 −N2
雰囲気中で加熱後、750℃の温度で6%NH3 を含ん
だ雰囲気中で窒化処理を行い窒素量を150ppmとし
た。次にMgO100部に対しTiO2 を5部、Sb2
(SO43 を0.3部、NaBO3 を0.3部の割合
で混合した焼鈍分離剤を塗布し15%N2 −H2 の雰囲
気で昇温速度15℃/hrで1200℃まで加熱後、1
00%H2 雰囲気で20時間加熱後冷却した。次いで歪
取り焼鈍を行い磁束密度を測定した結果を本発明品
(3)として表3に示す。
Next, at a temperature of 850 ° C., a dew point of 66 ° C., 75
After heating for 100 seconds in a% H 2 —N 2 atmosphere, continue with 930
15 seconds at a temperature of ℃, dew point -20 ℃, 75% H 2 -N 2
After heating in the atmosphere, nitriding was performed at a temperature of 750 ° C. in an atmosphere containing 6% NH 3 to adjust the amount of nitrogen to 150 ppm. Next, to 100 parts of MgO, 5 parts of TiO 2 and Sb 2
(SO 4 ) 3 was mixed at 0.3 parts and NaBO 3 was mixed at a ratio of 0.3 parts, and the annealing separator was applied and the temperature rising rate was 15 ° C./hr up to 1200 ° C. in an atmosphere of 15% N 2 —H 2. After heating, 1
It was heated in a 00% H 2 atmosphere for 20 hours and then cooled. Next, the results of measuring the magnetic flux density by performing strain relief annealing are shown in Table 3 as the product (3) of the present invention.

【0067】[0067]

【表3】 [Table 3]

【0068】比較のため同一スラブを1350℃で2時
間加熱後熱延を開始し厚さ1.45mmと1.80mm
の熱延板とした。1.80mmに圧延した熱延板は12
0秒で1000℃まで加熱し900℃まで空冷した後水
冷した。次いで冷間圧延を行って厚さ1.12mmとし
た。次いでこれら素材は本発明と同一の焼鈍冷延を行っ
て、厚さ0.145mmとした。次いで850℃の温度
で露点66℃,75%H2 −N2 雰囲気中で120秒加
熱した。
For comparison, after heating the same slab at 1350 ° C. for 2 hours, hot rolling was started and the thicknesses were 1.45 mm and 1.80 mm.
It was a hot rolled sheet. The hot rolled sheet rolled to 1.80 mm is 12
It was heated to 1000 ° C. in 0 seconds, air-cooled to 900 ° C., and then water-cooled. Then, cold rolling was performed to a thickness of 1.12 mm. Then, these materials were annealed and cold rolled in the same manner as in the present invention to have a thickness of 0.145 mm. Next, it was heated at a temperature of 850 ° C. in a 75% H 2 —N 2 atmosphere with a dew point of 66 ° C. for 120 seconds.

【0069】次いで本発明と同一の焼鈍分離剤を塗布
し、15%N2 −H2 の雰囲気で昇温速度25℃/hr
で1200℃まで加熱し、100%H2 雰囲気で20時
間加熱後冷却した。次いで歪取り焼鈍を行い磁束密度を
測定し比較例(5)として表3に示す。表3に示したご
とく本発明方法で作成した電磁鋼板は著しく磁束密度が
高い。本発明と同じ厚みに熱延した比較材(5)は二次
再結晶した部分にいわゆる細粒と呼ばれる部分が全面積
の50%発生し磁束密度が著しく低かった。また1.8
mmに熱延後2回の冷延で最終厚みとした材料(比較材
(6)と呼ぶ)も全面積の20%程度細粒が発生し本発
明品と比べ磁束密度がかなり低かった。比較材と比べて
熱延温度が低いにもかかわらず本発明品は100%二次
再結晶が発現し、磁束密度も高い。
Next, the same annealing separator as that of the present invention was applied, and the temperature rising rate was 25 ° C./hr in an atmosphere of 15% N 2 —H 2.
To 1200 ° C., heated in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing is performed and the magnetic flux density is measured and shown in Table 3 as Comparative Example (5). As shown in Table 3, the magnetic steel sheet produced by the method of the present invention has a remarkably high magnetic flux density. In the comparative material (5) hot-rolled to the same thickness as the present invention, so-called fine grains were generated in 50% of the total area in the secondary recrystallized portion, and the magnetic flux density was extremely low. Also 1.8
The material (referred to as comparative material (6)) having a final thickness of 2 mm in cold rolling after hot rolling to 20 mm had fine magnetic particles of about 20% of the total area, and the magnetic flux density was considerably lower than that of the product of the present invention. Although the hot rolling temperature is lower than that of the comparative material, the product of the present invention exhibits 100% secondary recrystallization and has a high magnetic flux density.

