JPH08232020A - Production of grain oriented silicon steel sheet - Google Patents

Production of grain oriented silicon steel sheet

Info

Publication number
JPH08232020A
JPH08232020A JP3810195A JP3810195A JPH08232020A JP H08232020 A JPH08232020 A JP H08232020A JP 3810195 A JP3810195 A JP 3810195A JP 3810195 A JP3810195 A JP 3810195A JP H08232020 A JPH08232020 A JP H08232020A
Authority
JP
Japan
Prior art keywords
annealing
inhibitor
temperature
primary
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3810195A
Other languages
Japanese (ja)
Inventor
Jiro Harase
二郎 原勢
Nobunori Fujii
宣憲 藤井
Fumio Kurosawa
文夫 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3810195A priority Critical patent/JPH08232020A/en
Publication of JPH08232020A publication Critical patent/JPH08232020A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To inexpensively produce a silicon steel sheet excellent in magnetic properties by subjecting a steel of specific composition to cold rolling at specific rolling rate and to annealing, regulating the total nitrogen content to specific ppm, applying a separation agent at annealing to the resulting sheet, and then finish-annealing it. CONSTITUTION: A steel, having a composition consisting of, by weight ratio, 0.001-0.09% C, 2-4.5% Si, 0.01-0.08% acid soluble Al, 0.0001-0.004% N, 0.008-0.06%, independently or in total, of S and/or Se, 0.01-1% Cu, 0.01-0.5% Mn, small amounts of one or more elements among Bi, P, Sn, Sb, Pb, B, V, Nb, and Zr, and the balance Fe with inevitable impurities, is used. A cold rolled sheet of silicon steel, prepared by cold-rolling the steel at 75-95% cold rolling rate before primary recrystallization annealing, is annealed at 800-1000 deg.C for 1-300sec, and then the total nitrogen content is regulated to 50-1000ppm. After the application of a separation agent at annealing, finish-annealing is done. By this method, magnetic flux density can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、方向性電磁鋼板の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】結晶粒成長を抑える析出物や溶質原子等
をインヒビターと呼ぶが、AlNを主たるインヒビター
として使用し、一次再結晶前の冷延率が75%以上95
%以下である方法で製造されている一方向性電磁鋼板に
は、特公昭57−9419、62−54846、59−
48935、60−48862、63−11406、6
3−11407号各公報等で開示された製造法(以下A
法と呼ぶ)と特公昭61−60896、62−4528
5号各公報等で開示された製造法(以下B法と呼ぶ)が
知られている。
2. Description of the Related Art A precipitate or solute atom that suppresses grain growth is called an inhibitor. AlN is used as a main inhibitor, and the cold rolling rate before primary recrystallization is 75% or more.
%, The grain size of the grain-oriented electrical steel sheet manufactured by the method is, for example, Japanese Examined Patent Publication No. 57-9419, 62-54846, 59-
48935, 60-48862, 63-11406, 6
The production method disclosed in each of the publications, for example, 3-11407 (hereinafter referred to as A
Called Hou) and Japanese Patent Publications 61-60896, 62-4528
The manufacturing method disclosed in Japanese Patent No. 5 (hereinafter referred to as Method B) is known.

【0003】A法では、二次再結晶粒成長に必要なイン
ヒビターとして微細分散させたAlNとMnSを主とし
て活用している。このためスラブ加熱時にこれら析出相
を完全に溶解させた後、熱延及び熱延板焼鈍工程で微細
析出させる。このためスラブ加熱温度は1400℃程度
の高温にする必要がある。このように微細分散した析出
物が存在するため一次再結晶粒径は8μm程度と小さ
い。
In the method A, finely dispersed AlN and MnS are mainly used as inhibitors necessary for secondary recrystallized grain growth. Therefore, after these precipitation phases are completely melted at the time of heating the slab, fine precipitation is performed in the hot rolling and hot rolled sheet annealing steps. Therefore, it is necessary to set the slab heating temperature to a high temperature of about 1400 ° C. Due to the presence of such finely dispersed precipitates, the primary recrystallized grain size is as small as about 8 μm.

【0004】一方B法ではインヒビターとしてAlNを
主として使っている。このAlNの主たる部分は一次再
結晶後の窒化によって形成された鋼板表面相の窒化物を
二次再結晶焼鈍過程でAlNとして板厚方向にほぼ均等
に析出させることで構成される。B法ではスラブ加熱温
度が1150℃程度と低い。この段階では既にAlNが
析出しているため一次再結晶焼鈍時には微細分散したA
lNやMnS析出物が殆ど存在しない。そのためA法と
ほぼ同一の840℃程度の一次再結晶焼鈍温度で一次再
結晶焼鈍後の結晶粒径は24μm程度と大きい。
On the other hand, in method B, AlN is mainly used as an inhibitor. The main part of this AlN is formed by substantially uniformly precipitating nitrides of the steel sheet surface phase formed by nitriding after primary recrystallization as AlN in the plate thickness direction in the secondary recrystallization annealing process. In the method B, the slab heating temperature is as low as about 1150 ° C. At this stage, AlN has already precipitated, so finely dispersed A during primary recrystallization annealing.
Almost no 1N or MnS precipitates are present. Therefore, the crystal grain size after primary recrystallization annealing at a primary recrystallization annealing temperature of about 840 ° C., which is almost the same as in method A, is as large as about 24 μm.

【0005】従ってB法では一次再結晶焼鈍後の状態で
インヒビター強度が弱いので二次再結晶焼鈍過程でイン
ヒビターを強化するため一次再結晶焼鈍後窒化処理を行
い窒素量を200ppm 程度とする。
Therefore, in method B, since the inhibitor strength is weak after the primary recrystallization annealing, the nitriding treatment is performed after the primary recrystallization annealing to strengthen the inhibitor in the secondary recrystallization annealing process, and the amount of nitrogen is set to about 200 ppm.

【0006】A法はB法と比べて最終製品の磁束密度が
若干高いが、極めて高い温度でスラブを加熱する必要が
あり、Sを0.03%程度含有しているため熱延時耳割
れの発生が多いという欠点がある。B法はこのような高
温の加熱は必要なく、Sも低いため耳割れの発生もな
い。しかしA法と比較すると僅かながら磁束密度が低い
という欠点がある。
The magnetic flux density of the final product is slightly higher in the method A than in the method B, but it is necessary to heat the slab at an extremely high temperature, and since S content is about 0.03%, there is a problem of ear cracking during hot rolling. It has the drawback of frequent occurrence. Method B does not require such high temperature heating, and since S is low, ear cracking does not occur. However, it has a drawback that the magnetic flux density is slightly lower than that of the method A.

【0007】[0007]

【発明が解決しようとする課題】本発明はスラブ加熱温
度が1000℃程度と低い場合でもスラブ加熱の段階で
は窒化物がほぼ固溶するように窒化物を形成する基とな
るNを好ましくは0.002重量%以下とした後、窒化
部が殆ど存在しないようにすることで一次再結晶時の結
晶粒径を容易に制御し、一次再結晶焼鈍窒化処理を施す
ことで、二次再結晶過程で微細均質分散した窒化物を形
成させてインヒビターの強度を確保することでB法同様
の低温スラブ加熱でありながらA法と同等以上の高い磁
束密度を持った製品を安定して安価に製造する方法を提
供するものである。
In the present invention, even when the slab heating temperature is as low as about 1000 ° C., it is preferable that N, which is a base for forming a nitride so that the nitride substantially forms a solid solution in the slab heating stage, is 0. After the content of 0.002% by weight or less, the grain size at the time of primary recrystallization is easily controlled by making the nitrided portion almost absent, and the secondary recrystallization process is performed by performing the primary recrystallization annealing and nitriding treatment. In order to secure the strength of the inhibitor by forming a fine and homogeneously dispersed nitride, a stable low-cost manufacturing of a product having a high magnetic flux density equal to or higher than that of the method A, while performing low-temperature slab heating as in the method B, is possible. It provides a method.

