JPH08222715A - Manufacture of laminated soi substrate - Google Patents

Manufacture of laminated soi substrate

Info

Publication number
JPH08222715A
JPH08222715A JP5181895A JP5181895A JPH08222715A JP H08222715 A JPH08222715 A JP H08222715A JP 5181895 A JP5181895 A JP 5181895A JP 5181895 A JP5181895 A JP 5181895A JP H08222715 A JPH08222715 A JP H08222715A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
soi substrate
crystal silicon
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5181895A
Other languages
Japanese (ja)
Other versions
JP3563144B2 (en
Inventor
Sadao Nakajima
定夫 中嶋
Tatsuhiko Katayama
達彦 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T ELECTRON TECHNOL KK
Sumco Techxiv Corp
NTT ElectronicsTechno Corp
Original Assignee
N T T ELECTRON TECHNOL KK
Sumco Techxiv Corp
Komatsu Electronic Metals Co Ltd
NTT ElectronicsTechno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T ELECTRON TECHNOL KK, Sumco Techxiv Corp, Komatsu Electronic Metals Co Ltd, NTT ElectronicsTechno Corp filed Critical N T T ELECTRON TECHNOL KK
Priority to JP05181895A priority Critical patent/JP3563144B2/en
Publication of JPH08222715A publication Critical patent/JPH08222715A/en
Application granted granted Critical
Publication of JP3563144B2 publication Critical patent/JP3563144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To increase the bonding strength of the laminated surface of a laminated SOI substrate by a method wherein the SOI substrate is subjected to oxidation treatment in a high-temperature oxygen atmosphere to grow a buried oxide film and the interface between a surface active silicon layer and the buried oxide film is moved from the laminated surface of the SOI substrate and formed. CONSTITUTION: A surface oxidation single crystal silicon substrate 2 is laminated to a single-crystal silicon substrate 1 and a buried oxide film 5 is provided by bonding together the substrates 2 and 1. Then, the surface, which faces the side of the substrate 1, of the substrate 2 is polished to form a SOI substrate 6 which uses this polished surface as a surface active silicon layer 4. The SOI substrate 6 is subjected to oxidation treatment in a high-temperature oxygen atmosphere to grow the film 5 and the interface between the layer 4 and the film 5 is moved from the laminated surface of the substrate 6 and is formed. Thereby, the bonding strength of the laminated surface of the SOI substrate can be increased to a strength equal with that of a bulk material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はSOI基板の製造方法に
係り、特に、貼り合わせ単結晶シリコン基板中に絶縁層
を形成するSOI基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an SOI substrate, and more particularly to a method for manufacturing an SOI substrate in which an insulating layer is formed in a bonded single crystal silicon substrate.

【0002】[0002]

【従来の技術】バルク状の半導体基板に集積回路を作り
込むよりも、絶縁材料上に設けられた薄い半導体層に各
種の素子を形成するほうが、素子特性や素子間分離の点
で有利である。このような見地から、単結晶シリコン基
板上にSiO2 の絶縁膜を介して素子形成のためのシリ
コン単結晶層を設けたSOI基板が用いられている。
2. Description of the Related Art It is advantageous to form various elements in a thin semiconductor layer provided on an insulating material in terms of element characteristics and element isolation, rather than forming an integrated circuit on a bulk semiconductor substrate. . From this point of view, an SOI substrate in which a silicon single crystal layer for forming an element is provided on a single crystal silicon substrate via an insulating film of SiO 2 is used.

【0003】上記SOI基板の製造方法としては、少な
くとも二枚のシリコン基板のうちの一方のシリコン基板
を酸化して表面酸化膜を形成し、この表面酸化膜を挟ん
で他方のシリコン基板を重ねて貼り合わせることによ
り、単結晶シリコン基板中に絶縁層を形成する方法があ
る。この方法は、鏡面研磨した2枚の単結晶シリコン基
板に親水性を持たせ、清浄な室温雰囲気中で接触させた
後、800〜1100℃の熱処理を加えることによって
貼り合わせるものである。貼り合わせに当たり、一般的
には一方の基板に予め酸化膜を形成しておくことによ
り、単結晶シリコン基板内にSiO2 の絶縁膜が埋め込
み酸化膜として形成される。
As a method of manufacturing the SOI substrate, one of at least two silicon substrates is oxidized to form a surface oxide film, and the other silicon substrate is stacked with the surface oxide film sandwiched therebetween. There is a method of forming an insulating layer in a single crystal silicon substrate by bonding. In this method, two mirror-polished single crystal silicon substrates are made hydrophilic, and they are brought into contact with each other in a clean room temperature atmosphere, and then heat-treated at 800 to 1100 ° C. to bond them together. Upon bonding, an oxide film is generally formed in advance on one of the substrates, so that an insulating film of SiO 2 is formed as a buried oxide film in the single crystal silicon substrate.

【0004】貼り合わせSOI基板を製造する場合、表
面酸化膜を形成したシリコン基板側を研磨して表面活性
シリコン層を形成するか、あるいは、酸化膜を形成して
いない単結晶シリコン基板側を研磨して表面活性シリコ
ン層を形成するかの、いずれかが採用される。図6
(a)および(b)に示すように、第1の単結晶シリコ
ン基板1に表面酸化膜3を形成し、表面酸化膜のない第
2の単結晶シリコン基板2と貼り合わせた後、図6(c
1)に示すように前記第1の単結晶シリコン基板1の表
面を研磨加工して薄膜化し、これを表面活性シリコン層
4とする。これにより埋め込み酸化膜5を有する貼り合
わせSOI基板6が完成する。この場合のベース側基板
は第2の単結晶シリコン基板2で、表面活性シリコン層
側基板は第1の単結晶シリコン基板1である。また、他
の方法は、第1の表面酸化単結晶シリコン基板1と第2
の単結晶シリコン基板2とを貼り合わせた後、同図(c
2)に示すように、第2の単結晶シリコン基板2の表面
を研磨加工し、これを薄膜化して表面活性シリコン層4
を形成することにより、埋め込み酸化膜5を有する貼り
合わせSOI基板6が完成する。
In the case of manufacturing a bonded SOI substrate, the silicon substrate side having a surface oxide film formed is polished to form a surface active silicon layer, or the single crystal silicon substrate side having no oxide film formed is polished. Either of these is used to form the surface active silicon layer. Figure 6
As shown in FIGS. 6A and 6B, after the surface oxide film 3 is formed on the first single crystal silicon substrate 1 and is bonded to the second single crystal silicon substrate 2 having no surface oxide film, FIG. (C
As shown in 1 ), the surface of the first single crystal silicon substrate 1 is polished and thinned to form a surface active silicon layer 4. As a result, the bonded SOI substrate 6 having the buried oxide film 5 is completed. In this case, the base side substrate is the second single crystal silicon substrate 2, and the surface active silicon layer side substrate is the first single crystal silicon substrate 1. Another method is to use the first surface-oxidized single-crystal silicon substrate 1 and the second surface-oxidized single-crystal silicon substrate 1.
After bonding the single crystal silicon substrate 2 of FIG.
As shown in 2 ), the surface of the second single crystal silicon substrate 2 is polished and thinned to obtain a surface active silicon layer 4
Are formed, the bonded SOI substrate 6 having the buried oxide film 5 is completed.

