JP3452123B2 - Method for manufacturing SOI substrate - Google Patents

Method for manufacturing SOI substrate

Info

Publication number
JP3452123B2
JP3452123B2 JP11159698A JP11159698A JP3452123B2 JP 3452123 B2 JP3452123 B2 JP 3452123B2 JP 11159698 A JP11159698 A JP 11159698A JP 11159698 A JP11159698 A JP 11159698A JP 3452123 B2 JP3452123 B2 JP 3452123B2
Authority
JP
Japan
Prior art keywords
substrate
silicon substrate
type
layer
polysilicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11159698A
Other languages
Japanese (ja)
Other versions
JPH11307471A (en
Inventor
健 中嶋
哲弥 中井
憲治 冨澤
Original Assignee
三菱住友シリコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱住友シリコン株式会社 filed Critical 三菱住友シリコン株式会社
Priority to JP11159698A priority Critical patent/JP3452123B2/en
Publication of JPH11307471A publication Critical patent/JPH11307471A/en
Application granted granted Critical
Publication of JP3452123B2 publication Critical patent/JP3452123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素イオン注入技
術を用いて作製される絶縁膜上に半導体層を設けたSO
I(Silicon On Insulator)基板の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an SO in which a semiconductor layer is provided on an insulating film manufactured by using a hydrogen ion implantation technique.
The present invention relates to a method for manufacturing an I (Silicon On Insulator) substrate.

【0002】[0002]