【0070】(実施例4)C:0.080%,Si:
3.21%,Mn:0.073%,P:0.010%,
solAl:0.0263%,S:0.017%,S
e:0.016%,Sn:0.12%,Cu:0.08
%,N:0.0092%,Sb:0.023%を主成分
としたスラブを1200℃の温度で粗圧延を開始し、仕
上げ圧延を経て厚さ1.20mmの熱延板とした。その
鋼板を120秒で1130℃まで加熱後120秒かけて
900℃まで冷却後水冷した。次いで酸洗後冷間圧延を
行い厚さ0.145mmとした。この場合冷間圧延途中
板厚1.55mm,1.2mm,0.8mm,0.6m
m,0.4mm,0.3mmの各厚みで250℃20分
保持した条件で冷延を行った。
(Example 4) C: 0.080%, Si:
3.21%, Mn: 0.073%, P: 0.010%,
solAl: 0.0263%, S: 0.017%, S
e: 0.016%, Sn: 0.12%, Cu: 0.08
%, N: 0.0092%, Sb: 0.023% as a main component, rough rolling was started at a temperature of 1200 ° C., and finish rolling was performed to obtain a hot-rolled sheet having a thickness of 1.20 mm. The steel sheet was heated to 1130 ° C for 120 seconds, cooled to 900 ° C over 120 seconds, and then water-cooled. Then, after pickling, cold rolling was performed to a thickness of 0.145 mm. In this case, plate thickness during cold rolling: 1.55mm, 1.2mm, 0.8mm, 0.6m
Cold rolling was carried out under the conditions that the thicknesses of m, 0.4 mm and 0.3 mm were held at 250 ° C. for 20 minutes.

【0071】次いで850℃の温度で露点66℃,75
%H2 −N2 雰囲気中で100秒加熱後引き続き950
℃の温度で15秒間、露点−20℃,75%H2 −N2
雰囲気中で加熱後、770℃の温度で6%NH3 を含ん
だ雰囲気中で窒化処理を行い窒素量を180ppmとし
た。次にMgO100部に対しTiO2 を5部、Sb2
(SO43 を0.3部、NaBO3 を0.3部の割合
で混合した焼鈍分離剤を塗布し15%N2 −H2 の雰囲
気で昇温速度15℃/hrで1200℃まで加熱後、1
00%H2 雰囲気で20時間加熱後冷却した。次いで歪
取り焼鈍を行い磁束密度を測定した結果を本発明品
(4)として表4に示す。
Next, at a temperature of 850 ° C., a dew point of 66 ° C., 75
After heating for 100 seconds in a% H 2 —N 2 atmosphere, continue to 950
15 seconds at a temperature of ℃, dew point -20 ℃, 75% H 2 -N 2
After heating in the atmosphere, nitriding was performed at a temperature of 770 ° C. in an atmosphere containing 6% NH 3 to adjust the amount of nitrogen to 180 ppm. Next, to 100 parts of MgO, 5 parts of TiO 2 and Sb 2
(SO 4 ) 3 was mixed at 0.3 parts and NaBO 3 was mixed at a ratio of 0.3 parts, and the annealing separator was applied and the temperature rising rate was 15 ° C./hr up to 1200 ° C. in an atmosphere of 15% N 2 —H 2. After heating, 1
It was heated in a 00% H 2 atmosphere for 20 hours and then cooled. Then, the results of measuring the magnetic flux density by performing strain relief annealing are shown in Table 4 as the product (4) of the present invention.