【0005】[0005]

【発明が解決しようとする課題】貼り合わせによってS
OI基板中に埋め込み酸化膜を形成する場合、次の問題
点が発生する。 (1)貼り合わせ面の接着強度が酸素イオンを打込み注
入してシリコン内部に埋め込み酸化膜を形成するSIM
OX基板に比べると低い。特に、接合面に気泡などによ
る未接合部分が残ると接着強度が低下する。 (2)表面活性シリコン層を表面酸化膜を形成したシリ
コン基板側を研磨して形成する方法(図6(c1)及び
(d1)参照)では、シリコン基板の表裏面に予め形成
された表面酸化膜3の片側を研磨除去するため、酸化膜
層とシリコン層との熱膨張係数の相違により、図6(d
1)に示すように貼り合わせSOI基板6が反るという
問題が発生する。特に、貼り合わせ界面の酸化膜すなわ
ち表面活性シリコン層側の単結晶シリコン基板1の表面
酸化膜厚が500nm以上と厚い場合には、基板の反り
は40μm程度に大きくなる。一方、膜厚が100nm
以下の薄い酸化膜を介して貼り合わせを行った従来の基
板では、基板の反りは比較的小さくできるものの、貼り
合わせの際に基板の表面に0.1μm以上のパーティク
ルが付着すると接着強度が低下する。さらに、貼り合わ
せ界面の酸化膜厚より大きなパーティクルは、ボイドの
発生源となる。 (3)酸化膜を形成していない単結晶シリコン基板側を
研磨して形成する方法(図6(c2)及び(d2)参照)
では、第1の単結晶シリコン基板1の表裏面に表面酸化
膜を残存させた状態で貼り合わせSOI基板が形成され
るため、表面酸化膜を厚くしても基板の反りが小さくな
るものの、埋め込み酸化膜と活性シリコン層との貼り合
わせに際しての不純物の混入により貼り合わせ界面9で
は、その界面準位密度が1×1012/cm2 eVと大きく
なる。この界面準位密度は、第1の単結晶シリコン基板
1の表面酸化膜の膜厚を変えて貼り合わせても低減でき
ない。このため、表面活性シリコン層4中に形成した素
子(例えばMOS型FET)の電気特性は劣化する。M
OS型FETにおいては、例えばソース、ドレイン間の
設定電圧に対するしきい値電圧の制御性が劣化するとい
う問題を生じる。
[Problems to be Solved by the Invention]
When forming a buried oxide film in an OI substrate, the following problems occur. (1) The bonding strength of the bonding surface is SIM in which oxygen ions are implanted and implanted to form a buried oxide film inside silicon.
Low compared to OX substrate. In particular, if an unbonded portion due to air bubbles or the like remains on the bonded surface, the adhesive strength will decrease. (2) In the method of forming the surface active silicon layer by polishing the side of the silicon substrate on which the surface oxide film is formed (see FIGS. 6 (c 1 ) and 6 (d 1 )), it is formed in advance on the front and back surfaces of the silicon substrate. Since one side of the surface oxide film 3 is removed by polishing, a difference in thermal expansion coefficient between the oxide film layer and the silicon layer causes a difference in FIG.
As shown in 1 ), the bonded SOI substrate 6 warps. In particular, when the oxide film at the bonding interface, that is, the surface oxide film thickness of the single crystal silicon substrate 1 on the surface active silicon layer side is as thick as 500 nm or more, the warp of the substrate increases to about 40 μm. On the other hand, the film thickness is 100 nm
The following conventional substrates that are bonded through a thin oxide film can have a relatively small warp, but the adhesion strength decreases if particles of 0.1 μm or more adhere to the surfaces of the substrates during bonding. To do. Further, particles larger than the oxide film thickness at the bonding interface become a source of generation of voids. (3) Method of polishing by forming the single crystal silicon substrate side on which the oxide film is not formed (see FIGS. 6C 2 and 6D 2 ).
Then, since the bonded SOI substrate is formed with the surface oxide film left on the front and back surfaces of the first single crystal silicon substrate 1, even if the surface oxide film is thickened, the warpage of the substrate is reduced, At the bonding interface 9, the interface state density increases to 1 × 10 12 / cm 2 eV due to the inclusion of impurities when bonding the oxide film and the active silicon layer. This interface state density cannot be reduced even if the film thickness of the surface oxide film of the first single crystal silicon substrate 1 is changed and bonded. Therefore, the electrical characteristics of the element (for example, MOS type FET) formed in the surface active silicon layer 4 deteriorates. M
In the OS type FET, for example, the controllability of the threshold voltage with respect to the set voltage between the source and the drain deteriorates.

【0006】本発明は上記従来の問題点に着目してなさ
れたもので、第1には、貼り合わせ面の接着強度が高い
SOI基板の提供を目的とする。第2には、貼り合わせ
の際に薄い酸化膜の場合においても、さらに基板表面の
酸化膜厚より大きなパーティクルが付着した場合におい
ても、貼り合わせ面での接着強度を低下させることがな
く、かつ、貼り合わせ界面のボイドを低減させることが
できるような貼り合わせSOI基板の製造方法を提供す
ることを目的としている。また、第3には、反りが少な
く貼り合わせ界面の界面準位密度を単結晶シリコン基板
を熱酸化して形成される熱酸化膜とそのシリコン基板と
の界面に発生する界面準位密度の値まで低減させること
ができるような貼り合わせSOI基板の製造方法を提供
することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and a first object thereof is to provide an SOI substrate having a high bonding strength on a bonding surface. Secondly, in the case of a thin oxide film at the time of bonding, even when particles larger than the oxide film thickness of the substrate surface adhere, the adhesive strength at the bonding surface is not reduced, and An object of the present invention is to provide a method for manufacturing a bonded SOI substrate that can reduce voids at the bonding interface. Thirdly, the value of the interface state density generated at the interface between the thermal oxide film formed by thermally oxidizing the single crystal silicon substrate and the interface state density of the bonding interface with less warpage is shown. It is an object of the present invention to provide a method for manufacturing a bonded SOI substrate that can be reduced to a maximum.

【0007】[0007]

【課題を解決するための手段】本発明は予めシリコン基
板内部に埋め込まれた酸化膜を形成したSOI基板を対
象として、この基板を高温酸化処理することにより、埋
め込み酸化膜厚が増大する現象を見出したことによって
実現されたものである。表面の単結晶シリコン層の厚さ
が320nm、埋め込み酸化膜の厚さが89nmのSO
I基板を対象とし、この基板を1350℃、不活性ガス
中に流量比(以下同じ)で70%O2 の酸素雰囲気中に
置き、表面の単結晶シリコン層を約180nm酸化させ
る処理を行ったところ、埋め込み酸化膜は118nmに
厚膜化する現象(以降では増膜作用または増膜効果と称
す)が見られた。
The present invention is intended for an SOI substrate in which an oxide film embedded in a silicon substrate is formed in advance, and a phenomenon in which the buried oxide film thickness is increased by subjecting this substrate to high temperature oxidation treatment is described. It was realized by finding. SO having a surface single-crystal silicon layer thickness of 320 nm and a buried oxide film thickness of 89 nm
For the I substrate, the substrate was placed in an oxygen atmosphere of 70% O 2 in an inert gas at a flow rate ratio (the same applies hereinafter) at 1350 ° C., and the surface of the single crystal silicon layer was oxidized by about 180 nm. However, there was a phenomenon in which the buried oxide film was thickened to 118 nm (hereinafter referred to as a film increasing action or a film increasing effect).

【0008】そこで、SOI基板表面に形成される熱酸
化膜の厚さが一定となるような条件で酸化温度条件を変
えて各酸化温度に対する埋め込み酸化膜の増加量を求め
たところ、図3に示すように、酸化温度が上昇するに従
って埋め込み酸化膜の膜厚が増加することが確認され
た。増膜作用は1150℃以上で確認された。同様に、
図4は酸化時間を4時間に固定し、O2 濃度を70%に
固定した場合である。これらの図において、横軸の酸化
温度は絶対温度の逆数の104 倍の数値で表されてい
る。なお、各図の上部に摂氏の温度を併記している。図
4においても明らかなように、酸化温度の上昇に伴って
埋め込み酸化膜厚の増加量も増大する。酸化温度が11
00℃以下では埋め込み酸化膜厚の増加量も僅かであ
り、あるいは酸化時間を実用的な長さ、例えば4時間と
すると、その増加量は検出レベル以下で、厚膜化の効果
がないが、酸化温度が1350℃に上昇させると埋め込
み酸化膜厚の増加量は約30nmとなる。
Therefore, the increase amount of the buried oxide film with respect to each oxidation temperature was determined by changing the oxidation temperature condition under the condition that the thickness of the thermal oxide film formed on the surface of the SOI substrate was constant. As shown, it was confirmed that the film thickness of the buried oxide film increased as the oxidation temperature increased. The film increasing effect was confirmed at 1150 ° C. or higher. Similarly,
FIG. 4 shows the case where the oxidation time is fixed to 4 hours and the O 2 concentration is fixed to 70%. In these figures, the oxidation temperature on the horizontal axis is represented by a value that is 10 4 times the reciprocal of the absolute temperature. The temperature in degrees Celsius is also shown at the top of each figure. As is clear from FIG. 4, the increase in the buried oxide film thickness also increases as the oxidation temperature increases. Oxidation temperature is 11
If the temperature is 00 ° C. or less, the increase in the thickness of the buried oxide film is small, or if the oxidation time is a practical length, for example, 4 hours, the increase is below the detection level and there is no effect of thickening the film. When the oxidation temperature is raised to 1350 ° C., the increase amount of the buried oxide film thickness becomes about 30 nm.