【0008】[0008]

【課題を解決するための手段】本発明の手段は、次の通
りである。C:0.001〜0.090重量%、Si:
2.0〜4.5重量%、酸可溶性Al:0.010〜
0.080重量%、N:0.0001〜0.0040重
量%、好ましくは0.002重量%以下、SまたはSe
の和:0.0080〜0.060重量%、Cu:0.0
1〜1重量%、Mn:0.01〜0.5重量%、及びB
i:0.005〜0.15重量%、P:0.001〜
0.15重量%、Sn:0.001〜0.3重量%、S
b:0.001〜0.15重量%、Pb:0.001〜
0.15重量%、B:0.0010〜0.1重量%、
V:0.01〜0.10重量%、Nb:0.001〜
0.10重量%、Zr:0.001〜0.10重量%の
範囲で1種またはそれ以上含有し、残部Fe及び不可避
的不純物を含んだ一次再結晶焼鈍前の冷延率が75%以
上95%以下とした電磁鋼冷延板を800℃以上100
0℃以下の温度で1秒以上300秒以内加熱後全窒素量
が50ppm 以上1000ppm の範囲に入るように調整し
た後焼鈍分離剤を塗布し、仕上焼鈍を施す方向性電磁鋼
板の製造方法において、一次再結晶焼鈍後の平均結晶粒
径が図1で示した範囲となるように制御することにあ
る。
The means of the present invention are as follows. C: 0.001 to 0.090% by weight, Si:
2.0-4.5% by weight, acid-soluble Al: 0.010
0.080% by weight, N: 0.0001 to 0.0040% by weight, preferably 0.002% by weight or less, S or Se
Sum: 0.0080 to 0.060% by weight, Cu: 0.0
1-1% by weight, Mn: 0.01-0.5% by weight, and B
i: 0.005-0.15% by weight, P: 0.001-
0.15 wt%, Sn: 0.001-0.3 wt%, S
b: 0.001 to 0.15% by weight, Pb: 0.001 to
0.15% by weight, B: 0.0010 to 0.1% by weight,
V: 0.01 to 0.10% by weight, Nb: 0.001 to
0.10% by weight, Zr: 0.001 to 0.10% by weight, one or more kinds are contained, and the cold rolling rate before primary recrystallization annealing containing the balance Fe and unavoidable impurities is 75% or more. Magnetic steel cold rolled sheet with 95% or less is 800 ° C or more and 100
In the method for producing a grain-oriented electrical steel sheet, which is subjected to finish annealing by applying a post-annealing agent after adjusting so that the total nitrogen amount is within a range of 50 ppm to 1000 ppm after heating at a temperature of 0 ° C. or less for 1 second to 300 seconds, The purpose is to control so that the average crystal grain size after the primary recrystallization annealing falls within the range shown in FIG.

【0009】[0009]

【作用】以下本発明について詳細に説明する。発明者は
方向性電磁鋼板の(110)〔001〕二次再結晶粒の
優先発現の条件について研究を行い以下の結論を得た。
一般にインヒビターは、一次再結晶焼鈍工程において
結晶粒成長を抑えて一次再結晶粒径を小さくし、二次
再結晶焼鈍過程でのマトリクス結晶粒の成長を抑えて二
次再結晶開始温度に影響を与え、発現する二次再結晶
方位の選択に影響を与える。
The present invention will be described in detail below. The inventor studied the conditions for preferential expression of (110) [001] secondary recrystallized grains of grain-oriented electrical steel sheet and obtained the following conclusions.
In general, the inhibitor suppresses the crystal grain growth in the primary recrystallization annealing process to reduce the primary recrystallization grain size, and suppresses the growth of the matrix crystal grains in the secondary recrystallization annealing process to affect the secondary recrystallization start temperature. And influence the selection of the secondary recrystallization orientation to be developed.

【0010】一次再結晶組織の形成から二次再結晶の完
了までに働くインヒビターの役割を理解しやすくする目
的で、ここでは一次再結晶粒径を決めるともいうべきイ
ンヒビターを一次インヒビターと呼ぶ。一次インヒビタ
ーは、溶解から一次再結晶までの工程で形成されたもの
であり、一次再結晶焼鈍後窒化処理することでインヒビ
ターを付与するB法と対比させて先天的インヒビターと
も呼ぶべきものである。
For the purpose of making it easier to understand the role of the inhibitor that acts from the formation of the primary recrystallization structure to the completion of the secondary recrystallization, the inhibitor which should also determine the primary recrystallization grain size is referred to as a primary inhibitor. The primary inhibitor is formed in a process from melting to primary recrystallization, and should be called an innate inhibitor in contrast to the B method in which the inhibitor is added by performing nitriding treatment after primary recrystallization annealing.

【0011】一次インヒビター強度が強いほど一次再結
晶粒径が小さい。一次再結晶完了後二次再結晶発現まで
のインヒビターを二次インヒビターと呼ぶ。
The higher the primary inhibitor strength, the smaller the primary recrystallized grain size. An inhibitor from the completion of primary recrystallization to the appearance of secondary recrystallization is called a secondary inhibitor.

【0012】B法の窒化処理の第一の目的は二次インヒ
ビターを付与することである。この窒化によるインヒビ
ター付与は後天的インヒビターとも呼ぶべきものであ
る。二次再結晶粒の駆動力は粒界エネルギーなので、駆
動力が小さい即ちマトリクス粒径が大きい程、二次再結
晶温度は高温となる。同じ結晶粒径であれば二次インヒ
ビター強度が強いほど二次再結晶温度は高温となる。
The primary purpose of the nitriding process of Method B is to provide a secondary inhibitor. This addition of inhibitor by nitriding should be called acquired inhibitor. Since the driving force of the secondary recrystallized grains is grain boundary energy, the smaller the driving force, that is, the larger the matrix grain size, the higher the secondary recrystallization temperature becomes. If the crystal grain size is the same, the higher the secondary inhibitor strength, the higher the secondary recrystallization temperature.

【0013】二次インヒビターの強さだけでは二次再結
晶温度は決まらないが、ここでは結晶粒径も考慮して、
二次再結晶温度が低いときに二次インヒビターが弱い、
二次再結晶温度が高温ほど二次インヒビターが強いと表
現する。
The secondary recrystallization temperature cannot be determined only by the strength of the secondary inhibitor, but here, considering the crystal grain size,
Weak secondary inhibitor when secondary recrystallization temperature is low,
The higher the secondary recrystallization temperature is, the stronger the secondary inhibitor is.

【0014】二次再結晶粒が選択的に成長している過程
でのインヒビター強度、即ち既に発現した二次再結晶粒
の優先成長に深く係わるインヒビター強度を三次インヒ
ビターと呼ぶ。三次インヒビター強度が強いほど、一般
粒界と対応粒界の粒界移動差が大きくなり、二次再結晶
粒が優先的に成長する。
The inhibitor strength during the process in which the secondary recrystallized grains are selectively grown, that is, the inhibitor strength which is deeply involved in the preferential growth of the already developed secondary recrystallized grains is called a tertiary inhibitor. The stronger the tertiary inhibitor strength, the larger the difference in grain boundary migration between the general grain boundary and the corresponding grain boundary, and the secondary recrystallized grains grow preferentially.

