JPH08222550A - Planarization of coating insulating film - Google Patents

Planarization of coating insulating film

Info

Publication number
JPH08222550A
JPH08222550A JP2852795A JP2852795A JPH08222550A JP H08222550 A JPH08222550 A JP H08222550A JP 2852795 A JP2852795 A JP 2852795A JP 2852795 A JP2852795 A JP 2852795A JP H08222550 A JPH08222550 A JP H08222550A
Authority
JP
Japan
Prior art keywords
insulating film
polymer layer
organic polymer
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2852795A
Other languages
Japanese (ja)
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2852795A priority Critical patent/JPH08222550A/en
Publication of JPH08222550A publication Critical patent/JPH08222550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: To provide a simple and secure technique for removing thick portions of peripheral portions of a coating insulating film made of SOG and the like. CONSTITUTION: An organic polymer layer 7 is formed on a coating insulating film 6, and peripheral portions of the organic polymer layer 7 are removed by an edge bead remover. Using the organic polymer layer 7 as a mask, the coating insulating film 6 is etched. On this stage, constant-velocity etch back may be performed on the organic polymer layer 7 and the coating insulating film 6. Also, heat treatment may be performed on the coating insulating film so as to make the film inorganic and fine, after the organic polymer layer is rotally removed. Thus, as the peripheral portions of the organic polymer layer are removed by the edge bend remover, the technique for removal is very simple without employing lithography. Since peripheral thick portions of the coating insulating film are removed by etching, these portions can be securely removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置等の製造分野
で適用される塗布絶縁膜の平坦化方法に関し、更に詳し
くは、回転塗布により形成される、基板周縁部の塗布絶
縁膜の肉厚部分を確実かつ簡単に除去することが可能な
塗布絶縁膜の平坦化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of flattening a coating insulating film applied in the field of manufacturing semiconductor devices and the like. More specifically, the thickness of the coating insulating film at the peripheral edge of the substrate formed by spin coating. The present invention relates to a method for flattening a coated insulating film capable of reliably and easily removing a portion.

【0002】[0002]

【従来の技術】LSI等の半導体装置の高集積度化が進
展するに伴い、内部配線のデザインルールは益々微細化
し、しかも多層化の方向に向かっている。かかる高集積
度化は、半導体装置の高性能化に寄与する一方、その信
頼性を低下させる原因となる虞れもある。これは、下層
配線上に形成する層間絶縁膜の段差が大きくかつ急峻と
なることにより、さらにこの層間絶縁膜上に形成する上
層配線のステップカバレッジや加工精度に問題を生じる
ことによる。さらに、高段差下地上のレジスト層のリソ
グラフィにおいては、近年の露光光の短波長化によるD
OF(Depthof Focus)マージンの低下も
あり、レジストマスクのパターニング精度に悪影響をお
よぼす。したがって層間絶縁膜の平坦化は、高集積度の
半導体装置の信頼性を向上するために是非とも確立して
おかなければならないキープロセスの一つである。
2. Description of the Related Art With the progress of higher integration of semiconductor devices such as LSIs, the design rules of internal wiring are becoming finer and more and more toward multilayer. While such a high degree of integration contributes to high performance of the semiconductor device, it may cause a decrease in its reliability. This is because the step of the interlayer insulating film formed on the lower layer wiring becomes large and steep, which causes a problem in step coverage and processing accuracy of the upper layer wiring formed on the interlayer insulating film. Further, in the lithography of a resist layer on a high stepped base, the D
There is also a decrease in OF (Depth of Focus) margin, which adversely affects the patterning accuracy of the resist mask. Therefore, planarization of the interlayer insulating film is one of the key processes that must be established by all means in order to improve the reliability of highly integrated semiconductor devices.

【0003】従来より、半導体装置の層間絶縁膜の平坦
化には、SOG(Spin onGlass)のスピン
コーティングによる塗布絶縁膜が、その簡便さから広く
実用化されている。SOGは、シラノール結合(Si−
OH結合)を少なくとも1つ分子内に有するシリコン化
合物を主成分とし、これをアルコール等の溶媒に溶解し
た塗布液、あるいはこの塗布液を塗布後焼成した絶縁膜
の総称である。SOGは無機SOGと有機SOGとに大
別され、各々特徴を有している。このうち無機SOG
は、分子内に有機基を有しないシリコン化合物、一例と
してSi(OH)4 を主成分とするものである。膜中に
有機成分がないので1000℃程度の高温熱処理が可能
であり、膜質は熱酸化によるSiO2 に近く、緻密で良
好である。しかし膜厚を500nm程度以上に厚くする
と熱処理時に堆積収縮やクラックが入りやすい。このた
め薄い塗布絶縁膜しか実用化できず、高段差下地の平坦
化には不向きである。
Conventionally, for flattening an interlayer insulating film of a semiconductor device, a coating insulating film by SOG (Spin on Glass) spin coating has been widely put into practical use because of its simplicity. SOG is a silanol bond (Si-
It is a generic term for a coating liquid having a silicon compound having at least one (OH bond) in the molecule as a main component and dissolving this in a solvent such as alcohol, or an insulating film obtained by coating and baking the coating liquid. SOG is roughly classified into inorganic SOG and organic SOG, and each has its own characteristics. Of these, inorganic SOG
Is a silicon compound having no organic group in the molecule, for example, one containing Si (OH) 4 as a main component. Since there is no organic component in the film, high temperature heat treatment at about 1000 ° C. is possible, and the film quality is close to that of SiO 2 by thermal oxidation and is dense and good. However, if the film thickness is increased to about 500 nm or more, deposition shrinkage and cracks are likely to occur during heat treatment. Therefore, only a thin coating insulating film can be put into practical use, and it is not suitable for flattening a high stepped base.