【0009】従来技術による単結晶シリコン基板の埋め
込み酸化膜厚が80〜90nmであるのに対し、本発明
を適用して1350℃で酸化処理し、表面酸化膜厚を約
400nmとした場合には埋め込み酸化膜厚が100〜
120nmに増加することが確認できる。従って、増膜
効果を得るためには少なくとも1150℃以上の温度条
件を必要とし、これはアニール処理温度に匹敵してい
る。また、上限温度はシリコンの融点が1412℃であ
るため、これより低い温度条件とする必要がある。
Whereas the buried oxide film thickness of the single crystal silicon substrate according to the prior art is 80 to 90 nm, when the present invention is applied to perform oxidation treatment at 1350 ° C. and the surface oxide film thickness is about 400 nm, Buried oxide film thickness is 100 ~
It can be confirmed that the thickness increases to 120 nm. Therefore, in order to obtain the film thickening effect, a temperature condition of at least 1150 ° C. or higher is required, which is comparable to the annealing temperature. Further, since the melting point of silicon is 1412 ° C., the upper limit temperature needs to be set to a temperature condition lower than this.

【0010】また、酸素雰囲気の酸素濃度の影響は基本
的には高い濃度が増膜作用に寄与すると考えられること
から、アニール処理後に1350℃の温度条件で4時間
の酸化処理による異なる酸素分圧による埋め込み酸化膜
厚の増加量を実験的に求めたところ、図5に示すような
特性線図が得られた。これによれば、1%O2 の濃度以
上のときに増膜効果が得られることが理解でき、0.5
%O2濃度では増膜分は非常に少なく、また、界面の凹
凸との差異が判別できないので、1%O2の濃度以上で
増膜効果が得られるものと考えられる。これは、雰囲気
中の酸素が、少なくとも表面の単結晶シリコン層や基板
の単結晶シリコン層から内部に拡散され、埋め込み酸化
膜の界面部へSiO2 が滞留積層されるには、基本的に
温度条件を主因子として調整することができるので、前
記シリコン層への拡散に必要な最低限の濃度としては上
記1%O2 の濃度以上を要するものと考えられる。もち
ろん所定の高温下で酸素濃度を因子として増膜作用を行
わせることができることは図5から理解できる。
Further, since the influence of the oxygen concentration in the oxygen atmosphere is considered to basically contribute to the film thickening action, different oxygen partial pressures due to the oxidation treatment for 4 hours at a temperature condition of 1350 ° C. after the annealing treatment are performed. When the amount of increase in the buried oxide film thickness due to is determined experimentally, a characteristic diagram as shown in FIG. 5 was obtained. According to this, it can be understood that the film-increasing effect can be obtained when the concentration is 1% O 2 or more.
At% O 2 concentration, the amount of film increase is very small, and since it is impossible to distinguish the difference from the irregularities at the interface, it is considered that the film increase effect can be obtained at a concentration of 1% O 2 or more. This is because oxygen in the atmosphere is diffused inward from at least the surface single crystal silicon layer or the substrate single crystal silicon layer, and SiO 2 is accumulated and accumulated basically at the interface of the buried oxide film. Since the conditions can be adjusted with the main factor, it is considered that the above-mentioned concentration of 1% O 2 or more is required as the minimum concentration required for diffusion into the silicon layer. Of course, it can be understood from FIG. 5 that the film-increasing action can be performed with the oxygen concentration as a factor at a predetermined high temperature.

【0011】そこで、本発明は、貼り合わせSOI基板
を高温酸化処理することによる埋め込み酸化膜の増膜作
用を利用すれば、埋め込み酸化膜とシリコンの接合面に
気泡などにより残留した未接合部分による接着強度の低
下の問題や、埋め込み酸化膜の膜厚が100nm以下と
されている貼り合わせSOI基板での貼り合わせの際に
基板の表面に付着したパーティクルによる接着強度の低
下の問題の解決、あるいは、貼り合わせ界面の酸化膜厚
より大きなパーティクルの付着によるボイドの発生の低
減ができるとの知見を得てなされたものである。また、
貼り合わせSOI基板を製造するに際して、表面活性シ
リコン層を酸化膜を形成しない側の単結晶シリコン基板
を研磨することで、反りの少ないSOI基板として形成
しておき、この様なSOI基板を高温酸化処理すること
による埋め込み酸化膜の増膜作用を利用すれば、貼り合
わせによって形成された埋め込み酸化膜と活性シリコン
層との界面を、酸化膜の増膜作用によって酸化膜内部に
埋め込み、電気的特性に影響を与える実際の界面位置を
厚膜化された酸化膜と表面活性シリコン層との間に形成
することができる。このため、貼り合わせの際に生じる
反りを低減しつつ、表面活性シリコン層と埋め込み酸化
膜との界面に発生する界面準位密度が高くなるのを低減
できるとの知見を得たものである。
Therefore, according to the present invention, if the effect of increasing the thickness of the buried oxide film by subjecting the bonded SOI substrate to high temperature oxidation treatment is utilized, the unbonded portion remaining due to bubbles or the like on the bonding surface between the buried oxide film and silicon is used. Solving the problem of the decrease in the adhesive strength, the problem of the decrease in the adhesive strength due to the particles adhering to the surface of the bonded SOI substrate when the film thickness of the buried oxide film is 100 nm or less, or It was made based on the knowledge that the generation of voids due to the adhesion of particles larger than the oxide film thickness at the bonding interface can be reduced. Also,
In manufacturing a bonded SOI substrate, a surface active silicon layer is polished as a single crystal silicon substrate on the side where an oxide film is not formed to form an SOI substrate with less warp, and such an SOI substrate is subjected to high temperature oxidation. If the thickening effect of the buried oxide film by the treatment is utilized, the interface between the buried oxide film formed by bonding and the active silicon layer is buried inside the oxide film by the thickening function of the oxide film, and the electrical characteristics are improved. It is possible to form the actual interface position that affects the film thickness between the thickened oxide film and the surface active silicon layer. Therefore, it has been found that it is possible to reduce an increase in the interface state density generated at the interface between the surface active silicon layer and the buried oxide film, while reducing the warpage that occurs during bonding.