【0015】二次再結晶開始時のインヒビター強度は二
次再結晶開始という点を強調すれば二次インヒビター強
度といえるし、二次再結晶粒が発生し成長しつつあると
いう点を強調すれば三次インヒビターともいえる。一次
再結晶焼鈍後窒化処理を行うB法では、一次再結晶完了
時と二次再結晶焼鈍開始時ではインヒビター強度が著し
く異なるが、A法の場合一次インヒビター強度と、二次
再結晶焼鈍開始時の二次インヒビター強度とはほぼ同一
である。
The inhibitor strength at the start of secondary recrystallization can be said to be the secondary inhibitor strength by emphasizing the initiation of secondary recrystallization, and by emphasizing the fact that secondary recrystallized grains are being generated and growing. It can be said to be a tertiary inhibitor. In the method B in which the nitriding treatment is performed after the primary recrystallization annealing, the inhibitor strength is significantly different between the completion of the primary recrystallization and the start of the secondary recrystallization annealing, but in the case of the method A, the primary inhibitor strength and the initiation of the secondary recrystallization annealing are performed. Is almost the same as the secondary inhibitor strength of.

【0016】上に述べたように一次再結晶粒径は一次イ
ンヒビターの強度でほぼ決まる。A法で例えばMnSの
みをインヒビターとした場合は18μm、AlNのみで
は14μm、AlNとMnSを併用している通常のA法
では8μmとなる。またスラブ加熱温度が1150℃と
低いB法の場合は同じAlNを使っているが、AlNの
析出サイズが大きいため一次インヒビターが弱いので一
次再結晶粒径は24μm程度と大きい。即ちAlNの析
出分散状況の差のみで粒径が10μm程度異なるといえ
る。
As described above, the primary recrystallized grain size is almost determined by the strength of the primary inhibitor. In the method A, for example, when only MnS is used as an inhibitor, the thickness is 18 μm, when only AlN is 14 μm, and when the normal method A using AlN and MnS together is 8 μm. Further, the same AlN is used in the case of the B method in which the slab heating temperature is as low as 1150 ° C. However, the primary recrystallized grain size is as large as about 24 μm because the primary inhibitor is weak due to the large precipitation size of AlN. That is, it can be said that the particle size differs by about 10 μm only by the difference in the precipitation dispersion state of AlN.

【0017】本発明鋼のスラブ加熱温度はB法同様低い
が、窒素が0.004%、好ましくは0.002%以下
であるためAlNその他窒化物からなる析出物はスラブ
加熱の段階では析出しているとしても極めて僅かであ
る。このためこの析出物による一次再結晶粒径の微細化
効果は殆どない。しかしMnS(Se),CuS(S
e),Bi等のインヒビター及びP,Sn,Sb,P
b,Bの1種または2種以上を含んでいるため一次再結
晶粒径はA法より大きく、B法と同程度またはそれ以下
である。
The slab heating temperature of the steel of the present invention is as low as that of the B method, but since the nitrogen content is 0.004%, preferably 0.002% or less, precipitates consisting of AlN and other nitrides are precipitated in the slab heating stage. If so, it is extremely small. Therefore, there is almost no effect of refining the primary recrystallized grain size by this precipitate. However, MnS (Se), CuS (S
e), inhibitors such as Bi and P, Sn, Sb, P
Since it contains one or more of b and B, the primary recrystallized grain size is larger than that of the A method and is the same or smaller than that of the B method.

【0018】インヒビターの存在下においては二次再結
晶焼鈍により粒界移動による粒成長が僅かに起きるが、
ある温度(臨界二次再結晶温度Tcr)に達すると一般
粒界と対応粒界の粒界移動速度に大きな差がある状態に
なる。この状態で、対応粒界と接する確率の最も高い結
晶方位が周囲の結晶粒を食べて大きくなり、サイズ効果
(寸法の優位性)を得て異常成長を開始する。即ち二次
再結晶の発現である。
In the presence of the inhibitor, secondary recrystallization annealing causes slight grain growth due to grain boundary migration.
When a certain temperature (critical secondary recrystallization temperature Tcr) is reached, there is a large difference in the grain boundary moving speed between the general grain boundary and the corresponding grain boundary. In this state, the crystal orientation with the highest probability of contact with the corresponding grain boundary eats the surrounding crystal grains and becomes large, and the size effect (dimensional advantage) is obtained to start abnormal growth. That is, it is the expression of secondary recrystallization.

【0019】二次再結晶粒成長過程で動きやすい対応粒
界にはΣ5対応粒界からΣ33対応粒界まで存在する
が、方向性電磁鋼板の二次再結晶に関与する存在頻度の
高い対応粒界はΣ5,Σ7,Σ9の3種類であり、この
中でΣ7粒界は1方向性電磁鋼板で存在頻度が低いの
で、Σ5粒界とΣ9粒界を考慮すればよい。
Corresponding grains having a high frequency of occurrence that are involved in secondary recrystallization of grain-oriented electrical steel sheets exist in the corresponding grain boundaries, which easily move during the secondary recrystallization grain growth process, from Σ5 corresponding grain boundaries to Σ33 corresponding grain boundaries. There are three types of boundaries, Σ5, Σ7, and Σ9. Among them, the Σ7 grain boundary is a unidirectional electrical steel sheet, and its existence frequency is low. Therefore, the Σ5 grain boundary and the Σ9 grain boundary may be considered.

【0020】冷延率を75%以上95%以下とした本発
明の一次再結晶板では(110)〔001〕方位粒は他
の方位と比べてΣ9対応粒界を形成する確率が最も高
い。また理想(110)〔001〕方から外れた方位で
はΣ5対応粒界を形成する確率も高い。
In the primary recrystallized sheet of the present invention in which the cold rolling rate is 75% or more and 95% or less, the (110) [001] oriented grains have the highest probability of forming Σ9 corresponding grain boundaries as compared with other orientations. Further, there is a high probability that a Σ5-corresponding grain boundary is formed in an orientation deviating from the ideal (110) [001] direction.

【0021】Σ5対応粒界はΣ9対応粒界では動きやす
くなる温度領域及び、インヒビター強度範囲が若干異な
っており、Σ5粒界とΣ9粒界が共存する場合は、Σ5
粒界がより弱いインヒビター強度、またインヒビター強
度が同じならより低温で優先的に動きやすくなる。
The Σ5-corresponding grain boundary is slightly different in the temperature region where the Σ9-corresponding grain boundary easily moves and the inhibitor strength range. When the Σ5 grain boundary and the Σ9 grain boundary coexist, Σ5
If the grain boundary has weaker inhibitor strength, or if the inhibitor strength is the same, it becomes easier to move preferentially at lower temperatures.

【0022】従って(110)〔001〕方位の集積度
の高い二次再結晶粒が優先的に成長するためには、Σ5
粒界が優先的に動きやすくなる温度域や、Σ9粒界もΣ
5粒界も動きやすい温度域においてはΣ9粒界がより動
きやすくなるように二次インヒビターを強くする必要が
ある。
Therefore, in order to preferentially grow the secondary recrystallized grains in the (110) [001] orientation with high integration, Σ5
The temperature range where the grain boundaries preferentially move and Σ9 grain boundaries are also Σ
It is necessary to strengthen the secondary inhibitor so that the Σ9 grain boundary becomes easier to move in the temperature range where the 5 grain boundaries also move easily.