【0072】[0072]

【表4】 [Table 4]

【0073】比較のため同一スラブを1350℃で2時
間加熱後熱延を開始し厚さ1.20mmと1.80mm
の熱延板とした。1.80mmに圧延した熱延板は12
0秒で1000℃まで加熱し900℃まで空冷した後水
冷した。次いで冷間圧延を行って厚さ1.12mmとし
た。次いでこれら素材は本発明と同一の焼鈍冷延を行っ
て、厚さ0.145mmとした。次いで850℃の温度
で露点66℃,75%H2 −N2 雰囲気中で120秒加
熱した。
For comparison, the same slab was heated at 1350 ° C. for 2 hours and then hot rolling was started to obtain thicknesses of 1.20 mm and 1.80 mm.
It was a hot rolled sheet. The hot rolled sheet rolled to 1.80 mm is 12
It was heated to 1000 ° C. in 0 seconds, air-cooled to 900 ° C., and then water-cooled. Then, cold rolling was performed to a thickness of 1.12 mm. Then, these materials were annealed and cold rolled in the same manner as in the present invention to have a thickness of 0.145 mm. Next, it was heated at a temperature of 850 ° C. in a 75% H 2 —N 2 atmosphere with a dew point of 66 ° C. for 120 seconds.

【0074】次いで本発明と同一の焼鈍分離剤を塗布
し、15%N2 −H2 の雰囲気で昇温速度25℃/hr
で1200℃まで加熱し、100%雰囲気で20時間加
熱後冷却した。次いで歪取り焼鈍を行い磁束密度を測定
し比較例(7)として表4に示す。表4に示したごとく
本発明方法で作成した電磁鋼板は著しく磁束密度が高
い。本発明と同じ厚みに熱延した比較材(7)は二次再
結晶した部分にいわゆる細粒と呼ばれる部分が全面積の
5%発生し磁束密度が若干低かった。また1.8mmに
熱延後2回の冷延で最終厚みとした材料(比較材(8)
と呼ぶ)は細粒が発生しなかったが本発明品と比べ磁束
密度が低かった。比較材と比べて熱延温度が低いにもか
かわらず本発明品は100%二次再結晶が発現し、磁束
密度も高い。
Then, the same annealing separator as that of the present invention was applied, and the temperature rising rate was 25 ° C./hr in an atmosphere of 15% N 2 —H 2.
To 1200 ° C., heated in a 100% atmosphere for 20 hours, and then cooled. Then, strain relief annealing is performed and the magnetic flux density is measured and shown in Table 4 as Comparative Example (7). As shown in Table 4, the magnetic steel sheet produced by the method of the present invention has a remarkably high magnetic flux density. In the comparative material (7) hot-rolled to the same thickness as the present invention, the so-called fine grains were generated in 5% of the total area in the secondary recrystallized portion, and the magnetic flux density was slightly low. Also, a material having a final thickness obtained by hot rolling to 1.8 mm and then cold rolling twice (comparative material (8)
Fine particles were not generated, but the magnetic flux density was lower than that of the product of the present invention. Although the hot rolling temperature is lower than that of the comparative material, the product of the present invention exhibits 100% secondary recrystallization and has a high magnetic flux density.