【0012】すなわち、貼り合わせSOI基板を高温酸
化することにより、埋め込み酸化膜が厚膜化し、接着不
良部やボイド部分を増膜作用で埋め込み、酸素が界面シ
リコンと結合して界面接着強度を増大させることができ
るのである。さらに、シリコン基板同志の貼り合わせの
後、表面酸化が施されていない側の単結晶シリコン基板
側を研磨することによって、SOI基板の表面活性シリ
コン層を形成した後に、この基板を高温酸化処理を行う
ことによりシリコン基板の内部に埋め込まれた酸化膜厚
を増大させ、この増膜作用によって新たに形成される埋
め込み酸化膜と表面活性シリコン層との界面位置を貼り
合わせ面位置からずらした位置に変化させるようにする
ものである。これによって貼り合わせの際に付着したパ
ーティクル等に起因する界面準位密度の増大部分を埋め
込み酸化膜内部に取り込むことができ、シリコン基板内
部で成長した酸化膜表面との間に新たに界面が形成され
る。これによってSOI基板の界面準位密度が低減する
ことができる。
That is, by oxidizing the bonded SOI substrate at a high temperature, the buried oxide film becomes thicker, and the defective adhesion portion and the void portion are filled by the film increasing action, and oxygen bonds with the interfacial silicon to increase the interfacial adhesive strength. It can be done. Furthermore, after bonding the silicon substrates together, the surface-oxidized silicon layer of the SOI substrate is formed by polishing the side of the single crystal silicon substrate that has not been surface-oxidized, and then this substrate is subjected to high temperature oxidation treatment. By doing so, the thickness of the oxide film embedded in the silicon substrate is increased, and the interface position between the newly formed buried oxide film and the surface-active silicon layer is displaced from the bonding surface position by this film increasing action. It is something that changes. As a result, a portion where the interface state density is increased due to particles or the like attached during bonding can be taken into the embedded oxide film, and a new interface is formed between the oxide film surface grown inside the silicon substrate. To be done. This can reduce the interface state density of the SOI substrate.

【0013】このようなことから、本発明に係わるSO
I基板の製造方法は、まず、少なくとも二枚のシリコン
基板のうちの一方のシリコン基板に酸化膜を施し、この
酸化膜を挟んでシリコン基板を重ねた貼り合わせSOI
基板を製造した後、当該貼り合わせ基板を高温酸素雰囲
気中で酸化処理を行うようにしたものである。これによ
り、高温雰囲気中で前記基板を酸化処理することによっ
て埋め込み酸化膜が厚膜化され、パーティクル付着等に
よる埋込絶縁層の欠陥部分の補修作用を行わせるので、
界面接着強度を増すとともに、絶縁耐圧強度を向上させ
ることができる。この場合において、前記高温酸化処理
温度は上述したように1150℃以上、単結晶シリコン
基板の融点未満の範囲内に保つようにすればよく、前記
高温酸化処理は、アニール時の酸素濃度より高い濃度の
酸素ガス雰囲気中で行うようにすればよい。特に、上記
の貼り合わせSOI基板の製造方法において、膜厚10
0nm以下の表面酸化膜を有するベース側単結晶シリコ
ン基板と、表面酸化膜のない表面活性シリコン層側単結
晶シリコン基板とを貼り合わせた場合には、貼り合わせ
の際に基板の表面に0.1μm以上のパーティクルが付
着しても、高温雰囲気中で前記基板を酸化処理すること
によって埋め込み酸化膜を厚膜化することにより、パー
ティクル付着により埋込絶縁層の欠陥部分の補修作用を
行わせ、接着強度の低下を防止できる。
From the above, the SO according to the present invention
The method for manufacturing the I substrate is as follows. First, one of the at least two silicon substrates is provided with an oxide film, and the silicon substrate is stacked with the oxide film sandwiched between the bonded SOI substrates.
After the substrate is manufactured, the bonded substrate is subjected to an oxidation treatment in a high temperature oxygen atmosphere. As a result, the buried oxide film is thickened by oxidizing the substrate in a high-temperature atmosphere, and the defective portion of the buried insulating layer due to particle adhesion or the like is repaired.
It is possible to increase the interfacial adhesion strength and the dielectric strength strength. In this case, the high temperature oxidation treatment temperature may be maintained within the range of 1150 ° C. or higher and lower than the melting point of the single crystal silicon substrate as described above, and the high temperature oxidation treatment may be performed at a concentration higher than the oxygen concentration during annealing. It may be performed in the oxygen gas atmosphere. In particular, in the above method for manufacturing a bonded SOI substrate, the film thickness of 10
When a base-side single crystal silicon substrate having a surface oxide film of 0 nm or less and a surface-active silicon layer-side single crystal silicon substrate having no surface oxide film were bonded together, the surface of the substrate had a thickness of 0. Even if particles with a size of 1 μm or more are attached, the embedded oxide film is thickened by oxidizing the substrate in a high temperature atmosphere, so that particles are attached to repair the defective portion of the embedded insulating layer. A decrease in adhesive strength can be prevented.

【0014】また、表面酸化単結晶シリコン基板と単結
晶シリコン基板とを貼り合わせ接合することによる埋め
込み酸化膜を設け、前記単結晶シリコン基板側を研磨し
てこれを表面活性シリコン層とするSOI基板を形成
し、このSOI基板を高温酸素雰囲気中で酸化処理を行
うことにより埋め込み酸化膜を厚膜化し、表面活性シリ
コン層と埋め込み酸化膜との界面を貼り合わせ面から移
動形成するように形成したものである。高温酸化処理対
象のSOI基板としては、表面酸化膜を形成した単結晶
シリコン基板と、酸化していない単結晶シリコン基板と
を貼り合わせた後、酸化していない単結晶シリコン基板
側を研磨して表面活性シリコン層とすることで、予め反
りのないSOI基板とする。そして、このSOI基板を
高温雰囲気中で酸化処理を行うことによって、基板の内
部に埋め込まれている貼り合わせ酸化膜が厚膜化し、こ
の厚膜化した酸化膜により貼り合わせ面が埋め込み酸化
膜の内部に取り込まれ、製造後の埋め込み酸化膜の界面
準位密度を低減することができる。この場合において
も、前記高温酸化処理温度は上述したように1150℃
以上、単結晶シリコン基板の融点未満の範囲内に保つよ
うにすればよく、前記高温酸化処理は、アニール時の酸
素濃度より高い濃度の酸素ガス雰囲気中で行うようにす
ればよい。
An SOI substrate having a buried oxide film formed by bonding and bonding a surface-oxidized single crystal silicon substrate and a single crystal silicon substrate, and polishing the single crystal silicon substrate side to use this as a surface active silicon layer Was formed, and the buried oxide film was thickened by oxidizing the SOI substrate in a high temperature oxygen atmosphere, and the interface between the surface active silicon layer and the buried oxide film was formed to move from the bonding surface. It is a thing. As the SOI substrate to be subjected to the high temperature oxidation treatment, a single crystal silicon substrate having a surface oxide film formed thereon and an unoxidized single crystal silicon substrate are bonded together, and then the unoxidized single crystal silicon substrate side is polished. By using the surface active silicon layer, an SOI substrate having no warp is obtained in advance. Then, the SOI substrate is subjected to an oxidation treatment in a high temperature atmosphere to thicken the bonded oxide film embedded inside the substrate, and the thickened oxide film causes the bonded surface to have a buried oxide film. The density of the interface states of the buried oxide film, which is taken in the inside of the device, can be reduced. Even in this case, the high temperature oxidation treatment temperature is 1150 ° C. as described above.
As described above, the temperature may be kept within a range lower than the melting point of the single crystal silicon substrate, and the high temperature oxidation treatment may be performed in an oxygen gas atmosphere having a concentration higher than the oxygen concentration during annealing.