【従来の技術】この種のSOI基板は将来の超高集積回
路(ULSI)基板として注目されてきている。このS
OI基板の製造方法には、シリコン基板同士を絶縁膜
を介して貼り合わせる方法、絶縁性基板又は絶縁性薄
膜を表面に有する基板の上にシリコン薄膜を堆積させる
方法、シリコン基板の内部に高濃度の酸素イオンを注
入した後、高温でアニール処理してこのシリコン基板表
面から所定の深さの領域に埋込みシリコン酸化層を形成
し、その表面側のSi層を活性領域とするSIMOX法
などがある。また最近、半導体基板に水素イオン等の注
入を行った後に、この半導体基板をイオン注入面を重ね
合せ面として支持基板に重ね合せ、この積層体を500
℃を越える温度に昇温して上記半導体基板を上記水素イ
オン等を注入した領域で支持基板から分離し、支持基板
の表面に半導体の薄膜を有する薄い半導体材料フィルム
の製造方法が提案されている(特開平5−21112
8)。この方法では、イオンを半導体基板の内部に表面
から均一に注入できれば、均一な厚さの薄い半導体層を
有する半導体基板が得られる。また支持基板の表面に予
め酸化膜を設けておけば、この方法により支持基板とこ
の基板上に形成されて埋込み酸化膜として作用する酸化
膜とこの酸化膜上に形成された半導体層とを有するSO
I基板を製造することができる。
2. Description of the Related Art This type of SOI substrate has been drawing attention as a future ultra high integrated circuit (ULSI) substrate. This S
The method of manufacturing an OI substrate includes a method of bonding silicon substrates to each other via an insulating film, a method of depositing a silicon thin film on an insulating substrate or a substrate having an insulating thin film on its surface, and a high concentration inside a silicon substrate. After the implantation of oxygen ions, an annealing process is performed at a high temperature to form a buried silicon oxide layer in a region of a predetermined depth from the surface of the silicon substrate, and a SIMOX method using the Si layer on the surface side as an active region is available. . Also, recently, after implanting hydrogen ions or the like into a semiconductor substrate, this semiconductor substrate is stacked on a support substrate with the ion implantation surface as a stacking surface, and this stack is formed into a stack of 500
There has been proposed a method for producing a thin semiconductor material film having a semiconductor thin film on the surface of the supporting substrate by separating the semiconductor substrate from the supporting substrate in a region in which the hydrogen ions are implanted by raising the temperature to a temperature in excess of ° C. (JP-A-5-21112
8). In this method, if ions can be uniformly injected into the semiconductor substrate from the surface, a semiconductor substrate having a thin semiconductor layer with a uniform thickness can be obtained. Further, if an oxide film is provided on the surface of the supporting substrate in advance, the supporting substrate, the oxide film formed on this substrate and acting as a buried oxide film, and the semiconductor layer formed on this oxide film are provided by this method. SO
An I substrate can be manufactured.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記酸化膜上
に形成された上記半導体層がデバイスプロセス中に重金
属不純物により汚染された場合には、埋込み酸化膜がゲ
ッタリング能力を有するゲッタリング層となって重金属
不純物を捕捉した後で、熱処理の進行に伴って結晶化し
た酸化層が一旦捕捉した重金属不純物を上記半導体層中
に放出し再分布を生じ易く、これに起因して半導体層の
汚染による品質劣化が生じる問題がある。本発明の目的
は、水素イオン注入技術を用いて作製される半導体層が
酸化膜を介して半導体基板上に重ね合わされているSO
I基板において、大きなゲッタリング能力を有し半導体
層を重金属不純物で汚染させないSOI基板の製造方法
を提供することにある。
However, when the semiconductor layer formed on the oxide film is contaminated by heavy metal impurities during the device process, the buried oxide film forms a gettering layer having a gettering ability. After the heavy metal impurities have been captured, the oxide layer crystallized with the progress of the heat treatment releases the heavy metal impurities once captured into the semiconductor layer and easily re-distributes, which causes contamination of the semiconductor layer. There is a problem that quality deterioration occurs due to. An object of the present invention is to provide an SO in which a semiconductor layer manufactured by using a hydrogen ion implantation technique is overlaid on a semiconductor substrate with an oxide film interposed therebetween.
An object of the present invention is to provide a method for manufacturing an SOI substrate having a large gettering ability and preventing the semiconductor layer from being contaminated with heavy metal impurities in the I substrate.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、p型の第1シリコン基板11の表面
に酸化膜12を形成する工程と、第1シリコン基板11
の表面から水素イオンを注入して第1シリコン基板11
内部に水素イオン注入領域11aを形成する工程と、支
持基板となるp型の第2シリコン基板13の片面にp+
型又はp++型のポリシリコン層14を形成する工程と、
第2シリコン基板13のp+型又はp++型のポリシリコ
ン層14上にp-型のポリシリコン層16を形成する工
程と、このp-型のポリシリコン層16を鏡面研磨する
工程と、酸化膜12にp-型のポリシリコン層16が密
着するように第1シリコン基板11に第2シリコン基板
13を重ね合わせて密着させる工程と、第1シリコン基
板11を第2シリコン基板13に密着させたまま所定の
温度で熱処理して第1シリコン基板11を水素イオン注
入領域11aで第2シリコン基板13から分離して第2
シリコン基板13の表面にシリコン層11bを形成する
工程と、表面にシリコン層11bを有する第2シリコン
基板13を更に熱処理する工程とを含むSOI基板の製
造方法である。図1に示すように、酸化膜12の下側に
はこれに密着してp-型のポリシリコン層16及びp+
又はp++型のポリシリコン層14が形成されているた
め、シリコン層11bがデバイスプロセス中に重金属不
純物により汚染されても、p-型のポリシリコン層16
及びp+型又はp++型のポリシリコン層14がゲッタリ
ング層として作用する。これはポリシリコン層における
シリコン粒界が重金属不純物をゲッタリングすることに
よるものである。また、p+型又はp++型のポリシリコ
ン層では欠陥が発生しやすい。この欠陥によりゲッタリ
ング能力が高くなる。更にボロンは鉄等の重金属不純物
と安定な鉄−ボロン対を形成することから、ボロン濃度
の高いp+型又はp++型のポリシリコン層では、この点
からも重金属不純物に対するゲッタリング能力が高い。
即ち、シリコン層11b中の重金属不純物が酸化膜12
を通過してp-型のポリシリコン層16及びp+型又はp
++型のポリシリコン層14に捕捉され、熱処理が進行し
てもシリコン層11bは重金属不純物で汚染されない。
また酸化膜12とp+型又はp++型のポリシリコン層1
4との間にはp-型のポリシリコン層16が形成されて
いるため、このp-型のポリシリコン層16の厚さをデ
バイス設計に合わせて変えることにより、シリコン層1
1bに形成された素子動作時における空乏層の広がりへ
の影響を抑制することができる。
The invention according to claim 1 is
As shown in FIG. 1, a step of forming an oxide film 12 on the surface of the p-type first silicon substrate 11 and the first silicon substrate 11
By implanting hydrogen ions from the surface of the first silicon substrate 11
The step of forming the hydrogen ion implantation region 11a therein and p + on one surface of the p-type second silicon substrate 13 serving as a supporting substrate
A p-type or p ++ -type polysilicon layer 14;
A step of forming a p -type polysilicon layer 16 on the p + -type or p ++ -type polysilicon layer 14 of the second silicon substrate 13, and a step of mirror-polishing the p -type polysilicon layer 16. , A step of superposing and adhering the second silicon substrate 13 on the first silicon substrate 11 so that the p -type polysilicon layer 16 adheres to the oxide film 12, and the first silicon substrate 11 on the second silicon substrate 13. The first silicon substrate 11 is separated from the second silicon substrate 13 in the hydrogen ion implantation region 11a by heat treatment at a predetermined temperature while being in contact with the second silicon substrate 11.
This is a method for manufacturing an SOI substrate including a step of forming a silicon layer 11b on the surface of the silicon substrate 13 and a step of further heat-treating the second silicon substrate 13 having the silicon layer 11b on the surface. As shown in FIG. 1, since the p type polysilicon layer 16 and the p + type or p ++ type polysilicon layer 14 are formed on the lower side of the oxide film 12 so as to be in close contact therewith, the silicon Even if the layer 11b is contaminated by heavy metal impurities during the device process, the p -type polysilicon layer 16
And the p + type or p ++ type polysilicon layer 14 acts as a gettering layer. This is because the silicon grain boundaries in the polysilicon layer getter the heavy metal impurities. Further, defects are likely to occur in the p + type or p ++ type polysilicon layer. This defect increases the gettering ability. Further, since boron forms a stable iron-boron pair with heavy metal impurities such as iron, a p + type or p ++ type polysilicon layer having a high boron concentration also has a gettering ability for heavy metal impurities. high.
That is, the heavy metal impurities in the silicon layer 11b are removed by the oxide film 12.
Through the p -type polysilicon layer 16 and the p + -type or p-type
The silicon layer 11b is trapped by the + + type polysilicon layer 14 and is not contaminated with heavy metal impurities even if heat treatment proceeds.
Further, the oxide film 12 and the p + type or p ++ type polysilicon layer 1
Since the p type polysilicon layer 16 is formed between the silicon layer 1 and the semiconductor layer 4, the thickness of the p type polysilicon layer 16 is changed according to the device design.
It is possible to suppress the influence on the spread of the depletion layer during the operation of the element formed in 1b.

【0005】[0005]