【0004】他方の有機SOGは、分子内に有機基を有
するシリコン化合物であるRn Si(OH)4-n (Rは
アルキル基、アルコキシ基等の有機基、nは1〜4の自
然数を表す)を主成分とするものである。有機成分を有
するため厚く塗布しても膜中にクラックが入りにくく、
また高段差の下地であっても平坦化の効果は良好であ
る。しかしながら、有機成分の熱分解を避けるために
は、熱処理温度は例えば500℃以下の比較的低温が要
求され、膜質や、隣接するAl系金属等の配線材料の耐
腐食性に関しては不十分である。このため、有機SOG
は成膜後のエッチバック工程と組み合わせ、下地基板の
段差凹部のみに残し、さらにCVD等で膜質のよい絶縁
膜を積み増す等の対策が採られる。また近年では有機S
OG塗布膜の無機化による膜質の向上も試みられてい
る。すなわち、有機SOG塗布膜を酸化雰囲気中で85
0℃程度の熱処理を施し、有機基をCO2 やH2 Oとし
て脱離するとともに、残ったシリコン原子をSiO2
するものである。塗布絶縁膜としては、SOGの他にも
耐熱性高分子であるポリイミド等が用いられる場合もあ
る。
The other organic SOG is R n Si (OH) 4-n (R is an organic group such as an alkyl group or an alkoxy group, which is a silicon compound having an organic group in the molecule, and n is a natural number of 1 to 4). Representation) is the main component. Since it has an organic component, even if it is applied thickly, cracks are unlikely to occur in the film,
Further, the flattening effect is good even if the base has a high step. However, in order to avoid the thermal decomposition of the organic component, the heat treatment temperature is required to be relatively low, for example, 500 ° C. or less, and the film quality and the corrosion resistance of the adjacent wiring material such as Al-based metal are insufficient. . Therefore, organic SOG
In combination with the etch-back process after film formation, measures are taken such as leaving only in the stepped recesses of the underlying substrate and further stacking an insulating film of good film quality by CVD or the like. In recent years, organic S
Attempts have also been made to improve the film quality by making the OG coating film inorganic. That is, the organic SOG coating film is 85
A heat treatment is performed at about 0 ° C. to remove the organic groups as CO 2 and H 2 O, and the remaining silicon atoms are converted to SiO 2 . In addition to SOG, heat-resistant polymer such as polyimide may be used as the coating insulating film.

【0005】SOG等の塗布絶縁膜は、このようにして
特性を補いつつ実用に供されているのが現状である。し
かしながら、スピンコーティングにまつわる問題は依然
として残る。それは、遠心力や表面張力により、基板周
縁部の塗布絶縁膜の膜厚が基板中央部よりも厚く形成さ
れる問題である。これはエッジビルトアップ現象等と呼
称され、この部分では後の熱処理時にクラックが入り易
い。また塗布絶縁膜成膜後の基板の取り扱いに際し、キ
ャリア等の治具に基板周縁部の肉厚部が接触してこの部
分の厚い塗布絶縁膜が削られたり剥離し、パーティクル
汚染の原因となる。したがって、半導体装置等の製造プ
ロセスの歩留りや、信頼性を低下する懸念がある。
Under the present circumstances, the coating insulating film such as SOG is put to practical use while supplementing the characteristics in this way. However, the problems with spin coating still remain. It is a problem that the film thickness of the coating insulating film at the peripheral portion of the substrate is thicker than that at the central portion of the substrate due to centrifugal force and surface tension. This is called an edge built-up phenomenon, etc., and cracks are likely to occur in this portion during the subsequent heat treatment. Also, when handling the substrate after forming the coated insulating film, the thick portion of the peripheral edge of the substrate comes into contact with a jig such as a carrier, and the thick coated insulating film in this portion is scraped or peeled off, which causes particle contamination. . Therefore, there is a concern that the yield and reliability of the manufacturing process of semiconductor devices and the like may be reduced.

【0006】基板周縁部の塗布絶縁膜の除去方法とし
て、スピンコーティング後、熱処理前にエッジリンスを
施す方法がある。しかし塗布絶縁膜は粘度が大きいので
エッジリンスでは安定な除去は困難であり、たとえ除去
できても新たに周縁内側部に肉厚部分が形成される場合
があった。
As a method of removing the coated insulating film on the peripheral portion of the substrate, there is a method of performing edge rinse after spin coating and before heat treatment. However, since the applied insulating film has a high viscosity, it is difficult to remove it stably by edge rinse, and even if it can be removed, a thick portion may be newly formed inside the peripheral edge.

【0007】基板周縁部の塗布絶縁膜の他の除去方法と
して、塗布絶縁膜上全面にレジスト層を形成後露光、現
像して基板周縁部分のレジスト層を除去し、このレジス
ト層をマスクに基板周縁部の塗布絶縁膜をエッチングす
る方法もある。この方法は確実に基板周縁部の塗布絶縁
膜を除去できるが、露光、現像等のプロセスの追加が必
要であり、塗布絶縁膜による平坦化の特長であるプロセ
スの簡便さが相殺される結果となる。
As another method for removing the coating insulating film on the peripheral portion of the substrate, a resist layer is formed on the entire surface of the coating insulating film, and then exposed and developed to remove the resist layer on the peripheral portion of the substrate, and the resist layer is used as a mask to form the substrate. There is also a method of etching the coated insulating film on the peripheral portion. Although this method can reliably remove the coated insulating film on the peripheral edge of the substrate, it requires the addition of processes such as exposure and development, which offsets the simplicity of the process, which is the feature of planarization by the coated insulating film. Become.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は上述し
た従来技術の諸問題点を解決することであり、SOG等
の塗布絶縁膜の基板周縁部の肉厚部を、簡便かつ確実な
手段で除去できる塗布絶縁膜の平坦化方法を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a simple and reliable means for forming a thick portion at the peripheral portion of the substrate of a coating insulating film such as SOG. The purpose of the present invention is to provide a method for planarizing a coated insulating film that can be removed by.

【0009】本発明の他の課題は、塗布絶縁膜のクラッ
クを防止し、またパーティクル汚染の虞れのない、信頼
性の高い半導体等の製造プロセスを実現しうる、塗布絶
縁膜の平坦化方法を提供することである。
Another object of the present invention is a method of planarizing a coated insulating film which can prevent cracks in the coated insulating film and can realize a highly reliable manufacturing process for semiconductors and the like without fear of particle contamination. Is to provide.