【0015】[0015]

【作用】上記構成によれば、貼り合わせSOI基板の製
造に当たり、シリコン基板のうちの一方のシリコン基板
に酸化膜を施した表面酸化膜を有するベース側単結晶シ
リコン基板と、表面酸化膜のない表面活性シリコン層側
単結晶シリコン基板とを貼り合わせたSOI基板に、1
150℃以上の高温酸化処理を施すことにしたので、従
来の表面酸化膜の上に更に埋め込み酸化膜が増加形成さ
れ、酸化膜厚が高温酸化処理前よりも厚くなる。貼り合
わせ時にピンホールや基板表面の酸化膜厚より大きなパ
ーティクルが付着してボイドが発生したSOI基板であ
っても、前記埋め込み酸化膜厚の増加によりボイドが低
減するとともに、酸素が界面部分でシリコンと結合し、
貼り合わせ界面の接着強度をバルク並みに増大させるこ
とができる。さらに、表面活性シリコン層を形成するた
めの研磨を単結晶シリコン基板に対して行うことで形成
されたSOI基板では、表面活性シリコン層側と反対側
の基板の面に表面酸化膜が形成された構造となり、埋め
込み酸化膜と上記表面酸化膜とで挟まれたSOI基板の
ベースとなるシリコン層の表裏面には応力差が発生せ
ず、その結果該SOI基板の反りが低減される。このよ
うなSOI基板を1150℃以上の高温酸化処理を施す
ことにしたので、前記SOI基板の表面すなわち表面活
性シリコン層側単結晶シリコン基板の上面に新たに表面
酸化膜が形成され、また、ベース側単結晶シリコン基板
の下面にある酸化膜上にも酸化膜が積層形成される。同
時に、埋め込み酸化膜への増膜作用により、埋め込み酸
化膜が成長厚膜化する。製造されたSOI基板の反りは
バルク並みに小さくなるとともに、前記高温酸化処理に
より埋め込み酸化膜の上に更に埋め込み酸化膜が増加形
成されため、貼り合わせ面がその内部に埋め込まれ、貼
り合わせ面に付着したパーティクル等は内部に取り込ま
れる。これによって埋め込み酸化膜と活性シリコン層と
の間の界面準位密度をバルクと同等の値まで低下させる
ことができる。
According to the above structure, when manufacturing a bonded SOI substrate, a base side single crystal silicon substrate having a surface oxide film obtained by applying an oxide film to one of the silicon substrates, and no surface oxide film are used. 1 on the SOI substrate in which the single crystal silicon substrate on the surface active silicon layer side is bonded
Since the high temperature oxidation process of 150 ° C. or higher is performed, the buried oxide film is further formed on the conventional surface oxide film, and the oxide film thickness becomes thicker than that before the high temperature oxidation process. Even in an SOI substrate in which a pinhole or a particle larger than the oxide film thickness on the substrate surface is adhered at the time of bonding to generate a void, the void is reduced due to the increase in the embedded oxide film thickness, and oxygen is silicon at the interface portion. Combined with
It is possible to increase the adhesive strength at the bonding interface to the level of bulk. Further, in the SOI substrate formed by polishing the single crystal silicon substrate to form the surface active silicon layer, a surface oxide film was formed on the surface of the substrate opposite to the surface active silicon layer side. With the structure, a difference in stress does not occur between the front and back surfaces of the silicon layer which is the base of the SOI substrate and is sandwiched between the buried oxide film and the surface oxide film, and as a result, the warp of the SOI substrate is reduced. Since such an SOI substrate is subjected to a high temperature oxidation treatment of 1150 ° C. or higher, a new surface oxide film is formed on the surface of the SOI substrate, that is, the upper surface of the surface active silicon layer side single crystal silicon substrate, and An oxide film is laminated on the oxide film on the lower surface of the side single crystal silicon substrate. At the same time, the buried oxide film grows and becomes thicker due to the effect of increasing the thickness of the buried oxide film. The warp of the manufactured SOI substrate is as small as that of a bulk, and since the buried oxide film is further formed on the buried oxide film by the high-temperature oxidation treatment, the bonding surface is embedded inside the bonding surface and the bonding surface is bonded. The adhered particles and the like are taken inside. As a result, the interface state density between the buried oxide film and the active silicon layer can be reduced to a value equivalent to that of the bulk.

【0016】[0016]

【実施例】以下に、本発明に係る貼り合わせSOI基板
の製造方法の実施例1について、図面を参照して説明す
る。図1は、SOI基板の製造方法について、製造工程
順に示した基板の断面模式図である。まず、図1(a)
に示すように、表面活性シリコン層側となる単結晶シリ
コン基板2およびベース側となる単結晶シリコン基板1
をそれぞれ鏡面研磨し、ベース側単結晶シリコン基板1
にたとえば1000℃、2時間の酸化処理を施して、表
面に厚さ100nm程度の表面酸化膜3を形成する。次
に、図1(b)に示すように、表面活性シリコン層側単
結晶シリコン基板2をベース側単結晶シリコン基板1の
上に載せ、常温で貼り合わせる。その後、たとえば11
00℃、2時間のアニールを行い、表面活性シリコン層
側単結晶シリコン基板2とベース側単結晶シリコン基板
1との貼り合わせを完了する。次に、図1(c)に示す
ように、貼り合わせた表面活性シリコン層側単結晶シリ
コン基板2の表面を研磨し、厚さ1.0μm程度に薄膜
化することによって活性層4が形成される。また、貼り
合わせ界面に残った酸化膜は埋め込み酸化膜5となる。
これらの工程を経て、貼り合わせSOI基板6が完成す
る。ここまでは従来と同じ製造工程である。なお、貼り
合わせSOI基板6の裏面の表面酸化膜は100nm程
度と薄いため、図1(c)では、研磨後の貼り合わせS
OI基板の洗浄で除去された例を示した。
EXAMPLES Example 1 of the method for manufacturing a bonded SOI substrate according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a substrate showing the manufacturing method of the SOI substrate in the order of manufacturing steps. First, FIG. 1 (a)
, The single crystal silicon substrate 2 on the surface active silicon layer side and the single crystal silicon substrate 1 on the base side
Each is mirror-polished and the base side single crystal silicon substrate 1
Then, for example, an oxidation treatment is performed at 1000 ° C. for 2 hours to form a surface oxide film 3 having a thickness of about 100 nm on the surface. Next, as shown in FIG. 1B, the surface active silicon layer side single crystal silicon substrate 2 is placed on the base side single crystal silicon substrate 1 and bonded at room temperature. Then, for example, 11
Annealing is performed at 00 ° C. for 2 hours to complete the bonding between the surface active silicon layer side single crystal silicon substrate 2 and the base side single crystal silicon substrate 1. Next, as shown in FIG. 1C, the surface of the bonded surface active silicon layer-side single crystal silicon substrate 2 is polished and thinned to a thickness of about 1.0 μm to form the active layer 4. It The oxide film remaining on the bonding interface becomes the buried oxide film 5.
Through these steps, the bonded SOI substrate 6 is completed. Up to this point, the manufacturing process is the same as the conventional one. Since the surface oxide film on the back surface of the bonded SOI substrate 6 is as thin as about 100 nm, in FIG.
An example of removing the OI substrate by cleaning is shown.

【0017】図1(d)は高温酸化工程で、O2 ガス濃
度が1%を超え、100%以下の雰囲気内で上記貼り合
わせSOI基板6を酸化処理する。酸化温度は1150
℃以上、貼り合わせSOI基板の融点未満の温度とし、
数時間加熱する。高温酸化処理により、埋め込み酸化膜
5の界面に埋め込み酸化膜厚の増加分7が形成される。
なお、8は前記高温酸化処理によって生じた表面酸化膜
である。
FIG. 1D shows a high temperature oxidation step in which the bonded SOI substrate 6 is oxidized in an atmosphere having an O 2 gas concentration of more than 1% and 100% or less. Oxidation temperature is 1150
And a temperature lower than the melting point of the bonded SOI substrate,
Heat for several hours. By the high temperature oxidation treatment, an increase 7 of the buried oxide film thickness is formed at the interface of the buried oxide film 5.
Reference numeral 8 is a surface oxide film formed by the high temperature oxidation treatment.