【0006】 請求項に係る発明は、図に示すよう
に、p型の第1シリコン基板11の表面に酸化膜12を
形成する工程と、第1シリコン基板11の表面から水素
イオンを注入して第1シリコン基板11内部に水素イオ
ン注入領域11aを形成する工程と、支持基板となるp
型の第2シリコン基板13の表面からリンをイオン注入
して第2シリコン基板13内部にリン注入層13aを形
成する工程と、リン注入層13aを形成した第2シリコ
ン基板13の表面にp-型のポリシリコン層16を形成
する工程と、この前記p-型のポリシリコン層16鏡面
研磨する工程と、酸化膜12に鏡面研磨したp-型のポ
リシリコン層16が密着するように第1シリコン基板1
1に第2シリコン基板13を重ね合わせて密着させる工
程と、第1シリコン基板11を第2シリコン基板13に
密着させたまま所定の温度で熱処理して第1シリコン基
板11を水素イオン注入領域11aで第2シリコン基板
13から分離して第2シリコン基板13の表面にシリコ
ン層11bを形成する工程と、表面にシリコン層11b
を有する第2シリコン基板13を更に熱処理する工程と
を含むSOI基板の製造方法である。図に示すよう
に、酸化膜12の下側の第2シリコン基板13の内部に
はリン注入層13aが形成されているため、シリコン層
11bがデバイスプロセス中に重金属不純物により汚染
されても、P-型のポリシリコン層16及びリン注入層
13aがゲッタリング層として作用する。即ちシリコン
層11b中の重金属不純物が酸化膜12を通過してリン
注入層13aに捕捉され、熱処理が進行してもシリコン
層11bは重金属不純物で汚染されない。また酸化膜1
2とリン注入層13aとの間にはp-型のポリシリコン
層16が形成されているため、このp-型のポリシリコ
ン層16の厚さをデバイス設計に合わせて変えることに
より、シリコン層11bに形成された素子動作時におけ
る空乏層の広がりへの影響を抑制することができる。
[0006] The invention according to claim 2, as shown in FIG. 2, injection forming an oxide film 12 on the surface of the first silicon substrate 11 of p-type, the hydrogen ions from the surface of the first silicon substrate 11 Then, the step of forming the hydrogen ion implantation region 11a inside the first silicon substrate 11 and the step of forming a support substrate p
A step of ion-implanting phosphorus from the surface of the second silicon substrate 13 of the mold to form a phosphorus injection layer 13a inside the second silicon substrate 13, and p − on the surface of the second silicon substrate 13 on which the phosphorus injection layer 13a is formed. Forming a p - type polysilicon layer 16, mirror-polishing the p -type polysilicon layer 16, and the first step so that the mirror-polished p -type polysilicon layer 16 adheres to the oxide film 12. Silicon substrate 1
1 and the step of bringing the second silicon substrate 13 into close contact with each other, and the first silicon substrate 11 is heat-treated at a predetermined temperature while being brought into close contact with the second silicon substrate 13 so that the first silicon substrate 11 is subjected to the hydrogen ion implantation region 11a. And a step of separating the second silicon substrate 13 from the second silicon substrate 13 to form a silicon layer 11b on the surface of the second silicon substrate 13, and the silicon layer 11b on the surface.
And a step of further heat-treating the second silicon substrate 13 having the above. As shown in FIG. 2 , since the phosphorus implantation layer 13a is formed inside the second silicon substrate 13 below the oxide film 12, even if the silicon layer 11b is contaminated by heavy metal impurities during the device process, The P type polysilicon layer 16 and the phosphorus implantation layer 13a act as a gettering layer. That is, the heavy metal impurities in the silicon layer 11b pass through the oxide film 12 and are captured by the phosphorus implantation layer 13a, so that the silicon layer 11b is not contaminated with the heavy metal impurities even if the heat treatment proceeds. Also oxide film 1
Since the p type polysilicon layer 16 is formed between the 2 and the phosphorus implantation layer 13a, the silicon layer is changed by changing the thickness of the p type polysilicon layer 16 according to the device design. It is possible to suppress the influence on the spread of the depletion layer during the operation of the element formed in 11b.