【0023】A法は一次再結晶粒径が小さいので二次イ
ンヒビターが弱く低温で二次再結晶が発現する。A法で
はAlが0.022〜0.030%の範囲にあるがその
範囲でAlが低いと一次再結晶粒径は1〜2μm程度小
さくなり、二次再結晶焼鈍過程でAlが酸化することに
より鋼板表面近傍のAl量が更に減少し、この部分のイ
ンヒビター強度が弱くなる。
In method A, since the primary recrystallization grain size is small, the secondary inhibitor is weak and secondary recrystallization occurs at low temperature. In the A method, Al is in the range of 0.022 to 0.030%, but when Al is low in that range, the primary recrystallized grain size becomes small by 1 to 2 μm, and Al is oxidized in the secondary recrystallization annealing process. As a result, the amount of Al near the surface of the steel sheet is further reduced, and the inhibitor strength of this portion is weakened.

【0024】従ってこの部分から二次再結晶が発現する
が、この二次再結晶が発現する温度は925℃以下の低
温でΣ5粒界が優先的に動くため、発現する二次再結晶
方位は理想Goss方位から10°以上離れた方位とな
る。
Therefore, secondary recrystallization develops from this portion, but the temperature at which this secondary recrystallization develops is a low temperature of 925 ° C. or lower, and the Σ5 grain boundary moves preferentially, so the secondary recrystallization orientation that develops is The azimuth is 10 ° or more away from the ideal Goss azimuth.

【0025】一方Alが0.033%以上と高くなる場
合、一次粒径が大きくなるので駆動力が減少するため
と、Alの濃度そのものが高いので、直ちにAlNが
形成されてインヒビター強度が低下しないため、二次イ
ンヒビターが相対的に強くなり低温での二次再結晶の発
現は防止できる。そのためΣ5粒界の優先的粒界移動に
基づく方位の悪い二次再結晶の発現は防止できる。
On the other hand, when Al is as high as 0.033% or more, the primary particle size becomes large and the driving force decreases, and because the Al concentration itself is high, AlN is immediately formed and the inhibitor strength does not decrease. Therefore, the secondary inhibitor becomes relatively strong, and the occurrence of secondary recrystallization at low temperature can be prevented. Therefore, it is possible to prevent the occurrence of secondary recrystallization having a bad orientation due to the preferential grain boundary movement of the Σ5 grain boundary.

【0026】しかしながら二次再結晶温度が1100℃
以上の高温ではAlの酸化が急激に起き、三次インヒビ
ター強度が急激に低下して選択的な粒界移動が起き難く
なり、二次再結晶が発現せず細粒組織となる。
However, the secondary recrystallization temperature is 1100 ° C.
At the above high temperature, Al is rapidly oxidized, the tertiary inhibitor strength is rapidly reduced, and selective grain boundary migration is difficult to occur, and secondary recrystallization does not occur, resulting in a fine grain structure.

【0027】従ってA法で(110)〔001〕方位の
集積度の高い二次再結晶を発現させるためには、低温で
二次再結晶が発現することを防ぐことと、高温で三次イ
ンヒビター強度が急激に低下して細粒が発生するのを防
ぐため、Al含有量を極めて狭い範囲に管理する必要が
ある。
Therefore, in order to develop the secondary recrystallization having a high degree of integration of the (110) [001] orientation by the method A, it is necessary to prevent the secondary recrystallization from appearing at a low temperature and to increase the tertiary inhibitor strength at a high temperature. In order to prevent a sharp decrease in particle size and the generation of fine particles, it is necessary to control the Al content within an extremely narrow range.

【0028】一方B法ではAlが低く表面相近傍でAl
が減少しても、粒径が大きいためΣ5粒界が優先的に
動きやすくなる925℃以下の低温では二次再結晶が発
現しない、表面相から窒化してあるので、脱Alが起
きても、直ちにAlNが形成されるため表面相近傍のイ
ンヒビターの低下を防止でき、925℃以下の低温では
二次再結晶の発現を防止できる。しかしながらB法では
一次インヒビター強度が弱いため、仕上げ熱延開始温度
や固溶Al、一次再結晶焼鈍温度のばらつき等により一
次再結晶粒径は変動しやすい。
On the other hand, in the method B, the Al content is low and the Al content near the surface phase is
However, secondary recrystallization does not occur at a low temperature of 925 ° C. or below where the Σ5 grain boundary tends to move preferentially due to the large grain size, even if de-Al occurs because it is nitrided from the surface phase. Since AlN is immediately formed, it is possible to prevent the decrease of the inhibitor near the surface phase, and it is possible to prevent the secondary recrystallization from occurring at a low temperature of 925 ° C or lower. However, since the primary inhibitor strength is weak in the B method, the primary recrystallized grain size is likely to fluctuate due to variations in finish hot rolling start temperature, solid solution Al, primary recrystallization annealing temperature, and the like.

【0029】一次再結晶粒径が大すぎる場合や、窒化量
が多すぎる場合、二次再結晶温度が1100℃以上とな
りAlの酸化速度が著しく速まり、三次インヒビター強
度が急激に減少し、Σ9粒界の選択的移動速度が相対的
に遅くなり、(110)〔001〕方位の二次再結晶の
集積度が低下する。
When the primary recrystallization grain size is too large or the nitriding amount is too large, the secondary recrystallization temperature becomes 1100 ° C. or higher, the oxidation rate of Al remarkably increases, and the tertiary inhibitor strength sharply decreases. The selective moving speed of the grain boundary becomes relatively slow, and the degree of integration of the secondary recrystallization in the (110) [001] orientation decreases.

【0030】ところでA法ではB法と比べて低温で二次
再結晶が発現するが、発現する二次再結晶方位の(11
0)〔001〕方位集積度はB法と同等またはそれ以上
である。この理由はA法では微細分散したAlNに加え
て微細分散したMnSが存在するのでインヒビターが主
としてAlNのみで構成されているB法と比べて三次イ
ンヒビター強度がB法と同等またはそれ以上の強さのた
めである。
By the way, in method A, secondary recrystallization occurs at a lower temperature than method B, but the secondary recrystallization orientation (11
0) The degree of [001] orientation integration is equal to or higher than that of the B method. The reason for this is that in method A, since finely dispersed MnS exists in addition to finely dispersed AlN, the tertiary inhibitor strength is equal to or higher than that in method B as compared with method B in which the inhibitor is mainly composed of only AlN. Because of.

【0031】B法では一次再結晶後窒化することと、一
次再結晶粒径が大きいので二次再結晶発現まで殆ど粒成
長は認められず、二次再結晶開始温度はA法と比べて高
い。即ち二次インヒビターの強さはA法より強い。しか
し発現する二次再結晶粒の方位集積度はA法と同等また
は僅かに劣る。これは三次インヒビターはA法と同等ま
たは若干弱いためである。
In method B, nitriding is performed after primary recrystallization, and since the primary recrystallization grain size is large, almost no grain growth is observed until secondary recrystallization occurs, and the secondary recrystallization starting temperature is higher than in method A. . That is, the strength of the secondary inhibitor is stronger than that of Method A. However, the degree of orientation integration of the secondary recrystallized grains that appear is equal to or slightly inferior to that of the method A. This is because the tertiary inhibitor is equal to or slightly weaker than Method A.