【0018】次に、本発明を適用した一実験例について
述べる。 (1)基板酸化:鏡面研磨したベース側単結晶シリコン
基板を1000℃で2時間酸化処理し、100nmの酸
化膜を形成させて酸化膜付き基板とした。 (2)貼り合わせ:前記酸化膜付きベース側単結晶シリ
コン基板と、鏡面研磨した表面活性シリコン層側単結晶
シリコン基板とを貼り合わせた。 (3)アニール:貼り合わせた2枚の単結晶シリコン基
板を1100℃で2時間アニールし、貼り合わせを完了
した。 (4)片面薄膜加工:前記表面活性シリコン層側単結晶
シリコン基板の表面を研磨し、その表面活性シリコン層
が1.0μmとなるように薄膜加工した。 (5)高温酸化処理:濃度70%のO2 ガス雰囲気内で
温度1350℃、3時間の酸化処理を行った。SOI基
板の表面の酸化膜厚は410nmとなり、埋め込み酸化
膜厚は28nm増加した。
Next, an experimental example to which the present invention is applied will be described. (1) Substrate oxidation: A mirror-polished base-side single crystal silicon substrate was subjected to an oxidation treatment at 1000 ° C. for 2 hours to form an oxide film having a thickness of 100 nm to obtain a substrate with an oxide film. (2) Bonding: The base-side single crystal silicon substrate with the oxide film and the mirror-polished surface-active silicon layer-side single crystal silicon substrate were bonded together. (3) Annealing: The two bonded single crystal silicon substrates were annealed at 1100 ° C. for 2 hours to complete the bonding. (4) Single-sided thin film processing: The surface of the single crystal silicon substrate on the surface active silicon layer side was polished and processed into a thin film so that the surface active silicon layer had a thickness of 1.0 μm. (5) High temperature oxidation treatment: Oxidation treatment was performed at a temperature of 1350 ° C. for 3 hours in an O 2 gas atmosphere having a concentration of 70%. The oxide film thickness on the surface of the SOI substrate was 410 nm, and the buried oxide film thickness was increased by 28 nm.

【0019】上記高温酸化処理を行ったSOI基板につ
いて、接着強度の測定とボイド発生率の調査を行ったと
ころ、下記の結果を得た。 (1)接着強度:高温酸化処理を行わない従来の技術に
よるSOI基板では接着強度が500kg/cm2 であ
ったが、前記SOI基板に本発明による高温酸化処理を
追加した場合は接着強度が800kg/cm2 に増大
し、バルクと同等の強度となった。 (2)ボイド発生率:従来の技術によるSOI基板で
は、枚数比率で約50%の基板にボイドが発生していた
が、これらの基板に高温酸化処理を施すことによりボイ
ド発生率は約1%に低下した。なお、SOI基板の高温
酸化処理において酸化温度を1100℃以下にすると、
埋め込み酸化膜厚の増加は僅かであり、厚膜化およびボ
イド低減効果は認められなかった。
With respect to the SOI substrate subjected to the high temperature oxidation treatment, the adhesive strength was measured and the void generation rate was investigated, and the following results were obtained. (1) Bonding strength: The bonding strength was 500 kg / cm 2 in the conventional SOI substrate not subjected to the high temperature oxidation treatment, but the bonding strength was 800 kg when the high temperature oxidation treatment according to the present invention was added to the SOI substrate. / Cm 2 and the strength became equivalent to that of bulk. (2) Void occurrence rate: In the SOI substrate according to the conventional technique, about 50% of the number of voids was generated on the substrate, but the void occurrence rate is about 1% by subjecting these substrates to high temperature oxidation treatment. Fell to. When the oxidation temperature is set to 1100 ° C. or lower in the high temperature oxidation treatment of the SOI substrate,
The increase in the buried oxide film thickness was slight, and the effect of thickening the film and reducing voids was not observed.

【0020】次に、本発明に係る貼り合わせSOI基板
の製造方法の実施例2について、図面を参照して説明す
る。図2は、SOI基板の製造方法について、製造工程
順に示した基板の断面模式図である。まず、図2(a)
に示すように、表面活性シリコン層側となる単結晶シリ
コン基板2およびベース側となる単結晶シリコン基板1
をそれぞれ鏡面研磨し、前記ベース側単結晶シリコン基
板1に例えば1100℃、2時間のウエット酸化処理を
施して、厚さ1000nm程度の表面酸化膜3を形成す
る。次に、図2(b)に示すように、表面活性シリコン
層側単結晶シリコン基板1を、表面酸化膜3を施したベ
ース側単結晶シリコン基板2の上に載せ、常温で貼り合
わせる。その後、たとえば1100℃、2時間のアニー
ルを行い、表面活性シリコン層側単結晶シリコン基板2
とベース側単結晶シリコン基板1との貼り合わせを完了
する。次に、図2(c)に示すように、貼り合わせた表
面活性シリコン層側単結晶シリコン基板2の表面を研磨
し、厚さ1.0μm程度に薄膜化することによって表面
活性シリコン層4が形成される。また、貼り合わせ界面
に残った酸化膜は埋め込み酸化膜5となる。これらの工
程を経て、基礎的な貼り合わせSOI基板6が完成す
る。ここまでは従来と同じ製造工程である。
Next, a second embodiment of the method for manufacturing a bonded SOI substrate according to the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view of the substrate showing the method of manufacturing the SOI substrate in the order of manufacturing steps. First, FIG. 2 (a)
, The single crystal silicon substrate 2 on the surface active silicon layer side and the single crystal silicon substrate 1 on the base side
Are mirror-polished, and the base-side single crystal silicon substrate 1 is subjected to wet oxidation treatment at, for example, 1100 ° C. for 2 hours to form a surface oxide film 3 having a thickness of about 1000 nm. Next, as shown in FIG. 2B, the surface active silicon layer side single crystal silicon substrate 1 is placed on the base side single crystal silicon substrate 2 provided with the surface oxide film 3 and bonded at room temperature. Thereafter, for example, annealing is performed at 1100 ° C. for 2 hours, and the surface active silicon layer side single crystal silicon substrate 2
And the base-side single crystal silicon substrate 1 are bonded together. Next, as shown in FIG. 2C, the surface of the bonded surface-active silicon layer-side single crystal silicon substrate 2 is polished, and the surface-active silicon layer 4 is thinned to a thickness of about 1.0 μm. It is formed. The oxide film remaining on the bonding interface becomes the buried oxide film 5. Through these steps, the basic bonded SOI substrate 6 is completed. Up to this point, the manufacturing process is the same as the conventional one.

【0021】図2(d)は高温酸化工程で、O2 ガス濃
度が1%を超え、100%以下の雰囲気内で上記貼り合
わせSOI基板6を酸化処理する。酸化温度は1150
℃以上、貼り合わせSOI基板の融点未満の温度とし、
数時間加熱する。高温酸化処理により、埋め込み酸化膜
5の上面に埋め込み酸化膜厚の増加分7が形成される。
また、前記貼り合わせSOI基板6の上下面には表面酸
化膜8が形成される。
FIG. 2D shows a high temperature oxidation step in which the bonded SOI substrate 6 is oxidized in an atmosphere in which the O 2 gas concentration exceeds 1% and 100% or less. Oxidation temperature is 1150
And a temperature lower than the melting point of the bonded SOI substrate,
Heat for several hours. By the high temperature oxidation treatment, an increase 7 of the buried oxide film thickness is formed on the upper surface of the buried oxide film 5.
A surface oxide film 8 is formed on the upper and lower surfaces of the bonded SOI substrate 6.

【0022】次に、この第2実施例を適用した一実験例
について述べる。 (1)基板酸化:鏡面研磨したベース側単結晶シリコン
基板1を1100℃で2時間ウエット酸化処理し、1.
0μmの表面酸化膜を形成させて酸化膜付き基板とし
た。 (2)貼り合わせ:前記酸化膜付きのベース側単結晶シ
リコン基板1と、鏡面研磨した表面活性シリコン層側単
結晶シリコン基板2とを貼り合わせた。 (3)アニール:貼り合わせた2枚の単結晶シリコン基
板を1100℃で2時間アニールし、貼り合わせを完了
した。 (4)片面薄膜加工:前記活性層側基板2の表面を研磨
し、表面活性シリコン層が1.0μmとなるように薄膜
加工した。 (5)高温酸化処理:濃度70%のO2 ガス雰囲気内で
温度1150℃、6時間の酸化処理を行った。SOI基
板の表面の酸化膜厚は350nmとなり、埋め込み酸化
膜厚は5nm増加した。
Next, an experimental example to which the second embodiment is applied will be described. (1) Substrate oxidation: Mirror-polished base-side single crystal silicon substrate 1 was subjected to wet oxidation treatment at 1100 ° C. for 2 hours, and 1.
A surface oxide film having a thickness of 0 μm was formed to obtain a substrate with an oxide film. (2) Bonding: The base-side single crystal silicon substrate 1 having the oxide film and the mirror-polished surface-active silicon layer-side single crystal silicon substrate 2 were bonded together. (3) Annealing: The two bonded single crystal silicon substrates were annealed at 1100 ° C. for 2 hours to complete the bonding. (4) Single-sided thin film processing: The surface of the substrate 2 on the active layer side was polished and processed so that the surface active silicon layer had a thickness of 1.0 μm. (5) High temperature oxidation treatment: Oxidation treatment was performed at a temperature of 1150 ° C. for 6 hours in an O 2 gas atmosphere having a concentration of 70%. The oxide film thickness on the surface of the SOI substrate was 350 nm, and the buried oxide film thickness was increased by 5 nm.