【0007】[0007]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、本発明の第1の
実施形態のSOI基板を製造するには、先ずp型の第1
単結晶シリコン基板11を用意する。この第1単結晶基
板11はドーパントとしてボロン(B)を使用すること
により作製される。第1単結晶基板11の表面に熱酸化
により絶縁層である酸化膜12を形成する(図1
(a))。この酸化膜12は0.1〜2μm、好ましく
は0.1〜0.5μmの厚さになるように形成される。
次いで、酸化膜12を有するp型単結晶基板11の表面
から水素イオンを1〜10×1016/cm2のドーズ量
及び50〜200keVの加速エネルギーでイオン注入
する。その結果、単結晶基板11内部にイオン注入領域
11aが形成される(図1(b))。次いで上記単結晶
基板11と同一表面積を有し、支持基板となるp型の第
2単結晶シリコン基板13を用意し、この第2単結晶基
板13の表面にCVD法によりp+型又はp++型のポリ
シリコン層14を形成する(図1(c))。p+型又は
++型のポリシリコン層14はp型の第1単結晶基板1
1よりもドーパントであるボロンの濃度を高くして形成
される。このポリシリコン層14は0.5〜3μm、好
ましくは0.5〜2μmの厚さになるように形成され
る。次いでこのp+型又はp++型のポリシリコン層14
上にp-型のポリシリコン層16を形成する(図1
(d))。このp-型のポリシリコン層16は0.5〜
3μm、好ましくは0.5〜2μmの厚さになるように
形成される。p-型のポリシリコン層16は、p+型又は
++型のポリシリコン層14よりもボロン濃度を低くし
て形成される。好ましくは、第1単結晶基板11と同等
とする。次いで、p-型ポリシリコン層16を鏡面研磨
し平坦化する。次いで第1単結晶基板11と第2単結晶
基板13をそれぞれ洗浄した後、酸化膜12にp-型の
ポリシリコン層16が密着するように第1単結晶基板1
1に第2単結晶基板13を重ね合わせて密着させる(図
1(e))。次いで第1単結晶基板11を第2単結晶基
板13に密着させたまま窒素雰囲気中で500〜800
℃の範囲に昇温し、5〜30分保持して薄膜分離熱処理
を行う。これにより第1単結晶基板11が水素イオンの
注入ピーク位置に相当するイオン注入領域11aのとこ
ろで割れて上部の厚肉部11cと下部の薄い半導体層1
1bに分離する(図1(f))。次に温度を下げて厚肉
部11cを取除く(図1(g))。次いで表面にp+
又はp++型のポリシリコン層14、p-型のポリシリコ
ン層16、酸化膜12及び半導体層11bが順次積層さ
れた第2単結晶基板13を酸素又は窒素雰囲気中におい
て900〜1200℃で30〜120分間熱処理して、
半導体層11bと第2単結晶基板13とをp+型又はp
++型のポリシリコン層14、p-型のポリシリコン層1
6及び酸化膜12を介して強固に貼り合わせる(図1
(h))。最後に半導体層11bの分離面及び厚肉部1
1cの分離面をそれぞれ研磨(タッチポリッシング)し
て平滑化する(図1(i)及び図1(j))。これによ
り第2単結晶基板13はSOI基板となり、厚肉部11
cは新たな半導体基板として再びSOI基板の製造に利
用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, in order to manufacture the SOI substrate of the first embodiment of the present invention, first, a p-type first
A single crystal silicon substrate 11 is prepared. The first single crystal substrate 11 is manufactured by using boron (B) as a dopant. An oxide film 12 which is an insulating layer is formed on the surface of the first single crystal substrate 11 by thermal oxidation (FIG. 1).
(A)). The oxide film 12 is formed to have a thickness of 0.1 to 2 μm, preferably 0.1 to 0.5 μm.
Next, hydrogen ions are ion-implanted from the surface of the p-type single crystal substrate 11 having the oxide film 12 at a dose amount of 1 to 10 × 10 16 / cm 2 and an acceleration energy of 50 to 200 keV. As a result, the ion-implanted region 11a is formed inside the single crystal substrate 11 (FIG. 1B). Next, a p-type second single crystal silicon substrate 13 having the same surface area as that of the single crystal substrate 11 and serving as a supporting substrate is prepared, and a p + type or p + type is formed on the surface of the second single crystal substrate 13 by the CVD method. A + type polysilicon layer 14 is formed (FIG. 1C). The p + type or p ++ type polysilicon layer 14 is the p type first single crystal substrate 1
It is formed by increasing the concentration of boron, which is a dopant, more than 1. The polysilicon layer 14 is formed to have a thickness of 0.5 to 3 μm, preferably 0.5 to 2 μm. Then, this p + type or p ++ type polysilicon layer 14 is formed.
A p type polysilicon layer 16 is formed thereon (FIG. 1).
(D)). The p type polysilicon layer 16 is 0.5 to
It is formed to have a thickness of 3 μm, preferably 0.5 to 2 μm. The p type polysilicon layer 16 is formed with a boron concentration lower than that of the p + type or p ++ type polysilicon layer 14. Preferably, it is equivalent to the first single crystal substrate 11. Next, the p type polysilicon layer 16 is mirror-polished to be planarized. Next, after cleaning the first single crystal substrate 11 and the second single crystal substrate 13, respectively, the first single crystal substrate 1 is so arranged that the p type polysilicon layer 16 is adhered to the oxide film 12.
The second single crystal substrate 13 is overlaid on and closely adhered to the substrate 1 (FIG. 1E). Next, while keeping the first single crystal substrate 11 in close contact with the second single crystal substrate 13, 500 to 800 in a nitrogen atmosphere.
The temperature is raised to the range of ° C and held for 5 to 30 minutes to perform the thin film separation heat treatment. As a result, the first single crystal substrate 11 is cracked at the ion implantation region 11a corresponding to the hydrogen ion implantation peak position, and the thick portion 11c in the upper portion and the thin semiconductor layer 1 in the lower portion are cracked.
It is separated into 1b (FIG. 1 (f)). Next, the temperature is lowered to remove the thick portion 11c (FIG. 1 (g)). Then, the second single crystal substrate 13 on which the p + type or p ++ type polysilicon layer 14, the p type polysilicon layer 16, the oxide film 12 and the semiconductor layer 11b are sequentially stacked on the surface is placed in an oxygen or nitrogen atmosphere. At 900 to 1200 ° C. for 30 to 120 minutes,
The semiconductor layer 11b and the second single crystal substrate 13 are p + -type or p-type.
++ type polysilicon layer 14, p type polysilicon layer 1
6 and the oxide film 12 are firmly bonded to each other (see FIG. 1).
(H)). Finally, the separation surface of the semiconductor layer 11b and the thick portion 1
The separation surfaces of 1c are each smoothed by polishing (touch polishing) (FIG. 1 (i) and FIG. 1 (j)). As a result, the second single crystal substrate 13 becomes an SOI substrate, and the thick portion 11
c can be reused as a new semiconductor substrate for manufacturing the SOI substrate.

【0008】[0008]