【0010】[0010]

【課題を解決するための手段】本発明の塗布絶縁膜の平
坦化方法は、上述の課題を解決するために発案したもの
である。すなわち、基板上に塗布絶縁膜を回転塗布し、
基板周縁部の塗布絶縁膜の肉厚部を選択的に除去する塗
布絶縁膜の平坦化方法であって、塗布絶縁膜上全面に有
機高分子層を形成する工程と、基板周縁部の有機高分子
層をエッジリンスにより選択的に除去する工程と、有機
高分子層から露出する塗布絶縁膜を選択的にエッチング
除去する工程をこの順に施すことを特徴とするものであ
る。
The method for flattening a coated insulating film according to the present invention was devised to solve the above-mentioned problems. That is, spin coating the coating insulating film on the substrate,
A flattening method of a coating insulating film, which selectively removes a thick portion of the coating insulating film on the peripheral edge of the substrate, which comprises a step of forming an organic polymer layer on the entire surface of the coating insulating film, and an organic high layer on the peripheral edge of the substrate. The method is characterized in that a step of selectively removing the molecular layer by edge rinsing and a step of selectively removing the coating insulating film exposed from the organic polymer layer by etching are performed in this order.

【0011】また本発明の塗布絶縁膜の平坦化方法は、
上述した有機高分子層から露出する該塗布絶縁膜を選択
的にエッチング除去する工程の後に、さらに、有機高分
子層を除去する工程と、塗布絶縁膜に熱処理施す工程を
この順に施すことを特徴とするものである。
The method of flattening the coated insulating film of the present invention is
After the step of selectively etching away the coating insulating film exposed from the organic polymer layer described above, a step of removing the organic polymer layer and a step of heat-treating the coating insulating film are performed in this order. It is what

【0012】この有機高分子層を除去する工程は、有機
高分子層と塗布絶縁膜を等速エッチバックする工程であ
ってもよい。本発明で用いる有機高分子層は、通常のレ
ジストあるいは感光性のない一般的な高分子材料により
形成してよい。ただし、架橋反応により硬化した有機高
分子層は、エッジリンスによる除去が困難であるので、
これを除外する。
The step of removing the organic polymer layer may be a step of etching back the organic polymer layer and the coating insulating film at a constant rate. The organic polymer layer used in the present invention may be formed of a normal resist or a general polymer material having no photosensitivity. However, since the organic polymer layer cured by the crosslinking reaction is difficult to remove by edge rinse,
Exclude this.

【0013】[0013]

【作用】本発明の塗布絶縁膜の平坦化方法の骨子は、基
板周縁部の塗布絶縁膜の肉厚部を選択的に除去する手段
として、有機高分子層をマスクとしてエッチング除去す
る際に、有機高分子層の基板周縁部をエッジリンスによ
り選択的に除去し、これをマスクとして塗布絶縁膜をエ
ッチング除去する点にある。
The essence of the method for flattening a coated insulating film of the present invention is that the means for selectively removing the thick portion of the coated insulating film at the peripheral edge of the substrate is such that when the organic polymer layer is used as a mask for etching removal, The edge of the substrate of the organic polymer layer is selectively removed by edge rinsing, and the coated insulating film is removed by etching using this as a mask.

【0014】従来の塗布絶縁膜の平坦化方法として、す
でに述べたように塗布絶縁膜上全面に形成したレジスト
層に選択的に露光および現像処理を施して基板周縁部の
レジスト層を除去し、これをマスクに基板周縁部の塗布
絶縁膜を除去することは行われていた。本発明において
は、基板周縁部の有機高分子層の除去手段として露光現
像によらず、エッジリンスという簡便な手段を採用して
プロセスの複雑化を排除した。
As a conventional flattening method of the coating insulating film, as described above, the resist layer formed on the entire surface of the coating insulating film is selectively exposed and developed to remove the resist layer at the peripheral portion of the substrate, Using this as a mask, the coating insulating film on the peripheral portion of the substrate has been removed. In the present invention, as a means for removing the organic polymer layer at the peripheral portion of the substrate, a simple means called edge rinse is adopted instead of exposure and development, thereby eliminating the complication of the process.

【0015】先述したように、塗布絶縁膜のスピンコー
ティング後熱処理前に、塗布絶縁膜自体をエッジリンス
して周縁肉厚部を除去する試みはあった。しかしこの場
合には、SOG等の基本的に粘稠な塗布膜を直接エッジ
リンスしなければならず、安定な除去は困難であり、た
とえ除去できても新たに基板周縁内部に肉厚部分が形成
される場合もあった。本発明では、エッジリンスで除去
する塗布層はレジスト等有機高分子層であるので、SO
G等よりは粘度は格段に小さく、周縁部のみの除去は問
題なく達成される。また有機高分子層のエッジリンスに
際し、基板周縁内部に有機高分子層の肉厚部分が新たに
形成されたとしても、有機高分子層は最終的には除去す
るものであり、またマスクとしての機能に悪影響を与え
ることはない。このようにして、基板周縁部が選択的に
エッジリンス除去された有機高分子層をマスクとし、こ
の有機高分子層から露出した塗布絶縁膜をエッチングす
ることにより、基板周縁部の塗布絶縁膜の肉厚部を確実
に除去し、平坦化を達成することが可能となる。
As described above, there have been attempts to remove the peripheral thick portion by edge-rinsing the coated insulating film itself after the spin coating of the coated insulating film and before the heat treatment. However, in this case, a basically viscous coating film such as SOG must be directly edge rinsed, and stable removal is difficult, and even if it can be removed, a thick portion is newly formed inside the substrate periphery. It was sometimes formed. In the present invention, since the coating layer removed by edge rinse is an organic polymer layer such as a resist,
The viscosity is much smaller than that of G and the like, and removal of only the peripheral portion can be achieved without any problem. Further, during edge rinsing of the organic polymer layer, even if a thick portion of the organic polymer layer is newly formed inside the peripheral edge of the substrate, the organic polymer layer is to be removed finally, and as a mask. It does not adversely affect the function. In this manner, by using the organic polymer layer from which the edge of the substrate has been selectively edge-rinsed as a mask and etching the coating insulating film exposed from this organic polymer layer, the coating insulating film of the substrate periphery can be removed. It is possible to reliably remove the thick portion and achieve flattening.