【0023】上記高温酸化処理を行ったSOI基板につ
いて、反りおよび界面準位密度の測定を行ったところ、
下記の結果を得た。 (1)反り:本発明による高温酸化処理を追加した場合
は反りが5μm(バルク並)になった。 (2)界面準位密度:反りを小さくするため、ベース側
基板に酸化処理を施して貼り合わせた従来の技術による
SOI基板の界面準位密度は1×1012/cm2eVであ
ったが、本発明による製造方法を用いた場合は界面準位
密度が1×1010/cm2 eVに低下した。 このように、反り、界面準位密度ともにバルクと同等の
値に低減させることができた。なお、SOI基板の高温
酸化処理において酸化温度を1100℃以下にすると、
埋め込み酸化膜厚の増加は殆ど見られず、界面準位密度
低減効果は認められなかった。
When the warp and the interface state density of the SOI substrate subjected to the high temperature oxidation treatment were measured,
The following results were obtained. (1) Warp: When the high temperature oxidation treatment according to the present invention was added, the warp became 5 μm (like bulk). (2) Interface state density: In order to reduce the warpage, the interface state density of the conventional SOI substrate in which the base-side substrate was subjected to an oxidation treatment and bonded was 1 × 10 12 / cm 2 eV. When the manufacturing method according to the present invention was used, the interface state density decreased to 1 × 10 10 / cm 2 eV. In this way, both the warpage and the interface state density could be reduced to values equivalent to those of the bulk. When the oxidation temperature is set to 1100 ° C. or lower in the high temperature oxidation treatment of the SOI substrate,
Almost no increase in the buried oxide film thickness was observed, and no effect of reducing the interface state density was observed.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、シ
リコン基板のうちの一方のシリコン基板に酸化膜を施
し、この酸化膜を挟んでシリコン基板を重ねて貼り合わ
せた後に、高温酸化処理を施すことにしたので、前記S
OI基板の埋め込み酸化膜の上に更に埋め込み酸化膜が
形成され、埋め込み酸化膜厚が高温酸化処理前よりも厚
くなる。これにより、貼り合わせ時に基板表面の酸化膜
厚より大きなパーティクルが付着してボイドが発生した
SOI基板であっても、前記埋め込み酸化膜厚の増加に
よりボイドが低減するとともに、貼り合わせ界面の接着
強度をバルクと同等の強度まで増大させることができ
る。従って、薄い埋め込み酸化膜であることが望ましい
貼り合わせSOI基板の場合、従来から問題となってい
た貼り合わせ界面の接着強度の低下とボイドの発生とを
解決することができる。
As described above, according to the present invention, one of the silicon substrates is provided with an oxide film, and the silicon substrates are stacked and bonded with the oxide film sandwiched therebetween, and then the high temperature oxidation treatment is performed. Since it was decided to apply
A buried oxide film is further formed on the buried oxide film of the OI substrate, and the buried oxide film thickness becomes thicker than that before the high temperature oxidation treatment. As a result, even in the SOI substrate in which particles larger than the oxide film thickness on the substrate surface are adhered at the time of bonding to generate voids, the voids are reduced due to the increase in the embedded oxide film thickness, and the bonding strength at the bonding interface is reduced. Can be increased to a strength comparable to bulk. Therefore, in the case of a bonded SOI substrate in which a thin buried oxide film is desirable, it is possible to solve the problems that have been conventionally encountered, such as the decrease in adhesive strength at the bonding interface and the occurrence of voids.

【0025】また、貼り合わせSOI基板の製造に当た
り、貼り合わせた基板に対し、表面酸化膜を施さない側
の単結晶シリコン層を研磨して表面活性シリコン層を形
成してこれを基礎的なSOI基板とし、当該SOI基板
を1150℃以上、融点未満の高温酸化処理を施すこと
にしたので、前記SOI基板の内部に埋め込まれた酸化
膜の貼り合わせ界面上に酸化膜が増加形成されるので、
貼り合わせ界面準位密度をバルクと同等の値まで低下さ
せることが可能となる。そして同時に基板の反りをバル
ク並みに抑制することができる。従って、厚い埋め込み
酸化膜であることが望ましい貼り合わせSOI基板の場
合、従来から問題となっていた基板の反りと高い界面準
位密度とを大幅に低減させることができ、品質の良いS
OI基板の製造が可能となる。
In manufacturing a bonded SOI substrate, the single crystal silicon layer on the side where the surface oxide film is not applied is polished on the bonded substrate to form a surface active silicon layer, and this is used as a basic SOI. Since the SOI substrate is used as a substrate and subjected to a high temperature oxidation treatment at 1150 ° C. or higher and lower than the melting point, an oxide film is increased on the bonding interface of the oxide films embedded inside the SOI substrate.
It is possible to reduce the bonding interface state density to a value equivalent to that of bulk. At the same time, it is possible to suppress the warp of the substrate to the same level as the bulk. Therefore, in the case of a bonded SOI substrate in which a thick buried oxide film is desirable, warpage of the substrate and high interface state density, which have been problems in the past, can be significantly reduced, and a high quality S
It becomes possible to manufacture an OI substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】SOI基板の製造方法について、第1実施例を
製造工程順に示した基板の断面模式図で、(a)は鏡面
研磨および酸化、(b)は貼り合わせ、(c)は研磨、
(d)は高温酸化の各工程を示す。
FIG. 1 is a schematic cross-sectional view of a substrate showing a method of manufacturing an SOI substrate according to a first embodiment in the order of manufacturing steps. (A) is mirror polishing and oxidation, (b) is bonding, (c) is polishing,
(D) shows each process of high temperature oxidation.

【図2】SOI基板の製造方法について、第2実施例を
製造工程順に示した基板の断面模式図で、(a)は鏡面
研磨および酸化、(b)は貼り合わせ、(c)は研磨、
(d)は高温酸化の各工程を示す。
2A and 2B are schematic cross-sectional views of a substrate showing a second embodiment of the method for manufacturing an SOI substrate in the order of manufacturing steps. FIG. 2A is a mirror polishing and oxidation step, FIG. 2B is a bonding step, and FIG.
(D) shows each process of high temperature oxidation.

【図3】高温酸化工程において、表面のシリコン単結晶
層を約180nm酸化した場合の酸化温度と埋め込み酸
化膜厚増加量との相関を示す図である。
FIG. 3 is a diagram showing a correlation between an oxidation temperature and a buried oxide film thickness increase amount when a surface silicon single crystal layer is oxidized by about 180 nm in a high temperature oxidation step.

【図4】高温酸化工程において、酸化時間を4時間に固
定し、O2 濃度を70%とした場合の酸化温度と埋め込
み酸化膜厚増加量との相関を示す図である。
FIG. 4 is a diagram showing the correlation between the oxidation temperature and the increase amount of the buried oxide film thickness when the oxidation time is fixed at 4 hours and the O 2 concentration is 70% in the high temperature oxidation step.

【図5】高温酸化工程における酸素分圧に対する埋め込
み酸化膜厚増加量との相関を示す図である。
FIG. 5 is a diagram showing a correlation between an oxygen partial pressure in a high temperature oxidation step and an increase amount of a buried oxide film thickness.