【0009】に示すように、本発明の第の実施形
態のSOI基板を製造するには、図1に基づく第1形態
の場合と同じ工程を繰返して、p型の第1単結晶シリコ
ン基板11の表面に酸化膜12を形成する(図
(a))。次いで第1形態の場合と同様に酸化膜12を
有する第1単結晶基板11の表面から水素イオン注入し
て、基板11内部にイオン注入領域11aを形成する
(図(b))。次いで第1単結晶シリコン基板11と
同一表面積を有し、支持基板となるp型の第2単結晶シ
リコン基板13を用意し、このp型の第2単結晶基板1
3の表面からリンをイオン注入して第2単結晶基板13
内部にリン注入層13aを形成する(図(c))。次
いでリン注入層13aを形成した第2単結晶基板13の
表面にp-型のポリシリコン層16を形成する(図
(d))。このp-型のポリシリコン層16は0.5〜
3μm、好ましくは0.5〜2μmの厚さになるように
形成する。p-型のポリシリコン層16のボロン濃度は
第1単結晶基板11と同等であることが好ましい。次い
で、p-型のポリシリコン層16を鏡面研磨し平坦化す
る。次いで第1単結晶基板11と第2単結晶基板13を
それぞれ洗浄した後、酸化膜12にp-型のポリシリコ
ン層16が密着するように第1単結晶基板11に第2単
結晶基板13を重ね合わせて密着させる(図
(e))。次いで第1単結晶基板11を第2単結晶基板
13に密着させたまま第1形態と同様の薄膜分離熱処理
を行う。これにより第1単結晶基板11がイオン注入領
域11aのところで割れて上部の厚肉部11cと下部の
薄い半導体層11bに分離する(図(f))。次に温
度を下げて厚肉部11cを取除き(図(g))、表面
にp-型ポリシリコン層16、酸化膜12及び半導体層
11bが順次積層された第2単結晶基板13を第1形態
の場合と同様に熱処理して半導体層11bと第2単結晶
基板13とを酸化膜12及びp-型ポリシリコン層16
を介して強固に貼り合わせる(図(h))。最後に半
導体層11bの分離面及び厚肉部11cの分離面をそれ
ぞれ研磨して平滑化する(図(i)及び図
(j))。これにより表面にp-型ポリシリコン層1
6、酸化膜12及び半導体層11bが順次積層された第
2単結晶基板13からなるSOI基板を得る(図
(i))。
[0009] FigureTwoAs shown in FIG.TwoImplementation form of
First Embodiment Based on FIG.
Repeating the same steps as in the above, the p-type first single crystal silicon
An oxide film 12 is formed on the surface of the substrate 11 (see FIG.Two
(A)). Then, as in the case of the first embodiment, the oxide film 12 is formed.
Hydrogen ions are implanted from the surface of the first single crystal substrate 11 having
To form the ion-implanted region 11a inside the substrate 11.
(FigureTwo(B)). Then, the first single crystal silicon substrate 11 and
A p-type second single crystal substrate having the same surface area and serving as a supporting substrate.
A recon substrate 13 is prepared, and the p-type second single crystal substrate 1 is prepared.
The second single crystal substrate 13 by ion-implanting phosphorus from the surface of
A phosphorus injection layer 13a is formed inside (see FIG.Two(C)). Next
Of the second single crystal substrate 13 on which the phosphorus injection layer 13a is formed.
P on the surface-Forming a polysilicon layer 16 of the mold (Fig.Two
(D)). This p-The polysilicon layer 16 of the mold is 0.5 to
To a thickness of 3 μm, preferably 0.5-2 μm
Form. p-The boron concentration of the polysilicon layer 16 of the mold is
It is preferably the same as the first single crystal substrate 11. Next
And p-The polysilicon layer 16 of the mold is mirror-polished and flattened.
It Next, the first single crystal substrate 11 and the second single crystal substrate 13 are
After cleaning each, p is applied to the oxide film 12.-Type of polysilico
A second single crystal substrate 11 so that the first single crystal substrate 11 is in close contact with the second single crystal substrate 11.
The crystal substrates 13 are overlapped and brought into close contact with each other (Fig.Two
(E)). Then, the first single crystal substrate 11 is replaced with the second single crystal substrate.
The same thin film separation heat treatment as that of the first embodiment while keeping it in close contact with 13.
I do. As a result, the first single crystal substrate 11 is ion-implanted.
The thick part 11c at the top and the thick part 11c at the bottom
Separate into thin semiconductor layers 11b (Fig.Two(F)). Next warm
Lower the thickness to remove the thick part 11c (Fig.Two(G)), surface
To p--Type polysilicon layer 16, oxide film 12 and semiconductor layer
The second single crystal substrate 13 in which 11b are sequentially laminated is used as the first embodiment.
In the same manner as in the above case, the semiconductor layer 11b and the second single crystal are heat-treated.
Substrate 13 and oxide film 12 and p-Type polysilicon layer 16
Stick firmly via (Fig.Two(H)). Finally half
Separate the separation surface of the conductor layer 11b and the separation surface of the thick portion 11c.
Polish and smooth each (Fig.Two(I) and figureTwo
(J)). This allows p on the surface-Type polysilicon layer 1
6, an oxide film 12 and a semiconductor layer 11b are sequentially stacked.
2 Obtain an SOI substrate composed of a single crystal substrate 13 (see FIG.Two
(I)).

【0010】[0010]

【実施例】次に本発明の具体的態様を示すために、本発
明の実施例を比較例とともに説明する。 <実施例1>図1(a)に示すように、p型単結晶シリ
コン基板11の表面に熱酸化により厚さ400nmの酸
化膜12を形成した。次いで単結晶シリコン基板11に
70keVの電圧を印加して水素イオンを7×1016
cm2のドーズ量でイオン注入して単結晶基板11内部
にイオン注入領域11aを形成した(図1(b))。次
いで単結晶基板11と同一表面積を有する支持基板とな
るp型の第2単結晶シリコン基板13を用意し、この第
2単結晶基板13の表面にCVD法により厚さ1μmの
+型又はp++型のポリシリコン層14を形成した(図
1(c))。次いでこのp+型又はp++型のポリシリコ
ン層14上に厚さ1μmのp-型のポリシリコン層16
を形成した(図1(d))。次いで、p-型のポリシリ
コン層16を鏡面研磨し平坦化した。次いで第1単結晶
基板11と第2単結晶基板13をSC1洗浄液でそれぞ
れ洗浄した後、酸化膜12にp-型のポリシリコン層1
6が密着するように第1単結晶基板11に第2単結晶基
板13を重ね合わせて密着さた(図1(e))。次いで
第1単結晶基板11を第2単結晶基板13に密着させた
まま窒素雰囲気中で600℃の温度で30分間熱処理を
行った。その結果、第1単結晶基板11がイオン注入領
域11aのところで割れて上部の厚肉部11cと下部の
薄い半導体層11bに分離した(図1(f))。次に温
度を下げて厚肉部11cを取除き(図1(g))、表面
にp+型又はp++型のポリシリコン層14、p-型のポリ
シリコン層16、酸化膜12及び半導体層11bが順次
積層された第2単結晶基板13を窒素雰囲気中において
1100℃で2時間熱処理した(図1(h))。最後に
半導体層11bの分離面を研磨して平滑化して実施例1
のSOI基板を製造した(図1(i))。
EXAMPLES Next, examples of the present invention will be described together with comparative examples in order to show specific embodiments of the present invention. <Example 1> As shown in FIG. 1A, an oxide film 12 having a thickness of 400 nm was formed on the surface of a p-type single crystal silicon substrate 11 by thermal oxidation. Then, a voltage of 70 keV is applied to the single crystal silicon substrate 11 to generate hydrogen ions at 7 × 10 16 /
Ions were implanted with a dose of cm 2 to form an ion-implanted region 11a inside the single crystal substrate 11 (FIG. 1B). Next, a p-type second single-crystal silicon substrate 13 serving as a supporting substrate having the same surface area as the single-crystal substrate 11 is prepared, and the surface of the second single-crystal substrate 13 is p + -type or p-type having a thickness of 1 μm by the CVD method. A ++ type polysilicon layer 14 was formed (FIG. 1C). Then, a p - type polysilicon layer 16 having a thickness of 1 μm is formed on the p + type or p ++ type polysilicon layer 14.
Was formed (FIG. 1 (d)). Then, the p -type polysilicon layer 16 was mirror-polished and flattened. Then, the first single crystal substrate 11 and the second single crystal substrate 13 are each washed with SC1 cleaning liquid, and then the p - type polysilicon layer 1 is formed on the oxide film 12.
The second single crystal substrate 13 was superposed on and adhered to the first single crystal substrate 11 so that 6 adhered to each other (FIG. 1E). Then, heat treatment was performed for 30 minutes at a temperature of 600 ° C. in a nitrogen atmosphere while the first single crystal substrate 11 was in close contact with the second single crystal substrate 13. As a result, the first single crystal substrate 11 was cracked at the ion implantation region 11a and separated into an upper thick portion 11c and a lower thin semiconductor layer 11b (FIG. 1 (f)). Next, the temperature is lowered to remove the thick portion 11c (FIG. 1 (g)), and p + type or p ++ type polysilicon layer 14, p type polysilicon layer 16, oxide film 12 and The second single crystal substrate 13 in which the semiconductor layers 11b were sequentially stacked was heat-treated at 1100 ° C. for 2 hours in a nitrogen atmosphere (FIG. 1 (h)). Finally, the separation surface of the semiconductor layer 11b was polished and smoothed to obtain the first embodiment.
The SOI substrate was manufactured (FIG. 1 (i)).