【0075】[0075]

【発明の効果】本発明により、磁気特性の優れた薄手の
方向性珪素鋼板が安価に製造できる。すなわちインヒビ
ターを制御するため成分範囲、熱延条件、焼鈍工程の組
み合わせを最適にすることによって、熱延板を1回の冷
延工程で処理することを可能ならしめたものである。
According to the present invention, a thin grain oriented silicon steel sheet having excellent magnetic properties can be manufactured at low cost. That is, by optimizing the combination of the component range, the hot rolling conditions, and the annealing step for controlling the inhibitor, the hot rolled sheet can be processed in one cold rolling step.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷間圧延後の焼鈍における二次加熱温度領域を
示すグラフ
FIG. 1 is a graph showing a secondary heating temperature region in annealing after cold rolling.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.015〜0.100
%,Si:2.0〜4.5%,酸可溶性Al:0.02
0〜0.060%,N:0.005〜0.010%,
S,Seの一方または両方:0.010〜0.040
%,Cu:0.01〜1%,Mn:0.01〜0.5
%,Sn:0.001〜0.3%を含有し、残部はFe
および不可避的不純物である珪素鋼スラブを、1150
℃から1400℃の温度域で粗圧延を開始し、引き続き
仕上げ圧延を行って厚さ2.5mmから1.0mmの熱
延板とした後、950℃以上1150℃以下の温度で1
秒以上60秒以下加熱後空冷より遅い冷却速度で900
℃まで冷却後、空冷より速い速度で冷却し、1回の冷間
圧延で厚み0.30mmから0.10mmの範囲内に圧
延後、830℃から860℃の温度で20秒以上200
秒以下脱炭雰囲気で加熱後、粗圧延開始温度と鋼板のS
またはSe量に応じて図1のD点(860,140
0)、E点(880,1150)、F点(1050,1
150)、G点(920,1400)の範囲で囲まれる
温度領域で露点0℃以下−40℃以上の還元性雰囲気で
10秒以上180秒以内加熱後、全窒素量が100pp
m以上200ppm以下に調整した後、焼鈍分離剤を塗
布し、仕上焼鈍を施すことを特徴とする方向性珪素鋼板
の製造方法。
1. By weight%, C: 0.015 to 0.100.
%, Si: 2.0 to 4.5%, acid-soluble Al: 0.02
0-0.060%, N: 0.005-0.010%,
One or both of S and Se: 0.010 to 0.040
%, Cu: 0.01 to 1%, Mn: 0.01 to 0.5
%, Sn: 0.001 to 0.3%, with the balance being Fe
And silicon steel slab, which is an unavoidable impurity, for 1150
After starting rough rolling in the temperature range of ℃ to 1400 ℃, and then finishing rolling to make hot-rolled sheet with a thickness of 2.5mm to 1.0mm, 1 at a temperature of 950 ℃ to 1150 ℃
900 seconds at a slower cooling rate than air cooling after heating over 60 seconds
After cooling to ℃, it is cooled at a speed faster than air cooling, and is rolled by one cold rolling within a thickness range of 0.30 mm to 0.10 mm, then at a temperature of 830 ° C. to 860 ° C. for 20 seconds or more 200
After heating in a decarburizing atmosphere for less than a second, start temperature of rough rolling and S of steel sheet
Or, depending on the Se amount, point D (860, 140) in FIG.
0), E point (880, 1150), F point (1050, 1)
150), and a total nitrogen amount of 100 pp after heating for 10 seconds or more and 180 seconds or less in a reducing atmosphere having a dew point of 0 ° C or lower and -40 ° C or higher in a temperature range surrounded by a range of G point (920, 1400).
A method for producing a grain-oriented silicon steel sheet, which comprises applying an annealing separator after adjusting the m to 200 ppm or less and performing finish annealing.
【請求項2】 珪素鋼スラブはさらに、Bi:0.00
50〜0.15%,P:0.001〜0.15%,S
b:0.001〜0.15%,Pb:0.001〜0.
15%,B:0.0010〜0.1%の範囲でこれらの
1種またはそれ以上含有することを特徴とする請求項1
記載の方向性珪素鋼板の製造方法。
2. The silicon steel slab further comprises Bi: 0.00.
50-0.15%, P: 0.001-0.15%, S
b: 0.001 to 0.15%, Pb: 0.001 to 0.
15%, B: 0.0010 to 0.1% in the range of 1 or more of these are contained.
A method for manufacturing the grain-oriented silicon steel sheet described.
JP7049270A 1995-02-15 1995-02-15 Production of grain-oriented silicon steel sheet Withdrawn JPH08225843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7049270A JPH08225843A (en) 1995-02-15 1995-02-15 Production of grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7049270A JPH08225843A (en) 1995-02-15 1995-02-15 Production of grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH08225843A true JPH08225843A (en) 1996-09-03