【0032】本発明鋼の場合は熱延の段階では硫化物の
み析出させ、一次再結晶焼鈍後窒化処理をすることで、
窒化物をこれら硫化物を核として形成させることで、一
次インヒビター、二次インヒビターの強度はA法とB法
の中間の強度となり、三次インヒビター強度はA法と同
等またはそれ以上となる。
In the case of the steel of the present invention, only sulfides are precipitated in the hot rolling stage, and the nitriding treatment is performed after the primary recrystallization annealing.
By forming a nitride with these sulfides as nuclei, the strength of the primary inhibitor and the secondary inhibitor becomes an intermediate strength between methods A and B, and the strength of the tertiary inhibitor becomes equal to or higher than that of method A.

【0033】即ち一次再結晶焼鈍前は殆ど窒化物が存在
せず、硫化物やその他の添加物のみであるので、一次イ
ンヒビター強度は硫化物と窒化物が微細分散したA法よ
り弱いが、MnS(Se),CuS(Se),Biを含
有し更に必要に応じてP,Sn,Pb,B,Sbを添加
しているのでこれらの効果によりB法より強い。
In other words, before the primary recrystallization annealing, almost no nitride exists, and only the sulfides and other additives are present, so the primary inhibitor strength is weaker than the A method in which sulfides and nitrides are finely dispersed, but MnS. Since it contains (Se), CuS (Se), and Bi, and P, Sn, Pb, B, and Sb are added if necessary, these effects are stronger than the B method.

【0034】従って本発明材の一次再結晶後の結晶粒径
はA法より大きくB法より小さいか同等である。本発明
法の場合の二次再結晶開始温度はB法と比べて同等か若
干低く、A法のそれと比べると高い。この理由は、A法
と比べると粒径が大きいためである。
Therefore, the crystal grain size after primary recrystallization of the material of the present invention is larger than the A method and smaller than or equal to the B method. The secondary recrystallization starting temperature in the case of the method of the present invention is equal to or slightly lower than that in the method B, and higher than that in the method A. The reason for this is that the particle size is larger than in method A.

【0035】本発明法で発現する二次再結晶の(11
0)〔001〕方位集積度はA,B何れの方法より若干
良好である。その理由は、三次インヒビターがA,B何
れの方法より強いためである。
The secondary recrystallization (11
0) [001] orientation integration is slightly better than either method A or B. The reason is that the tertiary inhibitor is stronger than either method A or B.

【0036】以下その他の条件を限定した理由を説明す
る。本発明法に従って処理すればCは0.090%を超
えても磁束密度の高い二次再結晶が得られるが、これ以
上Cが高い場合一次再結晶焼鈍の脱炭時間が長くなり経
済的でない。Cの下限を0.001%としたのはこれ以
下のCとしても特性向上には影響しないので、これ以下
にCを下げることは経済的でないためである。
The reason for limiting the other conditions will be described below. When the treatment according to the method of the present invention is performed, secondary recrystallization having a high magnetic flux density can be obtained even if C exceeds 0.090%, but if C is higher than this, the decarburization time of the primary recrystallization annealing becomes long and it is not economical . The lower limit of C is set to 0.001% because even if C is less than this, it does not affect the property improvement, and it is not economical to reduce C below this.

【0037】Siは含有量が多いほど固有抵抗が増加し
て製品の渦流損を減少させるので、渦流損を減少させる
ためにはSiは多いほどよい。Siを2.0%以上と限
定したのはこれ以下では渦流損が大きく好ましくないの
で下限を2.0%としたものである。しかしSiは添加
量が増すほど冷間圧延工程で割れやすくなる。Siが
4.5%以上では冷間圧延に特別の工夫が必要で経済的
に製造するという本発明の目的にそれるので上限を4.
5%とした。
As the content of Si increases, the specific resistance increases and the eddy current loss of the product decreases. Therefore, the more Si, the better. The reason why Si is limited to 2.0% or more is that the lower limit is 2.0% because eddy current loss is large and it is not preferable below this range. However, Si becomes more likely to crack in the cold rolling process as the added amount increases. If the Si content is 4.5% or more, the cold rolling requires a special device and the purpose of the present invention is to economically manufacture the steel.
It was set to 5%.

【0038】Alは(Al,Si)Nを形成しインヒビ
ターとして働くが、酸可溶性Alとして0.010%以
上ないとその効果が発揮されないので下限を0.010
%とした。上限を0.080%としたのはこれ以上のA
lが存在するとインヒビターとして有効に働かなくなる
ためである。
Al forms (Al, Si) N and acts as an inhibitor, but the effect is not exhibited unless the content of acid-soluble Al is 0.010% or more, so the lower limit is 0.010.
%. The upper limit of 0.080% is A
This is because if l is present, it will not work effectively as an inhibitor.

【0039】VはVNを形成しインヒビターとして働く
が、0.01%以上ないとその効果が発揮されないので
下限を0.01%とした。上限を0.10%としたのは
これ以上のVが存在するとインヒビターとして有効に働
かなくなるためである。
V forms VN and acts as an inhibitor, but the effect is not exhibited unless it is 0.01% or more, so the lower limit was made 0.01%. The upper limit is set to 0.10% because if it exceeds V, it will not work effectively as an inhibitor.

【0040】NbはNb窒化物を形成しインヒビターと
して働くが、0.001%以上ないとその効果が発揮さ
れないので下限を0.001%とした。上限を0.10
%としたのはこれ以上のNbが存在するとインヒビター
として有効に働かなくなるためである。
Nb forms Nb nitride and acts as an inhibitor, but the effect is not exhibited unless it is 0.001% or more, so the lower limit was made 0.001%. The upper limit is 0.10
The reason why the percentage is set is that if more Nb is present, it will not work effectively as an inhibitor.

【0041】ZrはZr窒化物を形成しインヒビターと
して働くが、0.001%以上ないとその効果が発揮さ
れないので下限を0.001%とした。上限を0.10
%としたのはこれ以上のZrが存在するとインヒビター
として有効に働かなくなるためである。
Zr forms a Zr nitride and acts as an inhibitor, but the effect is not exhibited unless it is 0.001% or more, so the lower limit was made 0.001%. The upper limit is 0.10
% Is because if more Zr is present, it will not work effectively as an inhibitor.

【0042】Nはナイトライドを形成しインヒビターと
して働くが、スラブの段階で0.0040%以下、好ま
しくは0.002%以下であれば熱延条件に関係なく一
次再結晶焼鈍までは窒化物の形成を防止できる。次いで
窒化することでの均質に微細分散したが窒化物の形成が
可能となる。Nが0.004%を超えて含まれると一次
再結晶前に、窒化物が形成されるが、この窒化物は数が
少なくサイズが大きく、引き続く窒化処理で更に大きく
成長して、均質に微細分散しなくなることが多く、方位
に優れた二次再結晶粒を発現させることに効果的に働か
ない。このためNの上限を0.0040%、好ましくは
0.002%とした。
N forms nitrides and acts as an inhibitor, but if it is 0.0040% or less, preferably 0.002% or less at the stage of slab, it is nitrided until primary recrystallization annealing regardless of hot rolling conditions. Formation can be prevented. Then, by nitriding, it is possible to form a nitride although it is finely dispersed uniformly. When N exceeds 0.004%, a nitride is formed before the primary recrystallization, but the number of this nitride is small and the size is large. In many cases, it does not disperse, and it does not work effectively in developing secondary recrystallized grains with excellent orientation. Therefore, the upper limit of N is set to 0.0040%, preferably 0.002%.

【0043】下限を0.0001%としたのはこれまで
窒素量を下げれば熱延工程での窒化物の形成が皆無とな
り、一次再結晶焼鈍後の窒化により、強度の強い窒化物
を均一に分散させることが可能だがこれ以上下げても、
一次再結晶焼鈍後に窒化物を均質に微細分散させる効果
は変わらないので下限を0.0001%とした。
The lower limit of 0.0001% is that if the amount of nitrogen is lowered so far, no nitride is formed in the hot rolling process, and nitriding after the primary recrystallization annealing makes the strong nitride uniform. It is possible to disperse, but if you lower it further,
The effect of uniformly finely dispersing the nitride after the primary recrystallization annealing does not change, so the lower limit was made 0.0001%.

【0044】以下の元素は一次インヒビターを強化する
働きがあるが主に三次インヒビターを強化する目的で添
加したものである。Biは三次インヒビターを強くする
働きがあるが、0.0050%以下では効果が小さいの
で下限を0.005%とした。Biは0.15%以上で
も効果はあるが、これ以上添加することは経済的でない
ので上限を0.15%とした。
The following elements have the function of strengthening the primary inhibitor, but are added mainly for the purpose of strengthening the tertiary inhibitor. Bi has a function of strengthening the tertiary inhibitor, but the effect is small at 0.0050% or less, so the lower limit was made 0.005%. Although Bi is effective even if it is 0.15% or more, it is not economical to add more than Bi, so the upper limit was made 0.15%.

【0045】SまたはSe単独またはそれらを合計した
ものを0.0080〜0.060%の範囲に限定したの
は本発明素材成分においてはSまたはSe単独またはそ
れらを合計したものが0.0080%未満では、三次イ
ンヒビターが弱く(110)〔001〕から外れた二次
再結晶粒の発現が多くなるためである。
S or Se alone or the total thereof is limited to the range of 0.0080 to 0.060% because S or Se alone or the total thereof is 0.0080% in the raw material component of the present invention. When the ratio is less than 3, the tertiary inhibitor is weak and the number of secondary recrystallized grains deviating from (110) [001] increases.

【0046】Se,Sは多いほど三次インヒビターを強
化する効果があり、磁束密度が向上するが、それらが
0.060%以上では熱延時に耳割れが発生しやすくな
るので上限を0.060%とした。
The larger the content of Se and S, the stronger the effect of strengthening the tertiary inhibitor, and the higher the magnetic flux density. However, if they are 0.060% or more, ear cracks are likely to occur during hot rolling, so the upper limit is 0.060%. And

【0047】CuはS,Seと析出物を形成したりまた
は単独で三次インヒビターを強化する働きがあるが、
0.01%以下ではその効果が小さいので下限を0.0
1%とした。1%以上添加しても三次インヒビター強化
効果があるが、それ以上添加するのは経済的でないので
上限を1%とした。
Cu has the function of forming a precipitate with S and Se or strengthening the tertiary inhibitor by itself.
If it is less than 0.01%, the effect is small, so the lower limit is 0.0
It was set to 1%. Although the addition of 1% or more has the effect of strengthening the tertiary inhibitor, it is not economical to add more than that, so the upper limit was made 1%.

【0048】MnはS,Seと析出物を形成して三次イ
ンヒビターを強化する働きがあるが、0.01%以下で
はその効果が小さいので下限を0.01%とした。0.
5%以上添加しても三次インヒビター強化効果がある
が、それ以上添加するのは経済的でないので上限を0.
5%とした。
Mn has a function of forming a precipitate with S and Se to strengthen the tertiary inhibitor, but its effect is small at 0.01% or less, so the lower limit was made 0.01%. 0.
Addition of 5% or more has the effect of strengthening the tertiary inhibitor, but it is not economical to add more than that, so the upper limit is set to 0.
It was set to 5%.

【0049】Pは三次インヒビターを強くする働きがあ
るが、0.001%以下では効果が小さいので下限を
0.001%とした。Pは0.15%以上でも効果はあ
るがこれ以上添加することは経済的でないので上限を
0.15%とした。
P has a function of strengthening the tertiary inhibitor, but the effect is small at 0.001% or less, so the lower limit was made 0.001%. P is effective even if it is 0.15% or more, but it is not economical to add more than P, so the upper limit was made 0.15%.

【0050】Snは三次インヒビターを強くする働きが
あるが、0.001%以下では効果が小さいので下限を
0.001%とした。Snは0.3%以上でも効果はあ
るがこれ以上添加することは経済的でないので上限を
0.3%とした。
Sn has a function of strengthening the tertiary inhibitor, but the effect is small at 0.001% or less, so the lower limit was made 0.001%. Although Sn is effective even if it is 0.3% or more, it is not economical to add more than this, so the upper limit was made 0.3%.

【0051】Sbは三次インヒビターを強くする働きが
あるが、0.001%以下では効果が小さいので下限を
0.001%とした。Sbは0.15%以上でも効果は
あるがこれ以上添加することは経済的でないので上限を
0.15%とした。
Sb has a function of strengthening the tertiary inhibitor, but the effect is small at 0.001% or less, so the lower limit was made 0.001%. Although Sb is effective even if it is 0.15% or more, it is not economical to add more than Sb, so the upper limit was made 0.15%.

【0052】Pbは三次インヒビターを強くする働きが
あるが、0.001%以下では効果が小さいので下限を
0.001%とした。Pbは0.15%以上でも効果は
あるがこれ以上添加することは経済的でないので上限を
0.15%とした。
Pb has a function of strengthening the tertiary inhibitor, but the effect is small at 0.001% or less, so the lower limit was made 0.001%. Pb is effective even if it is 0.15% or more, but it is not economical to add more than this, so the upper limit was made 0.15%.

【0053】Bは三次インヒビターを強くする働きがあ
るが、0.0010%以下では効果が小さいので下限を
0.0010%とした。Bは0.1%以上でも効果はあ
るがこれ以上添加することは経済的でないので上限を
0.1%とした。
B has a function of strengthening the tertiary inhibitor, but the effect is small at 0.0010% or less, so the lower limit was made 0.0010%. B is effective even if it is 0.1% or more, but it is not economical to add more than 0.1%, so the upper limit was made 0.1%.

【0054】一次再結晶前の冷延率を75%以上とした
のは、これ以下の冷延率では(110)〔001〕二次
再結晶粒が優先的に成長するためのΣ9対応粒界を形成
する確率が少なく、製品の磁束密度が低くなるので75
%以下とした。上限を95%以下としたのはこれ以上冷
延率を高めると核となる(110)〔001〕方位の存
在量が少なくなり、二次再結晶粒径が著しく大きくなり
鉄損が劣化するので上限を95%とした。
The cold rolling rate before primary recrystallization is set to 75% or more because the cold rolling rate lower than this is the grain boundary corresponding to Σ 9 for the preferential growth of (110) [001] secondary recrystallized grains. 75 is less likely to form
% Or less. The upper limit is set to 95% or less because if the cold rolling rate is further increased, the amount of the (110) [001] orientation, which is the core, becomes small, the secondary recrystallized grain size becomes remarkably large, and iron loss deteriorates. The upper limit was set to 95%.

【0055】一次再結晶焼鈍温度を800℃以上とした
のは、これ以下の温度で焼鈍した場合は高い磁束密度が
得られない場合があるので800℃以上とした。焼鈍温
度を1000℃以下としたのはこれ以上の温度で焼鈍し
ても高い磁束密度が得られるが、熱的に不経済であるの
で1000℃以下とした。
The primary recrystallization annealing temperature is set to 800 ° C. or higher, because high magnetic flux density may not be obtained when annealing is performed at a temperature lower than 800 ° C. Although the annealing temperature is set to 1000 ° C. or lower, a high magnetic flux density can be obtained even if annealing is performed at a temperature higher than this, but it is set to 1000 ° C. or lower because it is thermally uneconomical.

【0056】加熱時間1秒以上としたのはこれより短い
と磁束密度がばらつく傾向が見られるためであり、30
0秒以下としたのはこれ以上長く加熱しても磁束密度の
向上は見られず、経済的でないためである。必要に応じ
て一次再結晶焼鈍後窒素量を50ppm 以上としたのはこ
れ以下では三次インヒビターが弱く高い磁束密度が得ら
れないためであり、1000ppm 以下と限定したのはこ
れ以上高くしても高い磁束密度が得られるが、これ以上
窒素量を高めるために窒化処理を施すことは経済的でな
いためである。一次再結晶焼鈍後の結晶粒径を図1の範
囲に限定したのはこの範囲外では安定して高い磁束密度
を得ることが困難なためである。
The reason why the heating time is set to 1 second or longer is that if the heating time is shorter than this, the magnetic flux density tends to vary.
The reason for setting it to 0 seconds or less is that it is not economical because the magnetic flux density is not improved even if it is heated for a longer time. If necessary, the amount of nitrogen after primary recrystallization annealing is set to 50 ppm or more because the tertiary inhibitor is weak and a high magnetic flux density cannot be obtained below this amount. This is because the magnetic flux density can be obtained, but it is not economical to perform the nitriding treatment in order to increase the nitrogen content further. The crystal grain size after the primary recrystallization annealing is limited to the range of FIG. 1 because it is difficult to stably obtain a high magnetic flux density outside this range.

【0057】[0057]

【実施例】C:0.002%、Si:3.25%、M
n:0.074%、P:0.099%、Al:0.03
6%、S:0.0090%、Sn:0.051%、C
u:0.15%、Bi:0.086%、N:0.001
%、Sb:0.062%を主成分としたスラブを105
0℃の温度で2時間加熱後、粗圧延、仕上圧延を経て厚
さ2.3mmの熱延板とした。その鋼板は900℃120
秒の熱延板焼鈍を行った後冷間圧延を行い厚さ0.30
mmとした。この場合冷間圧延途中板厚1.6mm,1.2
mm,0.8mm,0.6mm,0.4mmの各厚みで250℃
20分保持した条件でパスエージング圧延を行った。
EXAMPLES C: 0.002%, Si: 3.25%, M
n: 0.074%, P: 0.099%, Al: 0.03
6%, S: 0.0090%, Sn: 0.051%, C
u: 0.15%, Bi: 0.086%, N: 0.001
%, Sb: 0.062% as a main component of the slab 105
After heating at a temperature of 0 ° C. for 2 hours, rough rolling and finish rolling were performed to obtain a hot rolled sheet having a thickness of 2.3 mm. The steel plate is 900 ℃ 120
Second hot-rolled sheet annealing followed by cold rolling to a thickness of 0.30
mm. In this case, the plate thickness during cold rolling is 1.6 mm, 1.2
mm, 0.8mm, 0.6mm, 0.4mm at 250 ℃
Pass aging rolling was performed under the condition of holding for 20 minutes.

【0058】次いで900℃の温度で露点69℃、75
%H2 −N2 雰囲気中で加熱後、窒化処理を行い窒素量
を104ppm と130ppm とした。このときに一次再結
晶焼鈍後の結晶粒径は20μmであった。次に重量でM
gOを100部に対し+TiO2 を5部、Na2 4
7 を0.3部の割合で混合した焼鈍分離剤を塗布し95
%N2 −H2 の雰囲気で昇温速度15℃/hrで1200
℃まで加熱後、100%H2 雰囲気で20時間加熱後冷
却した。次いで歪取り焼鈍を行い磁束密度を測定しその
値を表1に示す。
Then, at a temperature of 900 ° C., a dew point of 69 ° C. and 75
After heating at% H 2 -N 2 atmosphere, the amount of nitrogen carried out nitriding treatment was 104ppm and 130 ppm. At this time, the crystal grain size after the primary recrystallization annealing was 20 μm. Then by weight M
To 100 parts of gO + 5 parts of TiO 2 , Na 2 B 4 O
Apply the annealing separator mixed with 7 parts in a ratio of 0.3 parts to 95
1200 at a temperature rising rate of 15 ° C./hr in an atmosphere of% N 2 —H 2.
After heating to 0 ° C., it was heated in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing is performed to measure the magnetic flux density, and the value is shown in Table 1.

【0059】比較のためA法及びB法についても工程処
理を行った。A法としてはC:0.078%、Si:
3.25%、Mn:0.075%、P:0.01%、
S:0.025%、Al:0.030%、N:0.00
83%、Cu:0.07%、Sn:0.12%を主成分
としたスラブを1400℃で2時間加熱後直ちに厚さ
2.3mmに圧延し550℃で巻き取った。次いで112
0℃まで100秒で加熱後930℃で約120秒加熱後
水冷した。
For the sake of comparison, process treatments were also carried out for method A and method B. As method A, C: 0.078%, Si:
3.25%, Mn: 0.075%, P: 0.01%,
S: 0.025%, Al: 0.030%, N: 0.00
A slab containing 83%, Cu: 0.07%, and Sn: 0.12% as main components was heated at 1400 ° C for 2 hours, immediately rolled to a thickness of 2.3 mm, and wound at 550 ° C. Then 112
After heating to 0 ° C. for 100 seconds, it was heated at 930 ° C. for about 120 seconds and then cooled with water.

【0060】次いで本発明材と同一条件で冷延を行い、
830℃で120秒本発明材と同じ雰囲気で加熱した。
一次再結晶焼鈍後の結晶粒径は8μmであった。次いで
本発明と同一の焼鈍分離剤を塗布し、25%N2 −H2
の雰囲気で昇温速度15℃/hrで1200℃まで加熱
後、100%H2 雰囲気で20時間加熱後冷却した。次
いで歪取り焼鈍を行い磁束密度を測定しその結果を表1
に示す。
Next, cold rolling was performed under the same conditions as the material of the present invention,
It was heated at 830 ° C. for 120 seconds in the same atmosphere as the material of the present invention.
The crystal grain size after the primary recrystallization annealing was 8 μm. Then, the same annealing separator as that of the present invention is applied, and 25% N 2 -H 2 is applied.
After heating to 1200 ° C. at a temperature rising rate of 15 ° C./hr in the above atmosphere, heating was performed in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing is performed and the magnetic flux density is measured.
Shown in

【0061】B法としてはC:0.055%、Si:
3.25%、Mn:0.100%,P:0.025%、
S:0.007%、Al:0.030%、N:0.00
77%、Cu:0.07%、Sn:0.05%、Cr:
0.12%を主成分としたスラブを1150℃で2時間
加熱後直ちに厚さ2.3mmに圧延し550℃で巻き取っ
た。次いで1120℃まで100秒で加熱後930℃で
約120秒加熱後水冷した。
As the B method, C: 0.055%, Si:
3.25%, Mn: 0.100%, P: 0.025%,
S: 0.007%, Al: 0.030%, N: 0.00
77%, Cu: 0.07%, Sn: 0.05%, Cr:
A slab containing 0.12% as a main component was heated at 1150 ° C. for 2 hours, immediately rolled to a thickness of 2.3 mm, and wound at 550 ° C. Then, it was heated to 1120 ° C. for 100 seconds, heated at 930 ° C. for about 120 seconds, and then cooled with water.

【0062】次いで本発明材と同一条件で冷延を行い、
830℃で120秒本発明材と同じ雰囲気で加熱後77
0℃で36秒間窒化処理を行い窒素量を200ppm とし
た。一次再結晶後の結晶粒径は24μmであった。
Next, cold rolling is performed under the same conditions as the material of the present invention,
After heating at 830 ° C for 120 seconds in the same atmosphere as the material of the present invention, 77
Nitrogen treatment was performed at 0 ° C. for 36 seconds to adjust the amount of nitrogen to 200 ppm. The crystal grain size after the primary recrystallization was 24 μm.

【0063】次いで本発明と同一の焼鈍分離剤を塗布
し、50%N2 −H2 の雰囲気で昇温速度15℃/hrで
1200℃まで加熱後、100%H2 雰囲気で20時間
加熱後冷却した。次いで歪取り焼鈍を行い磁束密度を測
定し表1に示す。表1に示した如く本発明で作成した電
磁鋼板は熱延板焼鈍を省略しているにもかかわらず著し
く磁束密度が高い。表1に示したように本発明材は比較
材と同等以上の良好な磁気特性が得られた。
Then, the same annealing separator as that of the present invention was applied, heated to 1200 ° C. in a 50% N 2 —H 2 atmosphere at a heating rate of 15 ° C./hr, and then heated in a 100% H 2 atmosphere for 20 hours. Cooled. Then, strain relief annealing is performed and the magnetic flux density is measured and shown in Table 1. As shown in Table 1, the magnetic steel sheet produced according to the present invention has a remarkably high magnetic flux density even though the hot-rolled sheet annealing is omitted. As shown in Table 1, the material of the present invention had good magnetic characteristics equivalent to or better than those of the comparative material.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【発明の効果】本発明により、磁気特性の優れた電磁鋼
板が安価に製造できる。
According to the present invention, an electromagnetic steel sheet having excellent magnetic properties can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】A法、B法及び本発明法の一次再結晶焼鈍後の
結晶粒径と一次再結晶温度の関係を示す図表。
FIG. 1 is a chart showing the relationship between the crystal grain size and the primary recrystallization temperature after the primary recrystallization annealing of the methods A, B and the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.001〜0.090%、 Si:2.0〜4.5%、 酸可溶性Al:0.010〜0.080%、 N :0.0001〜0.0040%、 SまたはSe単独またはそれらの和:0.0080〜
0.060%、 Cu:0.01〜1%、 Mn:0.01〜0.5%、及び Bi:0.005〜0.15%、 P :0.001〜0.15%、 Sn:0.001〜0.3%、 Sb:0.001〜0.15%、 Pb:0.001〜0.15%、 B :0.0010〜0.1%、 V :0.01〜0.10%、 Nb:0.001〜0.10%、 Zr:0.001〜0.10% の1種または2種以上、 残部Fe及び不可避的不純物を含んだ一次再結晶焼鈍前
の冷延率が75%以上95%以下とした電磁鋼冷延板を
800℃以上1000℃以下の温度で1秒以上300秒
以内焼鈍後全窒素量が50ppm 以上1000ppm に入る
ように調整した後焼鈍分離剤を塗布し、仕上焼鈍を施す
ことを特徴とする方向性電磁鋼板の製造方法。
1. C: 0.001 to 0.090% by weight, Si: 2.0 to 4.5%, acid-soluble Al: 0.010 to 0.080%, N: 0.0001 to 0. 0.0040%, S or Se alone or the sum thereof: 0.0080 to
0.060%, Cu: 0.01 to 1%, Mn: 0.01 to 0.5%, and Bi: 0.005 to 0.15%, P: 0.001 to 0.15%, Sn: 0.001-0.3%, Sb: 0.001-0.15%, Pb: 0.001-0.15%, B: 0.0010-0.1%, V: 0.01-0. 1% or more of 10%, Nb: 0.001 to 0.10%, Zr: 0.001 to 0.10%, cold rolling rate before primary recrystallization annealing containing balance Fe and unavoidable impurities After annealing the electromagnetic steel cold-rolled sheet with a temperature of 75% or more and 95% or less at a temperature of 800 ° C. or more and 1000 ° C. or less for 1 second or more and 300 seconds or less, a total amount of nitrogen is adjusted to 50 ppm or more and 1000 ppm or less, and a post-annealing separator is used. A method for manufacturing a grain-oriented electrical steel sheet, which comprises applying and finish annealing.
【請求項2】 一次再結晶焼鈍後の平均結晶粒径が図1
に示すA点(800℃,18μm)、B点(800℃,
14μm)、C点(1000℃,14μm)、D点(1
000℃,26μm)で囲まれる範囲にあることを特徴
とする請求項1記載の方向性電磁鋼板の製造方法。
2. The average crystal grain size after primary recrystallization annealing is shown in FIG.
Point A (800 ° C, 18 μm), point B (800 ° C,
14 μm), C point (1000 ° C., 14 μm), D point (1
The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the grain size is in a range surrounded by 000 ° C. and 26 μm).
JP3810195A 1995-02-27 1995-02-27 Production of grain oriented silicon steel sheet Withdrawn JPH08232020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3810195A JPH08232020A (en) 1995-02-27 1995-02-27 Production of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3810195A JPH08232020A (en) 1995-02-27 1995-02-27 Production of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH08232020A true JPH08232020A (en) 1996-09-10

Family

ID=12516090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3810195A Withdrawn JPH08232020A (en) 1995-02-27 1995-02-27 Production of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH08232020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959142A2 (en) * 1998-05-21 1999-11-24 Kawasaki Steel Corporation Grain oriented electromagnetic steel sheet and manufacturing method thereof
WO2014032216A1 (en) 2012-08-30 2014-03-06 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
CN104294155A (en) * 2014-09-28 2015-01-21 东北大学 Ultra-low carbon oriented silicon steel and preparation method thereof
EP3561103A4 (en) * 2016-12-22 2019-11-20 Posco Grain-oriented electrical steel sheet and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959142A2 (en) * 1998-05-21 1999-11-24 Kawasaki Steel Corporation Grain oriented electromagnetic steel sheet and manufacturing method thereof
EP0959142A3 (en) * 1998-05-21 2003-09-17 Kawasaki Steel Corporation Grain oriented electromagnetic steel sheet and manufacturing method thereof
WO2014032216A1 (en) 2012-08-30 2014-03-06 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
CN104294155A (en) * 2014-09-28 2015-01-21 东北大学 Ultra-low carbon oriented silicon steel and preparation method thereof
EP3561103A4 (en) * 2016-12-22 2019-11-20 Posco Grain-oriented electrical steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US4579608A (en) Grain-oriented silicon steel sheets having a very low iron loss and methods for producing the same
JP3481491B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
EP3901311A1 (en) Oriented electrical steel sheet and manufacturing method thereof
US3933537A (en) Method for producing electrical steel sheets having a very high magnetic induction
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH08232020A (en) Production of grain oriented silicon steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH08225843A (en) Production of grain-oriented silicon steel sheet
JPH08225842A (en) Production of grain-oriented silicon steel sheet
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH05171291A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2003089821A (en) Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet
JP4283533B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3485409B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0978132A (en) Production of low core loss grain oriented silicon steel sheet
JPH093541A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPH0649543A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH06179915A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH0689406B2 (en) Method for producing grain-oriented silicon steel sheet having good magnetic properties

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507