【0011】[0011]

【0012】 <実施例> 図(a)〜図(b)に示すように、実施例1と同じ
工程を繰返して、表面に厚さ400nmの酸化膜12を
有するp型の第1単結晶シリコン基板11の内部にイオ
ン注入領域11aを形成した。次いで第1単結晶シリコ
ン基板11と同一表面積を有し、支持基板となるp型の
第2単結晶シリコン基板13を用意し、このp型の第2
単結晶基板13の表面からリンをイオン注入して第2単
結晶基板13内部にリン注入層13aを形成した(図
(c))。次いでリン注入層13aを形成した第2単結
晶基板13の表面に厚さ1μmのp-型のポリシリコン
層16を形成した(図(d))。次いで、 - 型のポ
リシリコン層16を鏡面研磨し平坦化した。次いで第1
単結晶基板11と第2単結晶基板13をSC1洗浄液で
それぞれ洗浄した後、酸化膜12にp-型のポリシリコ
ン層16が密着するように第1単結晶基板11に第2単
結晶シリコン基板13を重ね合わせて密着させた(図
(e))。次いで第1単結晶基板11を第2単結晶基板
13に密着させたまま窒素雰囲気中で600℃の温度で
30分間熱処理を行った。その結果、第1単結晶基板1
1がイオン注入領域11aのところで割れて上部の厚肉
部11cと下部の薄い半導体層11bに分離した(図
(f))。次に温度を下げて厚肉部11cを取除き(図
(g))、表面にp-型のポリシリコン層16、酸化
膜12及び半導体層11bが順次積層された第2単結晶
基板13を窒素雰囲気中において1100℃で2時間熱
処理した(図(h))。最後に半導体層11bの分離
面を研磨して平滑化して実施例のSOI基板を製造し
た(図(i))。
[0012] <Example 2> FIGS. 2 (a) as shown in to FIG. 2 (b), repeating the same process as in Example 1, a first p-type having an oxide film 12 having a thickness of 400nm on the surface An ion implantation region 11 a was formed inside the single crystal silicon substrate 11. Next, a p-type second single crystal silicon substrate 13 having the same surface area as the first single crystal silicon substrate 11 and serving as a supporting substrate is prepared.
Phosphorus is ion-implanted from the surface of the single crystal substrate 13 to form a phosphorus implantation layer 13a inside the second single crystal substrate 13 (FIG. 2 ).
(C)). Then the 2 p thick 1μm on the surface of the single crystal substrate 13 formed with phosphorus implantation layer 13a - to form a type polysilicon layer 16 (Figure 2 (d)). Next, the p -type polysilicon layer 16 was mirror-polished and planarized. Then the first
After cleaning the single crystal substrate 11 and the second single crystal substrate 13 with the SC1 cleaning liquid respectively, the first single crystal substrate 11 and the second single crystal silicon substrate are adhered to the oxide film 12 so that the p type polysilicon layer 16 is adhered thereto. 13 were overlapped and brought into close contact (Fig. 2 ).
(E)). Then, heat treatment was performed for 30 minutes at a temperature of 600 ° C. in a nitrogen atmosphere while the first single crystal substrate 11 was in close contact with the second single crystal substrate 13. As a result, the first single crystal substrate 1
1 cracked at the ion-implanted region 11a and separated into an upper thick portion 11c and a lower thin semiconductor layer 11b (FIG. 2 ).
(F)). Next, the temperature is lowered to remove the thick portion 11c (see FIG.
2 (g)), the second single crystal substrate 13 having the p -type polysilicon layer 16, the oxide film 12 and the semiconductor layer 11b sequentially stacked on the surface was heat-treated at 1100 ° C. for 2 hours in a nitrogen atmosphere (FIG. 2 ). (H)). Finally, the separation surface of the semiconductor layer 11b was polished and smoothed to manufacture the SOI substrate of Example 2 (FIG. 2 (i)).

【0013】<比較例1>支持基板となるp型の第2単
結晶シリコン基板13の表面にp+型又はp++型のポリ
シリコン層14及びp-型のポリシリコン層16を形成
しなかったことを除いては実質的に実施例1の方法を繰
返して比較例1のSOI基板を製造した。
Comparative Example 1 A p + -type or p ++ -type polysilicon layer 14 and a p -type polysilicon layer 16 are formed on the surface of a p-type second single crystal silicon substrate 13 serving as a supporting substrate. The SOI substrate of Comparative Example 1 was manufactured by substantially repeating the method of Example 1, except that the SOI substrate was not used.

【0014】 <比較評価> 実施例1、実施例2及び比較例1のそれぞれのSOI基
板において、1000ppmの銅標準液を用いてスピン
コート法によりその基板表面を強制的に汚染し、窒素雰
囲気中で900℃、1時間の熱処理を行った後、半導体
層11bにおける銅濃度(atoms/cm3)を原子吸光法
により調べた。その結果を図に示す。
[0014] <Comparative Evaluation> In each of the SOI substrate of Example 1, Example 2及 beauty Comparative Example 1, forcibly contaminate the substrate surface by spin coating using a copper standard solution of 1000 ppm, a nitrogen atmosphere After heat treatment at 900 ° C. for 1 hour in the inside, the copper concentration (atoms / cm 3 ) in the semiconductor layer 11b was examined by an atomic absorption method. The results are shown in Figure 3.