【0016】本発明の請求項2の方法によれば、基板周
縁部の塗布絶縁膜をエッチング除去した後、エッチング
マスクとしての機能を果たした有機高分子層を除去し、
さらに塗布絶縁膜に熱処理を施している。この方法によ
れば、この段階での熱処理により、塗布絶縁膜を無機化
処理あるいは緻密化処理を施すことができる。一方エッ
チングする段階においては、塗布絶縁膜は無機化処理あ
るいは緻密化される前であるから膜質は弱く、容易にエ
ッチングすることが可能で、平坦化の簡便性に寄与す
る。
According to the method of claim 2 of the present invention, after removing the coating insulating film on the peripheral portion of the substrate by etching, the organic polymer layer functioning as an etching mask is removed,
Furthermore, the applied insulating film is heat-treated. According to this method, the applied insulating film can be subjected to the mineralization treatment or the densification treatment by the heat treatment at this stage. On the other hand, in the stage of etching, the coating insulating film is not yet mineralized or densified, so that the film quality is weak and can be easily etched, which contributes to the simplicity of planarization.

【0017】本発明の請求項3の方法では、基板周縁部
の塗布絶縁膜をエッチング除去した後、さらに有機高分
子層と塗布絶縁膜のエッチングレートが等速となる条件
でエッチバックする。この方法によれば、有機高分子層
の表面モホロジが塗布絶縁膜に転写され、塗布絶縁膜の
基板中央部分でのバルク平坦性がさらに向上する。すな
わち、有機高分子層はもともと平坦化を目的として形成
された塗布絶縁膜の上にさらにスピンコーティング等の
手段で形成したものであるから、表面の平坦性は優秀で
ある。そこでこの表面モホロジを利用し、等速エッチバ
ックにより塗布絶縁膜に転写することにより、塗布絶縁
膜のバルク平坦性を向上することが可能となるのであ
る。この後、塗布絶縁膜に熱処理を加えれば無機化処理
あるいは緻密化処理により膜質の向上を図ることができ
る。
In the method of the third aspect of the present invention, after the coating insulating film on the peripheral portion of the substrate is removed by etching, etching back is further performed under the condition that the etching rates of the organic polymer layer and the coating insulating film are constant. According to this method, the surface morphology of the organic polymer layer is transferred to the coating insulating film, and the bulk flatness of the coating insulating film in the central portion of the substrate is further improved. That is, since the organic polymer layer is formed by means of spin coating or the like on the coating insulating film originally formed for the purpose of flattening, the surface flatness is excellent. Therefore, it is possible to improve the bulk flatness of the coating insulating film by utilizing this surface morphology and transferring it to the coating insulating film by constant-rate etchback. After that, if heat treatment is applied to the coated insulating film, the film quality can be improved by the mineralization treatment or the densification treatment.

【0018】[0018]

【実施例】以下、本発明の具体的実施例につき、図1お
よび図2(a)〜(e)を参照して説明する。以下の実
施例では、Al系金属配線上の層間絶縁膜に塗布絶縁膜
を適用し、これを平坦化する場合を例にとって説明を加
える。試料として、例えば8インチ径のシリコン等の半
導体基板2上にSiO2 等の絶縁膜3、下層配線である
Al系金属配線4、およびSiO2 からなる下層層間絶
縁膜4を順次形成したものを用いた。図1に示すこの試
料を単に基板1と称することとする。図1は基板1の一
部の拡大断面図である。Al系金属配線4は例えば50
0nmの厚さにスパッタリングにより堆積し、0.35
nmのラインアンドスペースの形状にパターニングした
ものである。SiO2 からなる下層層間絶縁膜5は、プ
ラズマCVDにより例えば300nmの厚さに堆積した
ものである。プラズマCVDの特徴として、比較的低温
で膜質のよいSiO2 膜を形成することが可能である
が、その表面形状はコンフォーマルに近く、下層層間絶
縁膜5の表面は図示のようにAl系金属配線4の形状を
反映した段差が形成されている。
EXAMPLES Specific examples of the present invention will be described below with reference to FIGS. 1 and 2A to 2E. In the following embodiments, a case where a coating insulating film is applied to the interlayer insulating film on the Al-based metal wiring and is planarized will be described as an example. As a sample, for example, an insulating film 3 of SiO 2 or the like, an Al-based metal wiring 4 as a lower layer wiring, and a lower interlayer insulating film 4 of SiO 2 are sequentially formed on a semiconductor substrate 2 of silicon or the like having a diameter of 8 inches. Using. This sample shown in FIG. 1 will be simply referred to as the substrate 1. FIG. 1 is an enlarged sectional view of a part of the substrate 1. The Al-based metal wiring 4 is, for example, 50
0.35 deposited by sputtering to a thickness of 0 nm
It is patterned into a line and space shape of nm. The lower interlayer insulating film 5 made of SiO 2 is deposited by plasma CVD to have a thickness of 300 nm, for example. As a feature of plasma CVD, it is possible to form a SiO 2 film having a good film quality at a relatively low temperature, but its surface shape is close to conformal, and the surface of the lower interlayer insulating film 5 is formed of an Al-based metal as shown in the figure. A step is formed that reflects the shape of the wiring 4.

【0019】実施例1 本実施例は、塗布絶縁膜として有機SOGを採用し、平
坦化を行った例である。図1に示す基板1を市販の通常
のスピナーにセッティングし、室温下2000rpmの
回転数下で有機SOGを滴下し、塗布絶縁膜6を形成す
る。この後、200℃で塗布絶縁膜6をプリベークし、
塗布絶縁膜6中の溶剤を除去する。この状態を図2
(a)に示す。同図に示すように、基板1周縁部にはエ
ッジビルトアップ現象による肉厚部が形成されている。
なお同図では、基板1全体の概略断面を示すが、基板1
中のAl系金属配線4や下層層間絶縁膜5等の細部は図
示を省略する。また基板1の表面には、下層層間絶縁膜
5の表面段差が形成されているが、これも図示を省略す
る。基板周縁部の塗布絶縁膜6には、スピンコーティン
グに特有の肉厚部が形成されている。なお基板中央部分
の塗布絶縁膜6の厚さは、一例として500nmであ
り、平坦性は良好である。
Example 1 This example is an example in which organic SOG is used as a coating insulating film and planarization is performed. The substrate 1 shown in FIG. 1 is set in a commercially available ordinary spinner, and organic SOG is dropped at room temperature under a rotation speed of 2000 rpm to form a coating insulating film 6. After that, the coated insulating film 6 is pre-baked at 200 ° C.,
The solvent in the coating insulating film 6 is removed. This state is shown in Figure 2.
(A). As shown in the figure, a thick portion due to the edge built-up phenomenon is formed on the peripheral portion of the substrate 1.
In addition, in FIG. 1, a schematic cross section of the entire substrate 1 is shown.
Details of the Al-based metal wiring 4 and the lower interlayer insulating film 5 and the like therein are omitted. Further, a surface step of the lower interlayer insulating film 5 is formed on the surface of the substrate 1, but this is also omitted in the drawing. A thick portion peculiar to spin coating is formed on the coating insulating film 6 on the peripheral portion of the substrate. The thickness of the coating insulating film 6 in the central portion of the substrate is 500 nm as an example, and the flatness is good.

【0020】次に塗布絶縁膜6上に有機高分子層7をこ
れもスピンコーティングする。有機高分子層7は、通常
のノボラック系ポジ型レジストを用いてよいが、感光性
を有する必要はなく、通常の高分子材料であってもよ
い。乾燥後の有機高分子層7の厚さは、一例として80
0nmであり、その表面は極めて平坦性に優れる。この
状態を図2(b)に示す。なお有機高分子層には、架橋
反応を起こすベーキング処理等は一切加えない。
Next, the organic polymer layer 7 is also spin-coated on the coating insulating film 6. The organic polymer layer 7 may use a normal novolac-based positive resist, but it does not need to have photosensitivity and may be a normal polymer material. The thickness of the organic polymer layer 7 after drying is 80 as an example.
It is 0 nm, and the surface thereof is extremely flat. This state is shown in FIG. No baking treatment or the like that causes a crosslinking reaction is added to the organic polymer layer.

【0021】次に基板1をスピナーにセッティングして
エッジリンスを施す。エッジリンスは、基板を回転しな
がら基板周縁部のみに現像液等の溶剤を滴下あるいは噴
出する処理であり、周縁部の溶解した有機高分子層7は
遠心力で飛散して除去される。エッジリンスの幅は、塗
布絶縁膜6の肉厚部の幅に見合った幅とし、例えば2.
5mmとする。この後有機高分子層7に対し、プリベー
ク、ポストベーク等のベーキング処理を施してエッチン
グ耐性を付与してもよい。この状態を図2(c)に示
す。有機高分子層7が除去された部分からは、塗布絶縁
膜6の周縁肉厚部が露出している。
Next, the substrate 1 is set in a spinner and edge rinse is performed. The edge rinse is a process of dropping or ejecting a solvent such as a developing solution only on the peripheral portion of the substrate while rotating the substrate, and the dissolved organic polymer layer 7 on the peripheral portion is scattered and removed by centrifugal force. The width of the edge rinse is set to a width corresponding to the width of the thick portion of the coated insulating film 6, for example, 2.
5 mm. After that, the organic polymer layer 7 may be subjected to baking treatment such as pre-baking and post-baking to impart etching resistance. This state is shown in FIG. From the portion where the organic polymer layer 7 is removed, the peripheral thick wall portion of the coating insulating film 6 is exposed.

【0022】有機高分子層7をエッチングマスクとし、
塗布絶縁膜6の露出部分をエッチング除去する。エッチ
ングはF系ガスを用いたドライエッチングでも良いが、
HF水溶液等によるウェットエッチングが簡便である。
エッチング終了後の状態を図2(d)に示す。
Using the organic polymer layer 7 as an etching mask,
The exposed portion of the coated insulating film 6 is removed by etching. The etching may be dry etching using F-based gas,
Wet etching with an HF aqueous solution is simple.
The state after etching is shown in FIG.

【0023】この後有機高分子層をアッシング等で除去
し、さらに塗布絶縁膜6に対し、熱処理を施す。この状
態を図2(e)に示す。なお本実施例では下層配線とし
てAl系金属配線を採用したが、高融点金属配線等、耐
熱性に問題がない配線材料を採用する場合には、酸化性
雰囲気中で850℃程度の熱処理を施し、無機化処理を
行ってもよい。
After that, the organic polymer layer is removed by ashing or the like, and the coated insulating film 6 is heat treated. This state is shown in FIG. Although the Al-based metal wiring is used as the lower wiring in this embodiment, when a wiring material having no problem in heat resistance such as refractory metal wiring is used, heat treatment is performed at about 850 ° C. in an oxidizing atmosphere. Alternatively, a mineralization treatment may be performed.

【0024】本実施例によれば、もともと平坦性に優れ
た有機SOGを塗布絶縁膜として用い、基板周縁部の肉
厚部を除去することにより、塗布絶縁膜の全面に渡り平
坦性を確保することが可能である。塗布絶縁膜の肉厚部
の除去は、エッジリンスして周縁部を除去した有機高分
子層をマスクにしたエッチングであるので、確実に除去
できしかもプロセス全体の簡便性を損ねることがない。
According to this embodiment, organic SOG, which is originally excellent in flatness, is used as the coating insulating film, and the thick portion at the peripheral edge of the substrate is removed to secure the flatness over the entire surface of the coating insulating film. It is possible. The thick portion of the coated insulating film is removed by etching using the organic polymer layer whose edge is rinsed to remove the peripheral portion as a mask. Therefore, the thick portion can be reliably removed without impairing the simplicity of the entire process.

【0025】実施例2 本実施例は塗布絶縁膜として無機SOGを採用し、平坦
化を行った例である。図1に示す基板1を市販の通常の
スピナーにセッティングし、室温下2000rpmの回
転数下で無機SOGを滴下し、塗布絶縁膜6を形成す
る。この後、200℃で塗布絶縁膜6をプリベークし、
塗布絶縁膜6中の溶剤を除去する。この状態を図2
(a)に示す。なお同図では、基板1全体の概略断面を
示すが、基板1中のAl系金属配線4や下層層間絶縁膜
5等の細部は図示を省略する。また基板1の表面には下
層層間絶縁膜5の表面段差が形成されているが、これも
図示を省略する。基板周縁部の塗布絶縁膜6には、スピ
ンコーティングに特有の肉厚部が形成されている。なお
基板中央部分の塗布絶縁膜6の厚さは、一例として50
0nmであり、下地の下層絶縁膜5の段差が若干反映さ
れた表面性を有する。
Example 2 This example is an example in which inorganic SOG is used as a coating insulating film and planarization is performed. The substrate 1 shown in FIG. 1 is set in a commercially available ordinary spinner, and inorganic SOG is dropped at room temperature under a rotation speed of 2000 rpm to form a coating insulating film 6. After that, the coated insulating film 6 is pre-baked at 200 ° C.,
The solvent in the coating insulating film 6 is removed. This state is shown in Figure 2.
(A). Although a schematic cross section of the entire substrate 1 is shown in the figure, details of the Al-based metal wiring 4, the lower interlayer insulating film 5 and the like in the substrate 1 are omitted. Further, a surface step of the lower interlayer insulating film 5 is formed on the surface of the substrate 1, but this is also omitted in the drawing. A thick portion peculiar to spin coating is formed on the coating insulating film 6 on the peripheral portion of the substrate. The thickness of the coating insulating film 6 in the central portion of the substrate is 50 as an example.
It is 0 nm, and has a surface property slightly reflecting the step difference of the underlying lower insulating film 5.

【0026】次に塗布絶縁膜6上に有機高分子層7をこ
れもスピンコーティングする。有機高分子層7は、通常
のノボラック系ポジ型レジストを用いてよいが、感光性
を有する必要はなく、通常の高分子材料であってもよ
い。乾燥後の有機高分子層7の厚さは、一例として80
0nmであり、その表面は概ね平坦性である。この状態
を図2(b)に示す。なお有機高分子層は架橋反応を起
こすベーキング処理等は一切加えない。
Next, the organic polymer layer 7 is also spin-coated on the coating insulating film 6. The organic polymer layer 7 may use a normal novolac-based positive resist, but it does not need to have photosensitivity and may be a normal polymer material. The thickness of the organic polymer layer 7 after drying is 80 as an example.
It is 0 nm, and its surface is almost flat. This state is shown in FIG. The organic polymer layer is not subjected to any baking treatment or the like which causes a crosslinking reaction.

【0027】次に基板1をスピナーにセッティングして
エッジリンスを施す。エッジリンスの幅は、塗布絶縁膜
6の肉厚部の幅に見合った幅とし、例えば2.5mmと
する。この後有機高分子層7に対し、プリベーク、ポス
トベーク等のベーキング処理を施してエッチング耐性を
付与してもよい。この状態を図2(c)に示す。有機高
分子層7が除去された部分からは、塗布絶縁膜6の周縁
肉厚部が露出している。
Next, the substrate 1 is set in a spinner and edge rinse is performed. The width of the edge rinse is a width corresponding to the width of the thick portion of the coated insulating film 6, and is 2.5 mm, for example. After that, the organic polymer layer 7 may be subjected to baking treatment such as pre-baking and post-baking to impart etching resistance. This state is shown in FIG. From the portion where the organic polymer layer 7 is removed, the peripheral thick wall portion of the coating insulating film 6 is exposed.

【0028】有機高分子層7をエッチングマスクとし、
塗布絶縁膜6の露出部分をエッチング除去する。エッチ
ングはF系ガスを用いたドライエッチングでも良いが、
HF水溶液等によるウェットエッチングが簡便である。
この状態を図2(d)に示す。
Using the organic polymer layer 7 as an etching mask,
The exposed portion of the coated insulating film 6 is removed by etching. The etching may be dry etching using F-based gas,
Wet etching with an HF aqueous solution is simple.
This state is shown in FIG.

【0029】この後有機高分子層7と塗布絶縁膜7のエ
ッチングレートが等しい条件で全面エッチバックする。
エッチバック条件は、F系ガスとO系ガスの混合ガスに
よるRIEにより、一例として下記条件を採用した。 CF4 ガス流量 7 sccm O2 ガス流量 50 sccm ガス圧力 66.7 Pa RFパワー密度 0.4 W/cm2 塗布絶縁膜7の表面が若干、例えば、50nm除去除去
された時点で本エッチバックを終了する。この後、45
0℃程度で熱処理して塗布絶縁膜6を緻密化する。この
状態を図2(e)に示す。なお本実施例では下層配線と
してAl系金属配線を採用したが、高融点金属や高融点
金属ポリサイド配線等、耐熱性に問題がない配線材料を
採用する場合には、酸化性雰囲気中で850℃程度の熱
処理を施し、無機化処理を行ってもよい。
After that, the entire surface is etched back under the condition that the organic polymer layer 7 and the coating insulating film 7 have the same etching rate.
The etch-back conditions were RIE using a mixed gas of F-based gas and O-based gas, and the following conditions were adopted as an example. CF 4 gas flow rate 7 sccm O 2 gas flow rate 50 sccm gas pressure 66.7 Pa RF power density 0.4 W / cm 2 The surface of the coated insulating film 7 is slightly removed, for example, by 50 nm, and this etchback is performed. finish. After this, 45
The applied insulating film 6 is densified by heat treatment at about 0 ° C. This state is shown in FIG. Although the Al-based metal wiring is adopted as the lower layer wiring in this embodiment, when a wiring material having no problem in heat resistance such as refractory metal or refractory metal polycide wiring is adopted, it is 850 ° C. in an oxidizing atmosphere. The heat treatment may be performed to some extent to perform the mineralization treatment.

【0030】本実施例によれば、平坦性に若干問題があ
る無機SOGを塗布絶縁膜として用い、基板周縁部の肉
厚部を除去するとともに、基板中央部分の塗布絶縁膜に
対しては全面エッチバック処理を施すことにより、塗布
絶縁膜の全面に渡り平坦性を確保することが可能であ
る。塗布絶縁膜の肉厚部の除去は、エッジリンスして周
縁部を除去した有機高分子層をマスクにしたエッチング
であるので、確実に除去できしかもプロセス全体の簡便
性を損ねることがない。
According to the present embodiment, the inorganic SOG having a slight problem in flatness is used as the coating insulating film to remove the thick portion at the peripheral portion of the substrate and to cover the entire surface of the coating insulating film in the central portion of the substrate. By performing the etch-back process, it is possible to secure flatness over the entire surface of the coated insulating film. The thick portion of the coated insulating film is removed by etching using the organic polymer layer whose edge is rinsed to remove the peripheral portion as a mask. Therefore, the thick portion can be reliably removed without impairing the simplicity of the entire process.

【0031】以上、本発明を2例の実施例により説明し
たが、本発明はこれら実施例に何ら限定されるものでは
ない。
Although the present invention has been described with reference to the two examples, the present invention is not limited to these examples.

【0032】例えば、塗布絶縁膜として有機SOGおよ
び無機SOGを提示したが、ポリイミド等の有機塗布絶
縁膜であってもよい。また塗布絶縁膜上に形成する有機
高分子層としてノボラック系ポジ型レジストを採用した
が、感光性を有するフォトレジストである必要はない。
この有機高分子層をエッジリンス後、露出した基板周縁
部の塗布絶縁膜をエッチング除去する際のエッチング耐
性がとれれば、感光性を有しない一般的な高分子材料で
あってよい。有機高分子層と塗布絶縁膜の等速エッチバ
ックを採用する場合には、有機高分子層の材料に合わ
せ、等速エッチバックの条件、例えば混合ガスの混合比
等を適宜選択すればよい。
For example, although organic SOG and inorganic SOG are presented as the coating insulating film, an organic coating insulating film such as polyimide may be used. Although a novolac-based positive resist was used as the organic polymer layer formed on the coating insulating film, it does not have to be a photoresist having photosensitivity.
A general polymer material having no photosensitivity may be used as long as the organic polymer layer is subjected to edge rinsing and then the etching resistance of the exposed coating insulating film on the peripheral portion of the substrate is removed. When the constant velocity etchback of the organic polymer layer and the coated insulating film is adopted, the constant velocity etchback condition, for example, the mixing ratio of the mixed gas may be appropriately selected according to the material of the organic polymer layer.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
によれば塗布絶縁膜の基板周縁部を簡単かつ確実な方法
で除去し、塗布絶縁膜を平坦化することが可能である。
このため、塗布絶縁膜のクラックやパーティクル汚染の
虞れのない、信頼性の高い半導体等の製造プロセスを提
供することが可能となる。
As is clear from the above description, according to the present invention, it is possible to flatten the coating insulating film by removing the peripheral portion of the substrate of the coating insulating film by a simple and reliable method.
Therefore, it is possible to provide a highly reliable manufacturing process of a semiconductor or the like without the risk of cracking of the coated insulating film and contamination of particles.

【0034】すなわち、請求項1の方法によれば、基板
周縁部をエッジリンスにより簡便かつ選択的に除去した
有機高分子層をマスクとして塗布絶縁膜を除去すること
により、確実に塗布絶縁膜の肉厚部を除去し、この塗布
絶縁膜を平坦化することが可能となる。
That is, according to the method of claim 1, the coating insulating film is removed by using the organic polymer layer, which is a peripheral edge portion of the substrate simply and selectively removed by edge rinsing, as a mask, thereby reliably removing the coating insulating film. It is possible to remove the thick portion and flatten the applied insulating film.

【0035】請求項2の方法によれば、さらに塗布絶縁
膜の肉厚部の除去が容易であると同時に、塗布絶縁膜の
無機化あるいは緻密化をも達成することができる。
According to the method of claim 2, the thick portion of the coated insulating film can be removed more easily, and at the same time, the coated insulating film can be made inorganic or densified.

【0036】さらに請求項3の方法によれば、基板周縁
部の肉厚部の除去による平坦化はもとより、肉厚部除去
に用いた有機高分子層をそのまま等速エッチバックのマ
スクとして用いるので、基板中央部のバルク平坦性をも
達成できる。また等速エッチバック用のレジストコーテ
ィングを省略できるので、スループットの向上に寄与す
る。
Furthermore, according to the method of claim 3, the organic polymer layer used for removing the thick portion is used as it is as a mask for the constant velocity etchback, as well as the flattening by removing the thick portion on the peripheral portion of the substrate. Also, bulk flatness of the central portion of the substrate can be achieved. Further, since the resist coating for constant speed etch back can be omitted, it contributes to the improvement of throughput.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の塗布絶縁膜の平坦化に採用した基板の
一部拡大断面図である。
FIG. 1 is a partially enlarged cross-sectional view of a substrate used for flattening a coated insulating film of the present invention.

【図2】本発明の塗布絶縁膜の平坦化方法を示す概略断
面図であり、(a)は基板上に塗布絶縁膜を形成した状
態、(b)は塗布絶縁膜上全面に有機高分子層を形成し
た状態、(c)は基板周縁部の有機高分子層をエッジリ
ンスにより除去した状態、(d)は有機高分子層から露
出する塗布絶縁膜周縁部の肉厚部をエッチング除去した
状態、(e)は有機高分子層を除去し、塗布絶縁膜の平
坦化が終了した除去した状態である。
2A and 2B are schematic cross-sectional views showing a method for planarizing a coated insulating film of the present invention, where FIG. 2A is a state in which the coated insulating film is formed on a substrate, and FIG. 2B is an organic polymer on the entire surface of the coated insulating film. A state in which a layer is formed, (c) is a state in which the organic polymer layer at the peripheral portion of the substrate is removed by edge rinse, and (d) is a thick portion in the peripheral portion of the coated insulating film exposed from the organic polymer layer, which is removed by etching. State (e) is a state in which the organic polymer layer has been removed and the planarization of the coating insulating film has been completed.

【符号の説明】[Explanation of symbols]

1 基板 2 半導体基板 3 絶縁膜 4 Al系金属配線 5 下層層間絶縁膜 6 塗布絶縁膜 7 有機高分子層 1 substrate 2 semiconductor substrate 3 insulating film 4 Al-based metal wiring 5 lower interlayer insulating film 6 coating insulating film 7 organic polymer layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に塗布絶縁膜を回転塗布し、前記
基板周縁部の該塗布絶縁膜を選択的に除去する塗布絶縁
膜の平坦化方法であって、 該塗布絶縁膜上全面に有機高分子層を形成する工程と、 前記基板周縁部の前記有機高分子層をエッジリンスによ
り選択的に除去する工程と、 前記有機高分子層から露出する該塗布絶縁膜を選択的に
エッチング除去する工程をこの順に施すことを特徴とす
る、塗布絶縁膜の平坦化方法。
1. A method of flattening a coated insulating film by spin-coating the coated insulating film on a substrate and selectively removing the coated insulating film at the peripheral edge of the substrate, wherein A step of forming a polymer layer; a step of selectively removing the organic polymer layer on the peripheral portion of the substrate by edge rinsing; and a step of selectively removing the coating insulating film exposed from the organic polymer layer by etching. A method for planarizing a coated insulating film, which comprises performing the steps in this order.
【請求項2】 有機高分子層から露出する塗布絶縁膜を
選択的にエッチング除去する工程の後に、さらに、 前記有機高分子層を除去する工程と、 該塗布絶縁膜に熱処理施す工程をこの順に施すことを特
徴とする、請求項1記載の塗布絶縁膜の平坦化方法。
2. A step of selectively removing the coating insulating film exposed from the organic polymer layer by a step of removing the organic polymer layer and a step of heat-treating the coating insulating film in this order. The method for planarizing a coated insulating film according to claim 1, which is performed.
【請求項3】 有機高分子層を除去する工程は、前記有
機高分子層と塗布絶縁膜を等速エッチバックする工程で
あることを特徴とする、請求項2記載の塗布絶縁膜の平
坦化方法。
3. The flattening of the coating insulating film according to claim 2, wherein the step of removing the organic polymer layer is a step of etching back the organic polymer layer and the coating insulating film at a constant rate. Method.
JP2852795A 1995-02-16 1995-02-16 Planarization of coating insulating film Pending JPH08222550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2852795A JPH08222550A (en) 1995-02-16 1995-02-16 Planarization of coating insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2852795A JPH08222550A (en) 1995-02-16 1995-02-16 Planarization of coating insulating film

Publications (1)

Publication Number Publication Date
JPH08222550A true JPH08222550A (en) 1996-08-30

Family

ID=12251144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2852795A Pending JPH08222550A (en) 1995-02-16 1995-02-16 Planarization of coating insulating film

Country Status (1)

Country Link
JP (1) JPH08222550A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924754A2 (en) * 1997-12-19 1999-06-23 Sharp Kabushiki Kaisha Low temperature system and method for CVD copper removal
KR100312648B1 (en) * 1998-06-30 2002-04-24 박종섭 Manufacturing method of semiconductor device
KR100575083B1 (en) * 2004-07-20 2006-04-28 동부일렉트로닉스 주식회사 Method for manufacturing semiconductor devices
KR100604775B1 (en) * 2004-12-30 2006-07-28 동부일렉트로닉스 주식회사 Method for Treating Edge of Semiconductor Wafer
JP2008244447A (en) * 2007-02-26 2008-10-09 Semiconductor Energy Lab Co Ltd Methods for manufacturing insulating film and semiconductor device
JP2012114103A (en) * 2006-09-27 2012-06-14 Kyocera Corp Discharge element, discharge module using the discharge element, and ozone generator and ion generator using the discharge module
WO2017047355A1 (en) * 2015-09-15 2017-03-23 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924754A2 (en) * 1997-12-19 1999-06-23 Sharp Kabushiki Kaisha Low temperature system and method for CVD copper removal
KR100312648B1 (en) * 1998-06-30 2002-04-24 박종섭 Manufacturing method of semiconductor device
KR100575083B1 (en) * 2004-07-20 2006-04-28 동부일렉트로닉스 주식회사 Method for manufacturing semiconductor devices
KR100604775B1 (en) * 2004-12-30 2006-07-28 동부일렉트로닉스 주식회사 Method for Treating Edge of Semiconductor Wafer
JP2012114103A (en) * 2006-09-27 2012-06-14 Kyocera Corp Discharge element, discharge module using the discharge element, and ozone generator and ion generator using the discharge module
JP2008244447A (en) * 2007-02-26 2008-10-09 Semiconductor Energy Lab Co Ltd Methods for manufacturing insulating film and semiconductor device
WO2017047355A1 (en) * 2015-09-15 2017-03-23 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium
KR20180052633A (en) * 2015-09-15 2018-05-18 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, and storage medium
JPWO2017047355A1 (en) * 2015-09-15 2018-07-12 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium

Similar Documents

Publication Publication Date Title
US7256136B2 (en) Self-patterning of photo-active dielectric materials for interconnect isolation
KR100538749B1 (en) Low-k interconnect structure comprised of a multilayer of spin-on porous dielectrics
US6319821B1 (en) Dual damascene approach for small geometry dimension
TWI228792B (en) Process for producing semiconductor device and semiconductor device
US7611986B2 (en) Dual damascene patterning method
US20070134917A1 (en) Partial-via-first dual-damascene process with tri-layer resist approach
US7622380B1 (en) Method of improving adhesion between two dielectric films
KR101103922B1 (en) Method of filling structures for forming via-first dual damascene interconnects
US20080064203A1 (en) Method for fabricating a contact hole
JP2000068268A (en) Manufacture of conductive multilayer device patterned on semiconductor substrate, method for treating wafer substrate in manufacturing semiconductor and treated product
KR20080109886A (en) Method for removing damaged dielectric material
JPH06208993A (en) Manufacture of semiconductor device
CN102478763A (en) Photoetching method
TW569340B (en) Electronic devices and methods of manufacture
JPH08222550A (en) Planarization of coating insulating film
US6110843A (en) Etch back method for smoothing microbubble-generated defects in spin-on-glass interlayer dielectric
US10998192B2 (en) Sequential infiltration synthesis extreme ultraviolet single expose patterning
US6800558B1 (en) Photoresist scum for copper dual damascene process
US6503849B1 (en) Method for forming insulating film
KR20010001970A (en) Manufacturing method for semiconductor device
JPH08306681A (en) Formation of flattened coat insulating film
US6960496B2 (en) Method of damascene process flow
KR100571406B1 (en) Method for manufacturing metal wiring of semiconductor device
KR100290466B1 (en) Method of manufacturing a semiconductor device
KR100588899B1 (en) Method for forming the mim cap of semiconductor device