Family

ID=12826158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7049270A Withdrawn JPH08225843A (en) 1995-02-15 1995-02-15 Production of grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH08225843A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010104A1 (en) * 1996-09-05 1998-03-12 Acciai Speciali Terni S.P.A. Process for the production of grain oriented electrical steel strip starting from thin slabs
WO1998028451A1 (en) * 1996-12-24 1998-07-02 Acciai Speciali Terni S.P.A. Process for the production of grain oriented silicon steel sheet
WO1998046801A1 (en) * 1997-04-16 1998-10-22 Acciai Speciali Terni S.P.A. New process for the production at low temperature of grain oriented electrical steel
KR100561143B1 (en) * 1997-03-14 2006-03-15 티센크룹 악키아이 스페시알리 테르니 에스. 피. 에이. Process for the inhibition control in the production of grain-oriented electrical sheets
KR100953755B1 (en) * 2005-06-10 2010-04-19 신닛뽄세이테쯔 카부시키카이샤 Process for producing the grain-oriented magnetic steel sheet with extremely high magnetic property
JP2020169367A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010104A1 (en) * 1996-09-05 1998-03-12 Acciai Speciali Terni S.P.A. Process for the production of grain oriented electrical steel strip starting from thin slabs
WO1998028451A1 (en) * 1996-12-24 1998-07-02 Acciai Speciali Terni S.P.A. Process for the production of grain oriented silicon steel sheet
CN1080318C (en) * 1996-12-24 2002-03-06 阿奇亚斯佩丝阿里特尔尼公司 Process for the production of grain oriented silicon steel sheet
KR100561141B1 (en) * 1996-12-24 2006-03-15 티센크룹 악키아이 스페시알리 테르니 에스. 피. 에이. Process for the production of grain oriented silicon steel sheet
KR100561143B1 (en) * 1997-03-14 2006-03-15 티센크룹 악키아이 스페시알리 테르니 에스. 피. 에이. Process for the inhibition control in the production of grain-oriented electrical sheets
WO1998046801A1 (en) * 1997-04-16 1998-10-22 Acciai Speciali Terni S.P.A. New process for the production at low temperature of grain oriented electrical steel
KR100953755B1 (en) * 2005-06-10 2010-04-19 신닛뽄세이테쯔 카부시키카이샤 Process for producing the grain-oriented magnetic steel sheet with extremely high magnetic property
JP4954876B2 (en) * 2005-06-10 2012-06-20 新日本製鐵株式会社 Oriented electrical steel sheet with extremely excellent magnetic properties and method for producing the same
JP2020169367A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
US5779819A (en) Grain oriented electrical steel having high volume resistivity
WO2006132095A1 (en) Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
JPH06322443A (en) Production of grain-oriented magentic steel sheet reduced in iron loss
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JPH08225843A (en) Production of grain-oriented silicon steel sheet
JPH08269552A (en) Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density
JP2514447B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties and surface properties
JPH08225842A (en) Production of grain-oriented silicon steel sheet
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JPH0726328A (en) Production of grain oriented silicon steel sheet
JPH08232020A (en) Production of grain oriented silicon steel sheet
JP2003089821A (en) Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet
JP4283533B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3485409B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPH06179915A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JPH09143560A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH06179917A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH06172862A (en) Production of grain oriented silicon steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507