【0015】から明らかなように実施例1及び2
SOI層中の銅濃度(atoms/cm3)は比較例1に比べ
低い。これは実施例1及び2のSOI基板が大きなゲッ
タリング能力を有するため、比較例1のSOI基板に比
べ半導体層11bが重金属不純物で汚染され難いことを
示している。
As is clear from FIG . 3 , the copper concentration (atoms / cm 3 ) in the SOI layers of Examples 1 and 2 is lower than that of Comparative Example 1. This indicates that the SOI substrates of Examples 1 and 2 have a large gettering ability, and thus the semiconductor layer 11b is less likely to be contaminated with heavy metal impurities than the SOI substrate of Comparative Example 1.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば、半
導体層が酸化膜を介して半導体基板上に重ね合わされて
いるSOI基板において、半導体基板となるp型の単結
晶シリコン基板の片面にp+型又はp++型のポリシリコ
ン層を形成し、このポリシリコン層上にp-型のポリシ
リコン層を形成するか、又は上記リン注入層が形成され
た支持基板の表面にp-型のポリシリコン層を形成する
ようにしたから、上記半導体層がデバイスプロセス中に
重金属不純物により汚染されても、上記p-及びp+型又
はp++型のポリシリコン層又は上記リン注入層がゲッタ
リング層として作用して上記半導体層中の重金属不純物
を捕捉し、その結果、熱処理が進行しても上記シリコン
層が重金属不純物で汚染されず、SOI基板の品質劣化
を防止できる。
As described above, according to the present invention, in the SOI substrate in which the semiconductor layer is superposed on the semiconductor substrate via the oxide film, one surface of the p-type single crystal silicon substrate to be the semiconductor substrate is formed. to form a p + -type or p ++ type polysilicon layer, p the polysilicon layer - either -type polysilicon layer, or the surface of the support substrate on which the phosphorus implanted layer is formed Since the p type polysilicon layer is formed, even if the semiconductor layer is contaminated by heavy metal impurities during the device process, the p and p + type or p ++ type polysilicon layer or the phosphorus layer is formed. The injection layer acts as a gettering layer to capture the heavy metal impurities in the semiconductor layer, and as a result, the silicon layer is not contaminated with the heavy metal impurities even if the heat treatment proceeds, and the quality deterioration of the SOI substrate can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の第1のSOI基板の製造方
法を工程順に示す図。
FIG. 1 is a diagram showing a method of manufacturing a first SOI substrate according to an embodiment of the present invention in the order of steps.

【図2】本発明の実施形態の第のSOI基板の製造方
法を工程順に示す図。
FIG. 2 is a diagram showing a method of manufacturing a second SOI substrate according to the embodiment of the present invention in the order of steps.

【図3】実施例1及び2及び比較例1のSOI基板にお
いて、半導体層11b中の銅濃度を示す図。
FIG. 3 is a diagram showing the copper concentration in a semiconductor layer 11b in the SOI substrates of Examples 1 and 2 and Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−211128(JP,A) 特開 平9−162090(JP,A) 特開 平9−237884(JP,A) 特開 平6−163862(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/265 H01L 21/322 H01L 21/762 H01L 27/12 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-212128 (JP, A) JP-A-9-162090 (JP, A) JP-A-9-237884 (JP, A) JP-A-6- 163862 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/265 H01L 21/322 H01L 21/762 H01L 27/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 p型の第1シリコン基板(11)の表面に酸
化膜(12)を形成する工程と、 前記第1シリコン基板(11)の表面から水素イオンを注入
して前記第1シリコン基板(11)内部に水素イオン注入領
域(11a)を形成する工程と、 支持基板となるp型の第2シリコン基板(13)の片面にp
+型又はp++型のポリシリコン層(14)を形成する工程
と、 前記第2シリコン基板(13)のp+型又はp++型のポリシ
リコン層(14)上にp-型のポリシリコン層(16)を形成す
る工程と、 前記p-型のポリシリコン層(16)鏡面研磨する工程と、 前記酸化膜(12)に鏡面研磨した前記p-型のポリシリコ
ン層(16)が密着するように前記第1シリコン基板(11)に
前記第2シリコン基板(13)を重ね合わせて密着させる工
程と、 前記第1シリコン基板(11)を第2シリコン基板(13)に密
着させたまま所定の温度で熱処理して前記第1シリコン
基板(11)を前記水素イオン注入領域(11a)で前記第2シ
リコン基板(13)から分離して前記第2シリコン基板(13)
の表面にシリコン層(11b)を形成する工程と、 表面にシリコン層(11b)を有する前記第2シリコン基板
(13)を更に熱処理する工程とを含むSOI基板の製造方
1. A step of forming an oxide film (12) on the surface of a p-type first silicon substrate (11), and implanting hydrogen ions from the surface of the first silicon substrate (11) to form the first silicon The step of forming the hydrogen ion implantation region (11a) inside the substrate (11), and the p-type second silicon substrate (13) serving as a supporting substrate are provided with p
Forming a + type or p ++ type polysilicon layer (14), and forming a p type polysilicon layer (14) on the p + type or p ++ type polysilicon layer (14) of the second silicon substrate (13). forming a polysilicon layer (16), wherein the p - type polysilicon layer (16) wherein p is mirror polished to a step of mirror polishing, the oxide film (12) - type polysilicon layer (16) So that the first silicon substrate (11) and the second silicon substrate (13) are overlapped and brought into close contact with each other, and the first silicon substrate (11) is brought into close contact with the second silicon substrate (13). The first silicon substrate (11) is separated from the second silicon substrate (13) in the hydrogen ion implantation region (11a) by heat-treating at a predetermined temperature while keeping the second silicon substrate (13).
Forming a silicon layer (11b) on the surface of the substrate, and the second silicon substrate having the silicon layer (11b) on the surface
A method of manufacturing an SOI substrate, further comprising the step of further heat treating (13) .
【請求項2】 p型の第1シリコン基板(11)の表面に酸
化膜(12)を形成する工程と、 前記第1シリコン基板(11)の表面から水素イオンを注入
して前記第1シリコン基板(11)内部に水素イオン注入領
域(11a)を形成する工程と、 支持基板となるp型の第2シリコン基板(13)の表面から
リンをイオン注入して前記第2シリコン基板(13)内部に
リン注入層(13a)を形成する工程と、 前記リン注入層(13a)を形成した第2シリコン基板(13)
の表面にp-型のポリシリコン層(16)を形成する工程
と、 前記p-型のポリシリコン層(16)鏡面研磨する工程と、 前記酸化膜(12)に鏡面研磨した前記p-型のポリシリコ
ン層(16)が密着するように前記第1シリコン基板(11)に
前記第2シリコン基板(13)を重ね合わせて密着させる工
程と、 前記第1シリコン基板(11)を第2シリコン基板(13)に密
着させたまま所定の温度で熱処理して前記第1シリコン
基板(11)を前記水素イオン注入領域(11a)で前記第2シ
リコン基板(13)から分離して前記第2シリコン基板(13)
の表面にシリコン層(11b)を形成する工程と、 表面にシリコン層(11b)を有する前記第2シリコン基板
(13)を更に熱処理する工程とを含むSOI基板の製造方
法。
2. A step of forming an oxide film (12) on the surface of a p-type first silicon substrate (11), and hydrogen ions being implanted from the surface of the first silicon substrate (11) The step of forming a hydrogen ion implantation region (11a) inside the substrate (11), and the second silicon substrate (13) by ion-implanting phosphorus from the surface of the p-type second silicon substrate (13) serving as a supporting substrate. A step of forming a phosphorus injection layer (13a) therein, and a second silicon substrate (13) having the phosphorus injection layer (13a) formed therein
Type - forming type polysilicon layer (16), the p - - p on the surface of the p type and steps of the polysilicon layer (16) mirror-polishing, which were mirror-polished to said oxide film (12) Of the first silicon substrate (11) so that the polysilicon layer (16) of the first silicon substrate (11) is in close contact with the first silicon substrate (11), and the first silicon substrate (11) is in contact with the second silicon substrate (11). The first silicon substrate (11) is separated from the second silicon substrate (13) in the hydrogen ion implantation region (11a) by heat treatment at a predetermined temperature while being in close contact with the substrate (13), and then the second silicon substrate (11) is separated. Board (13)
Forming a silicon layer (11b) on the surface of the substrate, and the second silicon substrate having the silicon layer (11b) on the surface
A method of manufacturing an SOI substrate, further comprising the step of further heat treating (13).
JP11159698A 1998-04-22 1998-04-22 Method for manufacturing SOI substrate Expired - Fee Related JP3452123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11159698A JP3452123B2 (en) 1998-04-22 1998-04-22 Method for manufacturing SOI substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11159698A JP3452123B2 (en) 1998-04-22 1998-04-22 Method for manufacturing SOI substrate