【図6】厚い表面酸化膜を有する表面活性シリコン層側
単結晶シリコン基板と酸化膜のないベース側単結晶シリ
コン基板とを貼り合わせた場合に、SOI基板に発生す
る反りの状態を説明する断面模式図((a)、(b)、(c
1)及び(d1))、または表面酸化膜を有するベース側単
結晶シリコン基板と酸化膜のない表面活性シリコン層側
単結晶シリコン基板とを貼り合わせた場合で、貼り合わ
せ界面が表面活性シリコン層側に位置することを説明す
る断面模式図((a)、(b)、(c2)及び(d2))であっ
て、(a)は鏡面研磨および酸化、(b)は貼り合わ
せ、(c1)及び(c2)は研磨、(d1)(d2))は研磨
後の状態を示す。
FIG. 6 is a cross-sectional view illustrating a state of warpage occurring in an SOI substrate when a surface-active silicon layer-side single crystal silicon substrate having a thick surface oxide film and a base-side single crystal silicon substrate having no oxide film are bonded together. Schematic diagram ((a), (b), (c
1) and (d 1 )), or when the base-side single-crystal silicon substrate having a surface oxide film and the surface-active silicon layer-side single-crystal silicon substrate having no oxide film are bonded together, the bonding interface is surface-active silicon. FIG. 3 is a schematic cross-sectional view ((a), (b), (c 2 ), and (d 2 )) explaining that it is located on the layer side, where (a) is mirror polishing and oxidation, and (b) is bonding. , (C 1 ) and (c 2 ) show the state after polishing, and (d 1 ) and (d 2 ) show the state after polishing.

【符号の説明】[Explanation of symbols]

1 表面酸化単結晶シリコン基板 2 単結晶シリコン基板 3,8 表面酸化膜 4 表面活性シリコン層 5 埋め込み酸化膜 6 貼り合わせSOI基板 7 埋め込み酸化膜厚増加分 9 表面活性シリコン層と埋め込み酸化膜との界面 1 Surface Oxidized Single Crystal Silicon Substrate 2 Single Crystal Silicon Substrate 3,8 Surface Oxide Film 4 Surface Active Silicon Layer 5 Embedded Oxide Film 6 Bonded SOI Substrate 7 Embedded Oxide Film Thickness Increase 9 Surface Active Silicon Layer and Embedded Oxide Film interface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片山 達彦 神奈川県平塚市四之宮2612 コマツ電子金 属株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuhiko Katayama 2612 Shinomiya, Hiratsuka-shi, Kanagawa Komatsu Electronic Metals Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面酸化単結晶シリコン基板と単結晶シ
リコン基板とを貼り合わせ接合することにより埋め込み
酸化膜を設け、前記単結晶シリコン基板側を研磨してこ
れを表面活性シリコン層とするSOI基板を形成し、こ
のSOI基板を高温酸素雰囲気中で酸化処理を行うこと
により埋め込み酸化膜を成長させ、表面活性シリコン層
と埋め込み酸化膜との界面を貼り合わせ面から移動形成
することを特徴とする貼り合わせSOI基板の製造方
法。
1. An SOI substrate in which a surface-oxidized single-crystal silicon substrate and a single-crystal silicon substrate are bonded and bonded to each other to provide a buried oxide film, and the single-crystal silicon substrate side is polished to form a surface-active silicon layer. And a buried oxide film is grown by subjecting this SOI substrate to an oxidation treatment in a high temperature oxygen atmosphere, and the interface between the surface active silicon layer and the buried oxide film is moved from the bonding surface. A method for manufacturing a bonded SOI substrate.
【請求項2】 前記高温酸化処理温度は1150℃以
上、単結晶シリコン基板の融点温度未満の範囲内に保つ
ことを特徴とする請求項1に記載の貼り合わせSOI基
板の製造方法。
2. The method for manufacturing a bonded SOI substrate according to claim 1, wherein the high temperature oxidation treatment temperature is maintained in the range of 1150 ° C. or higher and lower than the melting point temperature of the single crystal silicon substrate.
【請求項3】 請求項1または2に記載の貼り合わせS
OI基板の製造方法において、一方のシリコン基板の表
面に形成した酸化膜を予め100nm以下にして他方の
シリコン基板を貼り合わせたSOI基板としたことを特
徴とする貼り合わせSOI基板の製造方法。
3. The bonding S according to claim 1 or 2.
A method of manufacturing a bonded SOI substrate, characterized in that, in the method of manufacturing an OI substrate, an oxide film formed on the surface of one silicon substrate is made 100 nm or less in advance to obtain an SOI substrate in which the other silicon substrate is bonded.
JP05181895A 1995-02-16 1995-02-16 Manufacturing method of bonded SOI substrate Expired - Lifetime JP3563144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05181895A JP3563144B2 (en) 1995-02-16 1995-02-16 Manufacturing method of bonded SOI substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05181895A JP3563144B2 (en) 1995-02-16 1995-02-16 Manufacturing method of bonded SOI substrate

Publications (2)

Publication Number Publication Date
JPH08222715A true JPH08222715A (en) 1996-08-30
JP3563144B2 JP3563144B2 (en) 2004-09-08

Family

ID=12897485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05181895A Expired - Lifetime JP3563144B2 (en) 1995-02-16 1995-02-16 Manufacturing method of bonded SOI substrate

Country Status (1)

Country Link
JP (1) JP3563144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149487A1 (en) * 2007-05-29 2008-12-11 Shin-Etsu Handotai Co., Ltd. Method for forming silicon oxide film for soi wafer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149487A1 (en) * 2007-05-29 2008-12-11 Shin-Etsu Handotai Co., Ltd. Method for forming silicon oxide film for soi wafer
JP2008300435A (en) * 2007-05-29 2008-12-11 Shin Etsu Handotai Co Ltd Silicon oxide film forming method of soi wafer
EP2151851A1 (en) * 2007-05-29 2010-02-10 Shin-Etsu Handotai Co., Ltd. Method for forming silicon oxide film of soi wafer
EP2151851A4 (en) * 2007-05-29 2010-06-30 Shinetsu Handotai Kk Method for forming silicon oxide film of soi wafer
US8053334B2 (en) 2007-05-29 2011-11-08 Shin-Etsu Handotai Co., Ltd. Method for forming silicon oxide film of SOI wafer
TWI474397B (en) * 2007-05-29 2015-02-21 Shinetsu Handotai Kk Method for forming silicon oxide film of SOI wafer

Also Published As

Publication number Publication date
JP3563144B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JP3395661B2 (en) Method for manufacturing SOI wafer
EP0706714B1 (en) Soi substrate fabrication
JP3911901B2 (en) SOI wafer and method for manufacturing SOI wafer
US6143628A (en) Semiconductor substrate and method of manufacturing the same
JP3900741B2 (en) Manufacturing method of SOI wafer
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JPH07263538A (en) Soi substrate and manufacture thereof
JPH05251292A (en) Manufacture of semiconductor device
KR20070055382A (en) Method of manufacturing bonded wafer
WO2005024925A1 (en) Method for producing soi wafer
JPH098124A (en) Insulation separation substrate and its manufacture
JP4273540B2 (en) Bonded semiconductor substrate and manufacturing method thereof
JPH09260619A (en) Soi substrate and its manufacture
JP3412449B2 (en) Method for manufacturing SOI substrate
JPH11354761A (en) Soi substrate and its production
JP2846994B2 (en) Semiconductor wafer bonding method
JP2961522B2 (en) Substrate for semiconductor electronic device and method of manufacturing the same
JP3452123B2 (en) Method for manufacturing SOI substrate
JPH08222715A (en) Manufacture of laminated soi substrate
JPH05109678A (en) Manufacture of soi substrate
US5770511A (en) Silicon-on-insulator substrate and a method for fabricating the same
JP3484961B2 (en) Method for manufacturing SOI substrate
JPH08264740A (en) Coupled wafer and production thereof
JPS63246841A (en) Dielectric isolating method of silicon crystal body
JP3452122B2 (en) Method for manufacturing SOI substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term