Publications (2)

Publication Number Publication Date
JPH11307471A JPH11307471A (en) 1999-11-05
JP3452123B2 true JP3452123B2 (en) 2003-09-29

Family

ID=14565373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11159698A Expired - Fee Related JP3452123B2 (en) 1998-04-22 1998-04-22 Method for manufacturing SOI substrate

Country Status (1)

Country Link
JP (1) JP3452123B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566233B2 (en) 1999-12-24 2003-05-20 Shin-Etsu Handotai Co., Ltd. Method for manufacturing bonded wafer
KR100571572B1 (en) * 2000-09-06 2006-04-14 주식회사 실트론 Method for manufacturing bonded S.O.wafer with improved ability to remove metal impurities
JP4525892B2 (en) * 2003-08-18 2010-08-18 信越半導体株式会社 Manufacturing method of SOI wafer
JP4730581B2 (en) * 2004-06-17 2011-07-20 信越半導体株式会社 Manufacturing method of bonded wafer
US7923353B2 (en) * 2006-03-27 2011-04-12 Okmetic Oyj Gettering method and a wafer using the same
JP5183958B2 (en) * 2006-04-24 2013-04-17 信越半導体株式会社 Manufacturing method of SOI wafer
JP6070487B2 (en) * 2013-09-04 2017-02-01 信越半導体株式会社 SOI wafer manufacturing method, SOI wafer, and semiconductor device

Also Published As

Publication number Publication date
JPH11307471A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US6306730B2 (en) Method of fabricating an SOI wafer and SOI wafer fabricated by the method
US6251754B1 (en) Semiconductor substrate manufacturing method
JP5706391B2 (en) Manufacturing method of SOI wafer
JP3911901B2 (en) SOI wafer and method for manufacturing SOI wafer
JPH08512175A (en) Manufacturing of SOI substrates
JPH05251292A (en) Manufacture of semiconductor device
KR101340002B1 (en) SOI Wafer Manufacturing Method
JP3412470B2 (en) Method for manufacturing SOI substrate
JP2002184960A (en) Manufacturing method of soi wafer and soi wafer
JP3217089B2 (en) SOI wafer and method for manufacturing the same
JP5183958B2 (en) Manufacturing method of SOI wafer
JP3456521B2 (en) Method for manufacturing SOI substrate
JP3522482B2 (en) Method for manufacturing SOI substrate
JP3452123B2 (en) Method for manufacturing SOI substrate
JP3582566B2 (en) Method for manufacturing SOI substrate
JP3412449B2 (en) Method for manufacturing SOI substrate
JPH11191617A (en) Manufacture of soi substrate
JP2006165061A (en) Method of manufacturing soi wafer
US7749861B2 (en) Method for manufacturing SOI substrate and SOI substrate
JP3484961B2 (en) Method for manufacturing SOI substrate
CN116613058A (en) Composite substrate, composite film and preparation method thereof
JP3452122B2 (en) Method for manufacturing SOI substrate
JPH09326396A (en) Semiconductor integrated circuit device and its manufacture
US7799660B2 (en) Method for manufacturing SOI substrate
JPH0472631A (en) Semiconductor substrate and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees