JPH08219751A - Method for measuring thickness of refractories using elastic wave - Google Patents

Method for measuring thickness of refractories using elastic wave

Info

Publication number
JPH08219751A
JPH08219751A JP2779195A JP2779195A JPH08219751A JP H08219751 A JPH08219751 A JP H08219751A JP 2779195 A JP2779195 A JP 2779195A JP 2779195 A JP2779195 A JP 2779195A JP H08219751 A JPH08219751 A JP H08219751A
Authority
JP
Japan
Prior art keywords
vibration
thickness
refractory
frequency spectrum
vibration response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2779195A
Other languages
Japanese (ja)
Other versions
JP3039308B2 (en
Inventor
Masaki Yamano
正樹 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7027791A priority Critical patent/JP3039308B2/en
Publication of JPH08219751A publication Critical patent/JPH08219751A/en
Application granted granted Critical
Publication of JP3039308B2 publication Critical patent/JP3039308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To accurately measure the thickness of a fire brick lined to the inside of an iron skin from the surface thereof using elastic wave by measuring a vibration response frequency spectrum obtained by removing a specific frequency from the response to a vibration applied to the iron skin. CONSTITUTION: A vibration is applied, by means of a hammer 4, to the surface of an iron skin 1 above a fire brick 3 of which the thickness is measured. A hard plastic impact chip 5 is fixed to the tip of the hammer 4 in order to generate an elastic wave in the frequency band required for measurement. An impact strength meter 6 is fixed to the rear of the chip 5. Response of the iron skin 1, a stamp material 2 and the fire brick 3 to the impact of hammer is sampled by means of a vibration sensor 7. The vibration response signal thus sampled is amplified 8a and fed through a filter 9a to a frequency analyzer 10 where the vibration response frequency spectrum is calculated. Furthermore, thickness of the refractories is calculated by means of a signal processor 11 based on the peak frequency of the vibration response frequency spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工業用炉、特に製鉄用
高炉の鉄皮内側にライニングされた耐火レンガ等の厚み
を弾性波を用いて鉄皮表面から高精度に測定する厚み測
定方法に関する。
FIELD OF THE INVENTION The present invention relates to a thickness measuring method for highly accurately measuring the thickness of a refractory brick or the like lined on the inside of an iron furnace of an industrial furnace, particularly a blast furnace for iron making, from the surface of the iron shell using elastic waves. Regarding

【0002】[0002]

【従来の技術】例えば、製鉄用の高炉は、その外郭は鉄
皮で構成され、その内側には耐火レンガがライニングさ
れている。高炉炉底部の耐火レンガは溶銑に常にさらさ
れているため、高炉操業にともない徐々に損耗してゆ
き、火入れ時に2000mm以上あった耐火物の厚みが十
数年後の吹き止め時には300mm程度にまで減少してい
る場合がある。耐火物の残存厚みの推移を高炉操業中に
精度良く測定し、高炉の余命を的確に推定することは、
溶銑による鉄皮の溶損あるいは溶銑の流出等の重大事故
防止および高炉資産の有効活用のために非常に重要であ
る。
2. Description of the Related Art For example, a blast furnace for iron making has an outer shell made of a steel shell, and a refractory brick is lined inside. Since the refractory bricks at the bottom of the blast furnace are constantly exposed to hot metal, they gradually wear away as the blast furnace operates, and the thickness of the refractory that was 2,000 mm or more at the time of firing was reduced to about 300 mm at the end of blowing after 10 years. It may be decreasing. Accurately estimating the life expectancy of a blast furnace by accurately measuring the transition of the remaining thickness of refractory during blast furnace operation is
It is very important to prevent serious accidents such as damage to the steel skin due to hot metal or outflow of hot metal, and to effectively use blast furnace assets.

【0003】従来、高炉の耐火レンガの残存厚みを測定
する方法は数多く提案されてきている。その内主要な方
法を次に例示する。
Conventionally, many methods have been proposed for measuring the remaining thickness of refractory bricks in a blast furnace. The main method is illustrated below.

【0004】(1)最も簡単な方法としては、高炉の鉄
皮表面をハンマー等にて打撃し、この打撃によって発生
した弾性波が耐火物中を伝搬し、炉心側表面で反射をお
こし、再び鉄皮表面まで戻ってくる往復時間を測定し、
予め求めてある耐火物中の弾性波の伝搬速度と往復時間
とから耐火レンガの厚みを測定する方法が挙げられる。
(1) As the simplest method, the surface of the iron shell of the blast furnace is hit with a hammer or the like, the elastic wave generated by this hit propagates in the refractory, is reflected on the surface of the core side, and again. Measure the round trip time to return to the surface of the iron skin,
There is a method of measuring the thickness of the refractory brick from the propagation velocity of the elastic wave in the refractory and the round-trip time which are obtained in advance.

【0005】(2)特開昭49−50961号公報に
は、可聴周波の正弦波加振力を周波数を変えて被測定レ
ンガに印可し、その機械インピーダンスを測定し、その
機械インピーダンスのピーク値からレンガ厚みを測定す
る、工業炉用レンガ厚みを炉外より非破壊的に測定する
方法が提案されている。
(2) In JP-A-49-50961, a sinusoidal excitation force of audio frequency is applied to a brick to be measured by changing the frequency, the mechanical impedance is measured, and the peak value of the mechanical impedance is measured. Has proposed a method for non-destructively measuring the brick thickness for industrial furnaces from outside the furnace, which measures the brick thickness.

【0006】(3)特開昭58−27002号公報に
は、鉄皮の一部に開孔を形成し、金属棒を耐火物に直結
させ、金属棒の一端を打撃することで効率よく耐火物中
に弾性波を発生させ、弾性波が耐火物中の往復に要する
時間を測定し、往復時間と耐火物中の弾性波の伝搬速度
から耐火物の厚みを測定する方法が提案されている。
(3) In Japanese Patent Laid-Open No. 58-27002, an opening is formed in a part of an iron shell, a metal rod is directly connected to a refractory material, and one end of the metal rod is hit to efficiently fire-proof. A method has been proposed in which an elastic wave is generated in an object, the time required for the elastic wave to make a round trip in a refractory is measured, and the thickness of the refractory is measured from the round-trip time and the propagation speed of the elastic wave in the refractory. .

【0007】(4)炉壁の厚さ方向に埋設した相互に絶
縁された金属同軸線または金属平行線に電位パルスを印
可し、電位パルスの金属導線の先端からの反射時間を測
定することで金属導線長さおよび炉壁厚さを求めるTD
R(Time Domain Response)法と呼ばれる方法も提案され
ている。
(4) By applying a potential pulse to a mutually insulated metal coaxial line or metal parallel line buried in the thickness direction of the furnace wall, and measuring the reflection time from the tip of the metal conductor of the potential pulse. TD for obtaining metal conductor length and furnace wall thickness
A method called R (Time Domain Response) method has also been proposed.

【0008】[0008]

【発明が解決しようとする課題】前述(1)の反射波を
用いる方法は装置構成および測定データより耐火レンガ
厚みを算出する処理内容が極めて簡単であり、任意の場
所にて測定可能という利点を持っているが、次の問題点
のため現在のところ実用化に至っていない。
The method of using the reflected wave described in (1) above has the advantage that the processing contents for calculating the refractory brick thickness from the device configuration and the measurement data are extremely simple, and measurement can be performed at any location. However, due to the following problems, it has not yet been put to practical use.

【0009】打撃による振動エネルギーの殆どが鉄皮
自身の振動エネルギーとして消費され、耐火レンガ中を
伝搬する弾性波に変換される効率が極めて低い。このた
め、耐火レンガ内を伝搬して反射してくる弾性波の振動
に比べて鉄皮自身の振動の方が大きい。従って、これら
に混ざりこんだ、耐火レンガ中を伝搬し、反射して帰っ
てくる微弱な弾性波を鉄皮表面で検出し、反射波として
識別することは非常に困難である。
Most of the vibration energy due to the impact is consumed as the vibration energy of the iron shell itself, and the efficiency of conversion into elastic waves propagating in the refractory brick is extremely low. For this reason, the vibration of the iron shell itself is larger than the vibration of the elastic wave propagating in the refractory brick and reflected. Therefore, it is very difficult to detect a weak elastic wave that is mixed with these in the refractory brick, propagates in the refractory bricks, and returns and is detected on the surface of the iron skin and identify it as a reflected wave.

【0010】レンガ内伝搬の往復時間測定方法におけ
る測定精度は波長の約4分の1程度とされている。耐火
物中を伝搬する弾性波の波長はかなり長く、この方法で
の耐火物厚さの測定精度はかなり悪くなる(周波数10
00Hzの時には約600mm程度)。これにともない、
耐火レンガ中に存在する亀裂の検出能も極めて低いもの
となる。
The measurement accuracy in the round-trip time measurement method for propagation in bricks is about one quarter of the wavelength. The wavelength of the elastic wave propagating in the refractory is considerably long, and the accuracy of the refractory thickness measurement by this method becomes considerably poor (frequency 10
About 600 mm at 00 Hz). With this,
The detectability of cracks existing in refractory bricks is also extremely low.

【0011】上述(2)の特開昭49−50961号公
報に記載の測定方法においては、可聴周波の正弦波加振
力を被測定レンガに加え、その機械インピーダンスのピ
ーク値を求めるためには、十分大きな正弦波加振力を印
可する必要があると同時に、加振力の周波数を所定の範
囲で掃引する必要がある。従って、この方法を実施する
装置は極めて複雑かつ大型になる。
In the measuring method described in JP-A-49-50961 described above (2), in order to obtain the peak value of the mechanical impedance of the brick to be measured by applying the sine wave exciting force of audio frequency to the brick to be measured. , It is necessary to apply a sufficiently large sine wave excitation force, and at the same time, it is necessary to sweep the frequency of the excitation force within a predetermined range. Therefore, the apparatus for implementing this method is extremely complex and bulky.

【0012】上述(3)の特開昭58−27002号公
報に記載の耐火物の厚み測定方法は、測定箇所の鉄皮を
開孔し、耐火物と金属棒とを直結させる必要があるた
め、測定作業が極めて煩雑であり、測定に要する時間と
費用が膨大なものとなる。また、耐火物と金属棒との結
合状態およびハンマーによる金属棒の打撃状態(打撃強
度、打撃位置等)を常に一定に保つことが困難であり、
測定結果の再現性に乏しい。
In the method for measuring the thickness of the refractory material described in JP-A-58-27002 (3), it is necessary to open the steel skin at the measurement point and directly connect the refractory material to the metal rod. However, the measurement work is extremely complicated, and the time and cost required for the measurement become enormous. Further, it is difficult to always keep the state of connection between the refractory and the metal rod and the state of impact of the metal rod by the hammer (impact strength, impact position, etc.) constant,
Poor reproducibility of measurement results.

【0013】更に、上述(4)のTDR法においては、
炉壁の厚さを測定するためには予め測定箇所に金属導線
を埋設しておく必要があるため、高炉火入れ前に金属導
線を埋設した場所に測定箇所が限定される。しかも、例
えば10数年間という高炉操業の期間中に金属導線の断
線および絶縁不良が発生した場合、以後その場所での測
定が不可能になるという難点もある。
Further, in the above TDR method (4),
In order to measure the thickness of the furnace wall, it is necessary to bury the metal conductor at the measurement location in advance, so the measurement location is limited to the location where the metal conductor was embedded before the blast furnace firing. In addition, for example, if a metal conductor wire breaks or insulation failure occurs during a blast furnace operation period of ten or more years, measurement at that location becomes impossible thereafter.

【0014】本発明は、係る従来技術の問題点に鑑みて
なされたものであり、鉄皮内側にライニングされた耐火
レンガ等の厚みを弾性波を用いて鉄皮表面から高精度に
測定する厚み測定方法を提供することを目的とする。
The present invention has been made in view of the problems of the prior art, and is a thickness for highly accurately measuring the thickness of a refractory brick or the like lined inside the steel skin from the surface of the steel skin using elastic waves. The purpose is to provide a measuring method.

【0015】[0015]

【課題を解決するための手段】本発明は、鉄皮内面に張
りめぐらされた耐火物の厚みを弾性波を伝搬させた際に
得られる共振周波数成分から測定する方法であって、下
記(1)から(3)までの方法を要旨とする。
The present invention is a method for measuring the thickness of a refractory material stretched on the inner surface of a steel shell from a resonance frequency component obtained when an elastic wave is propagated. ) To (3) are the gist.

【0016】(1)第1の方法 次のからまでの手順で行うことを特徴とする耐火物
の厚み測定方法。
(1) First Method A method for measuring the thickness of a refractory material, which is characterized in that the steps from the following steps are performed.

【0017】振動を鉄皮に加える。Vibration is applied to the iron skin.

【0018】前記の振動に対する振動応答から所定
の周波数を除去した振動応答周波数スペクトルを測定す
る。
A vibration response frequency spectrum in which a predetermined frequency is removed from the vibration response to the vibration is measured.

【0019】前記の振動応答周波数スペクトルのピ
ーク周波数から耐火物の厚みを算出する。
The thickness of the refractory is calculated from the peak frequency of the vibration response frequency spectrum.

【0020】(2)第2の方法 次のからまでの手順で行うことを特徴とする耐火物
の厚み測定方法。
(2) Second method A method for measuring the thickness of a refractory material, which is characterized in that the steps from the following steps are performed.

【0021】加振強度の異なる複数の振動を鉄皮に加
える。
A plurality of vibrations having different vibration intensities are applied to the iron shell.

【0022】前記の複数の加振強度に対応する振動
応答周波数スペクトルを測定する。
The vibration response frequency spectrum corresponding to the above-mentioned plurality of vibration intensities is measured.

【0023】前記の加振強度毎の振動応答周波数ス
ペクトルの値について差分処理を行う。
Difference processing is performed on the values of the vibration response frequency spectrum for each of the vibration intensities.

【0024】前記の差分処理された振動応答周波数
スペクトルのピーク周波数から耐火物の厚みを算出す
る。
The thickness of the refractory is calculated from the peak frequency of the vibration response frequency spectrum subjected to the difference processing.

【0025】(3)第3の方法 次のからまでの手順で行うことを特徴とする耐火物
の厚み測定方法。
(3) Third Method A method for measuring the thickness of a refractory material, which is performed by the following steps.

【0026】振動を鉄皮に加える。Vibration is applied to the iron skin.

【0027】前記の鉄皮に加えた振動およびそれに
対する振動応答の各々から所定の周波数を除去した加振
周波数スペクトルおよび振動応答周波数スペクトルを測
定する。
The vibration frequency spectrum and the vibration response frequency spectrum in which predetermined frequencies are removed from the vibration applied to the iron shell and the vibration response thereto are measured.

【0028】前記の振動応答周波数スペクトルと加
振周波数スペクトルとの比をとることで振動応答周波数
スペクトルを正規化する。
The vibration response frequency spectrum is normalized by taking the ratio between the vibration response frequency spectrum and the vibration frequency spectrum.

【0029】前記の正規化振動応答周波数スペクト
ルのピーク周波数から耐火物の厚みを算出する。
The thickness of the refractory is calculated from the peak frequency of the normalized vibration response frequency spectrum.

【0030】なお、前記において用いられる正規化振
動応答周波数スペクトルとしては、前記第2の方法で行
った、複数の加振振動による差分処理が施されたものを
用いることが望ましい。
As the normalized vibration response frequency spectrum used in the above, it is desirable to use one that has been subjected to the difference processing by a plurality of excited vibrations performed in the second method.

【0031】[0031]

【作用】図1は、本発明方法(第1の方法から第3の方
法)を実施するための装置の構成を模式的に示す図であ
る。なお、図中の破線囲み部は第3の方法を実施する際
に用いる。
FIG. 1 is a diagram schematically showing the structure of an apparatus for carrying out the method of the present invention (first to third methods). The part surrounded by the broken line in the figure is used when the third method is carried out.

【0032】1は炉(例えば高炉)の鉄皮、3は耐火レ
ンガ、2はその中間にあるスタンプ材である。本発明方
法では、この耐火レンガ3の厚みを測定するのである。
Reference numeral 1 is an iron skin of a furnace (for example, a blast furnace), 3 is a refractory brick, and 2 is a stamp material in the middle. In the method of the present invention, the thickness of the refractory brick 3 is measured.

【0033】まず、図1に基づき、本発明第1の方法か
ら第3の方法の実施に共通な手順および装置構成を説明
する。
First, based on FIG. 1, a procedure and an apparatus configuration common to the execution of the first method to the third method of the present invention will be described.

【0034】厚みを測定すべき耐火レンガ3の上の鉄皮
1の表面に振動を加える。この加振の方法としては、弾
性波を耐火レンガ内に再現性よく伝搬させるため、エア
ーハンマまたは電動ハンマからなるハンマ4での打撃に
て行う。ハンマ4の先端部には、測定に必要とする周波
数帯域(例えば、500〜3000Hz)の弾性波を発
生させるために、適当な硬質プラスチックの打撃チップ
5が取り付けてある。
Vibration is applied to the surface of the iron shell 1 on the refractory brick 3 whose thickness is to be measured. As a method of this vibration, in order to propagate the elastic wave in the refractory brick with good reproducibility, it is performed by hitting with a hammer 4 composed of an air hammer or an electric hammer. An appropriate hard plastic impact tip 5 is attached to the tip of the hammer 4 in order to generate an elastic wave in a frequency band (for example, 500 to 3000 Hz) required for measurement.

【0035】また、前記打撃チップ5の後部には、打撃
強度計6が取り付けてあり、ハンマ4による鉄皮への打
撃強度をモニターしている。このハンマ打撃時の鉄皮
1、スタンプ材2および耐火レンガ3の振動応答は、鉄
皮表面にとりつけられた振動センサ7により採取され
る。振動センサ7としては、加速度計を用いているが、
その外に変位計等の振動を測定するセンサも使用でき
る。振動センサ7により採取された振動応答信号は、ア
ンプ8aで所定の倍率で増幅したのち、フィルタ9aを
介して周波数解析装置10に入力され、振動応答周波数
スペクトルy(f)が算出される。
A striking strength meter 6 is attached to the rear of the striking tip 5 to monitor the striking strength of the hammer 4 on the iron skin. The vibration response of the iron skin 1, the stamp material 2 and the refractory brick 3 at the time of hammering is collected by the vibration sensor 7 attached to the surface of the iron skin. An accelerometer is used as the vibration sensor 7,
In addition, a sensor such as a displacement gauge that measures vibration can be used. The vibration response signal collected by the vibration sensor 7 is amplified by the amplifier 8a by a predetermined magnification and then input to the frequency analysis device 10 via the filter 9a to calculate the vibration response frequency spectrum y (f).

【0036】算出された振動応答周波数スペクトルはメ
モリ12の所定の位置に記憶されたのち、信号処理器1
1で後述の演算処理に供される。
The calculated vibration response frequency spectrum is stored in a predetermined position of the memory 12 and then stored in the signal processor 1.
1 is used for the arithmetic processing described later.

【0037】なお、図1の実施例では、周波数解析装置
10としてA/D変換器とA/D変換された振動応答信
号をフーリエ変換して周波数スペクトルを算出するフー
リエ変換部とを備えた装置を用いた。その外、周波数解
析装置10として、市販されているFFTアナライザー
(内蔵プログラムを変更することで解析する周波数帯域
を可変とすることができるもの)を用いることも可能で
ある。また、A/D変換器とA/D変換された信号をコ
ンピュータ内に取り込みソフトウェアにて周波数スペク
トルを算出する装置であってもよい。更に帯域制限を施
された振動信号をヘテロダイン検波器等を用いてアナロ
グ信号のまま周波数解析するアナログ周波数解析装置を
用いてもよい。
In the embodiment shown in FIG. 1, the frequency analysis apparatus 10 is provided with an A / D converter and a Fourier transform unit for Fourier transforming the vibration response signal that has been A / D converted to calculate a frequency spectrum. Was used. In addition, it is also possible to use a commercially available FFT analyzer (which can change the frequency band to be analyzed by changing a built-in program) as the frequency analysis device 10. Further, it may be an A / D converter and a device that takes in the A / D converted signal into a computer and calculates the frequency spectrum by software. Further, an analog frequency analysis device may be used which analyzes the frequency of the band-limited vibration signal as an analog signal using a heterodyne detector or the like.

【0038】以下、本発明の第1の方法から第3の方法
まで、その原理と具体的な実施の態様を、同じく図1に
基づき説明する。
The principle and specific embodiments of the first to third methods of the present invention will be described below with reference to FIG.

【0039】〔第1の方法〕鉄皮もしくは鉄皮とスタン
プ材(以下、表皮材と称す)の振動応答信号は、500
〜700Hz程度の周波数帯域に顕著に出現する。この
方法は、前記周波数帯域での振動応答信号をあらかじめ
調査しておき、前述のフィルタ9aにバンドパスフィル
タを用いることにより、この周波数帯域の信号を除去し
耐火レンガのみの振動応答信号を透過させる実施形態で
ある。この方法は耐火レンガの振動応答周波数スペクト
ルの共振ピークが明確であり、かつ表皮材の振動応答周
波数スペクトルの共振ピークと充分離れた位置に出現す
る場合に有効である。
[First Method] The vibration response signal of the iron skin or the iron skin and the stamp material (hereinafter referred to as the skin material) is 500.
It remarkably appears in a frequency band of about 700 Hz. In this method, a vibration response signal in the frequency band is investigated in advance, and a band pass filter is used as the filter 9a to remove the signal in this frequency band and transmit the vibration response signal of only refractory bricks. It is an embodiment. This method is effective when the resonance peak of the vibration response frequency spectrum of the refractory brick is clear and appears at a position sufficiently separated from the resonance peak of the vibration response frequency spectrum of the skin material.

【0040】まず、鉄皮1の表面に耐火レンガの厚み測
定に必要な強さと周波数帯域を持つ加振力をハンマ4の
打撃により加える。この打撃時の振動応答を振動センサ
7で採取し、アンプ8aで増幅した後、前記バンドパス
フィルタ9aにおいて振動応答信号から前述の鉄皮材の
振動応答信号および高炉操業時に発生する機械的ノイズ
および電気的ノイズを除去する。この帯域制限を施した
振動応答信号を周波数解析装置10に入力し、振動応答
周波数スペクトルy(f)を算出する。
First, a vibrating force having a strength and a frequency band necessary for measuring the thickness of the refractory brick is applied to the surface of the iron shell 1 by hitting the hammer 4. The vibration response at the time of impact is sampled by the vibration sensor 7 and amplified by the amplifier 8a, and then the bandpass filter 9a uses the vibration response signal to detect the vibration response signal of the above-mentioned iron-clad material and mechanical noise generated during blast furnace operation. Remove electrical noise. The vibration response signal subjected to the band limitation is input to the frequency analysis device 10 to calculate the vibration response frequency spectrum y (f).

【0041】次いで、信号処理器11にて前記振動応答
周波数スペクトルy(f)のピークを与える周波数fp
を用いてレンガ厚みdを次の(1)式により算出する。
Next, in the signal processor 11, the frequency fp giving the peak of the vibration response frequency spectrum y (f).
The brick thickness d is calculated by using the following equation (1).

【0042】 d=(n・v)/(2・fp )−dm −ds ・・・・(1) ここで、dm :鉄皮厚み、 ds :スタンプ材厚み、
n:整数、v:鉄皮、スタンプ材およびレンガ内の弾性
波伝搬速度関数 以上により、第1の方法は下記の効果を発揮する。
D = (n · v) / (2 · fp) −dm −ds (1) where dm is the thickness of the iron shell, ds is the thickness of the stamp material,
n: integer, v: iron wave, stamp material and elastic wave propagation velocity function in brick As described above, the first method exhibits the following effects.

【0043】(1)エアーハンマ等を用いて鉄皮表面を
打撃することで、必要な強度および周波数範囲(例え
ば、500〜3000Hz)の弾性波を耐火レンガ内に
再現性良く伝搬できる。
(1) By hitting the surface of the iron skin with an air hammer or the like, an elastic wave having a required strength and frequency range (for example, 500 to 3000 Hz) can be propagated in the refractory brick with good reproducibility.

【0044】(2)周波数軸上での振動信号のピークを
与える周波数を用いてレンガの厚み測定をおこなうこと
で、低周波弾性波(周波数:500〜3000Hz)を
耐火レンガ内に伝搬させた際の測定精度低下を抑制す
る。
(2) When a low-frequency elastic wave (frequency: 500 to 3000 Hz) is propagated in a refractory brick by measuring the thickness of the brick using the frequency that gives the peak of the vibration signal on the frequency axis. It suppresses the decrease of measurement accuracy.

【0045】(3)振動応答信号から測定の妨げとなる
鉄皮材の振動応答信号および高炉操業時に発生する機械
的ノイズおよび電気的ノイズを除去し、耐火レンガのみ
の振動応答信号を検出するので測定精度が向上する。
(3) Since the vibration response signal of the iron crust and the mechanical noise and the electrical noise generated during the operation of the blast furnace are removed from the vibration response signal, the vibration response signal of only refractory bricks is detected. Measurement accuracy is improved.

【0046】〔第2の方法〕この方法は、第1の方法に
於ける耐火レンガのみの振動応答の抽出に際し、複数強
度の加振と、それらから得られるそれぞれの振動応答周
波数スペクトル間の差分処理で行うものである。この方
法は、振動応答周波数スペクトルにおいて、表皮材と耐
火レンガの共振ピークが比較的近い位置に出現する場
合、比較的耐火レンガの測定領域が広い場合ならびに表
皮材の共振ピークが測定位置によって変化する場合に有
効である。
[Second Method] In the method, when extracting the vibration response of only the refractory bricks in the first method, the vibrations of a plurality of intensities and the differences between the respective vibration response frequency spectra obtained from them are extracted. This is done by processing. This method, in the vibration response frequency spectrum, when the resonance peak of the skin material and refractory bricks appear at positions relatively close to each other, when the measurement area of the refractory brick is relatively wide, and the resonance peak of the skin material changes depending on the measurement position. It is effective in some cases.

【0047】以下、第1の方法と同様に、図1の装置構
成を用い、複数強度の加振として強・弱2種類の強度で
鉄皮表面を打撃した例に基づき説明する。 なお、打撃
強度・強とは、表皮材を介して耐火レンガを十分に振動
させられる程度の強度(例えば、2000Kgf程
度)、打撃強度・弱とは、表皮材のみを振動させられる
程度の強度(200Kgf程度)を意味する。
Similar to the first method, the following description will be given based on an example in which the apparatus structure shown in FIG. 1 is used to strike the surface of the steel skin with two kinds of strengths, strong and weak, as vibrations of multiple strengths. The striking strength / strong is a strength enough to vibrate the refractory brick through the skin material (for example, about 2000 Kgf), and the striking strength / weak is a strength to vibrate only the skin material ( (About 200 Kgf).

【0048】また、フィルタ9aとしては、高炉操業時
に発生する機械的ノイズおよび電気的ノイズを除去ため
の大まかな周波数帯域制限を行うもの(例えば、ローパ
スフィルタ)を用いる。この帯域制限を施しておくと、
周波数解析装置10で周波数スペクトルを算出する際の
演算時間が短縮でき、またA/D変換時のエリアスノイ
ズを抑制できるというメリットも有している。
As the filter 9a, a filter (for example, a low-pass filter) that roughly limits the frequency band for removing mechanical noise and electrical noise generated during blast furnace operation is used. If you apply this band limitation,
It also has the merit that the calculation time when the frequency spectrum is calculated by the frequency analysis device 10 can be shortened and the alias noise at the time of A / D conversion can be suppressed.

【0049】まず、第1の方法と同様にして、強・弱2
種類の打撃強度で鉄皮表面に打撃を加えた時に得られる
それぞれの振動応答周波数スペクトルys (f),yw
(f)を算出し、メモリ12に記憶させる。次いで、信
号処理器11において、下記の(2)式により差分処理
を行い差分振動応答周波数スペクトルy2 (f) y2 (f)=ys (f)−c・yw (f) ・・・・(2) ここで、c:定数 差分処理結果の差分振動応答周波数スペクトルy2
(f)のピークを与える周波数fp を用いてレンガ厚み
dを前述の(1)式で算出する。 以上により、この方
法を適用すると、第1の方法に対し、更に次の効果が加
わる。
First, similarly to the first method, strong / weak 2
Vibration response frequency spectra ys (f), yw obtained when the surface of the steel skin is hit with various kinds of hit strength
(F) is calculated and stored in the memory 12. Next, in the signal processor 11, differential processing is performed by the following equation (2), and the differential vibration response frequency spectrum y2 (f) y2 (f) = ys (f) -c.yw (f). ) Here, c: constant The difference vibration response frequency spectrum y2 of the difference processing result.
The brick thickness d is calculated by the above equation (1) using the frequency fp giving the peak of (f). As described above, when this method is applied, the following effects are further added to the first method.

【0050】強・弱2種の打撃強度により得られた振動
応答の内、ys (f)には、表皮材および耐火レンガの
振動応答が含まれているが、yw (f)には、表皮材の
みの振動応答が含まれている。このため、ys (f)と
yw (f)との差分処理を施すことで、表皮材の振動応
答を除去し、耐火レンガの振動応答を精度良く検出する
ことが可能となり、測定精度が向上する。
Among the vibration responses obtained by two types of impact strength, strong and weak, ys (f) includes the vibration response of the skin material and refractory brick, while yw (f) includes the skin response. The vibration response of only the material is included. Therefore, by performing the difference processing between ys (f) and yw (f), the vibration response of the skin material can be removed and the vibration response of the refractory brick can be detected with high accuracy, which improves the measurement accuracy. .

【0051】〔第3の方法〕この方法は、加振状態(打
撃強度、打撃時に発生する弾性波の周波数分布等)の再
現性のばらつきの影響を抑えるため、前述の第1の方法
および第2の方法の鉄皮表面にとりつけた振動センサで
採取された振動応答周波数スペクトルを前記振動応答周
波数スペクトルと、ハンマにとりつけた打撃強度計にて
得られた加振信号周波数スペクトルとの比をとることで
正規化したものである。
[Third Method] In this method, in order to suppress the influence of variations in the reproducibility of the vibration state (striking strength, frequency distribution of elastic waves generated at the time of striking, etc.), the above-mentioned first method and The ratio of the vibration response frequency spectrum collected by the vibration sensor attached to the surface of the iron skin of the method 2 to the vibration signal frequency spectrum obtained by the impact strength meter attached to the hammer is calculated. It is normalized by that.

【0052】まず、振動応答周波数スペクトルy(f)
を第1の方法および第2の方法と同様に算出する。同時
に、振動センサ7により採取された振動応答信号と同様
にハンマ4に取りつけられた打撃強度計6により採取さ
れた加振信号を、アンプ8bおよびフィルタ9b(図1
の破線囲み部)を介して周波数解析装置10に入力す
る。ここで、前記フィルタ9bには、第1の方法および
第2の方法で用いたバンドパスフィルタ9aと同じ周波
数帯域を持つバンドパスフィルタを用いる。この帯域制
限された加振信号から周波数解析装置10において加振
周波数スペクトルx(f)を算出する。前述の振動応答
周波数スペクトルy(f)とこの加振周波数スペクトル
x(f)とは各々所定のメモリ12上に記憶された後、
その比を信号処理器11で算出することで振動応答周波
数スペクトルの正規化を行う。この正規化振動応答周波
数スペクトルh(f)の算出方法としては、下記の
(3)式および(4)式等が挙げられるが、(4)式を
用いることが望ましい。
First, the vibration response frequency spectrum y (f)
Is calculated in the same manner as in the first method and the second method. At the same time, similarly to the vibration response signal sampled by the vibration sensor 7, the vibration signal sampled by the percussion intensity meter 6 attached to the hammer 4 is converted into an amplifier 8b and a filter 9b (see FIG. 1).
Input to the frequency analysis device 10 via the broken line encircled part). Here, as the filter 9b, a bandpass filter having the same frequency band as the bandpass filter 9a used in the first method and the second method is used. The excitation frequency spectrum x (f) is calculated in the frequency analysis device 10 from the excitation signal whose band is limited. After the vibration response frequency spectrum y (f) and the vibration frequency spectrum x (f) are stored in the predetermined memory 12, respectively,
The vibration response frequency spectrum is normalized by calculating the ratio by the signal processor 11. Examples of the method for calculating the normalized vibration response frequency spectrum h (f) include the following equations (3) and (4), but it is preferable to use the equation (4).

【0053】 h(f)=y(f)/x(f) ・・・・(3) h(f)={x(f)' ・y(f)}/{|x(f)|2 +1/c}・・(4) ここで、f :周波数 (KHz) x(f):加振周波数スペクトル、 y(f):振動応答周波数スペクトル、 c:定数、 x(f)' :x(f)の共役複素数 なお、この方法を第2の方法に適用する場合には、第2
の方法と同様にして、上述の複数の加振に対応する正規
化振動応答周波数スペクトルhs (f),hw(f)を
算出し、下記(5)式によりh2 (f)を算出する。
H (f) = y (f) / x (f) ... (3) h (f) = {x (f) '. Y (f)} / {| x (f) | 2 + / C} ... (4) where f: frequency (KHz) x (f): excitation frequency spectrum, y (f): vibration response frequency spectrum, c: constant, x (f) ': x ( f) Conjugate complex number When the method is applied to the second method, the second
In the same manner as in the above method, the normalized vibration response frequency spectra hs (f) and hw (f) corresponding to the above-described plural vibrations are calculated, and h2 (f) is calculated by the following equation (5).

【0054】 h2 (f)=hs (f)−c・hw (f) ・・・・(5) ここで、c:定数 次いで、第1の方法および第2の方法と同様にして、信
号処理器11にて前記正規化振動応答スペクトルh
(f)またはh2 (f)のピークを与える周波数fp を
用いてレンガ厚みdを前記(1)式により算出する。
H2 (f) = hs (f) −c · hw (f) ··· (5) where c: constant Then, signal processing is performed in the same manner as in the first method and the second method. In the instrument 11, the normalized vibration response spectrum h
The brick thickness d is calculated by the equation (1) using the frequency fp that gives the peak of (f) or h2 (f).

【0055】以上により、この方法を適用すると第1の
方法および第2の方法に対し、更に、次の効果が加わ
る。
As described above, when this method is applied, the following effects are further added to the first method and the second method.

【0056】振動応答周波数スペクトルを加振信号周波
数スペクトルで正規化することで加振状態(打撃強度、
打撃時に発生する弾性波の周波数分布等)の変動に起因
する測定のばらつきを抑え、測定再現性が向上する。
By normalizing the vibration response frequency spectrum with the vibration signal frequency spectrum, the vibration state (striking intensity,
Variations in measurement due to fluctuations in the frequency distribution of elastic waves generated at the time of impact are suppressed, and measurement reproducibility is improved.

【0057】なお、上述の第1〜第3のいずれの方法に
おいても、測定場所近傍でスタンプ材が鉄皮もしくは耐
火レンガと剥離したり、ずり落ちたりしている場合に
は、鉄皮と耐火レンガとの間に空隙が生じるため、鉄皮
表面を打撃しても耐火レンガ内に弾性波を伝えることが
極めて困難になる。この場合には、振動応答周波数スペ
クトルy(f)またはh(f)上での耐火レンガの共振
ピーク周波数fp の特定が不可能となる。この際は、測
定場所近傍でモルタル材を圧入し、鉄皮と耐火レンガと
の間の空隙をなくす前処理を実施することで、上記の方
法にてレンガ厚みが測定可能となる。
In any of the above first to third methods, when the stamp material is peeled off from the iron skin or the refractory brick or is slipped off in the vicinity of the measurement location, the iron skin and the fireproof material are used. Since an air gap is created between the brick and the brick, it becomes extremely difficult to transmit the elastic wave into the refractory brick even if the surface of the iron skin is hit. In this case, it becomes impossible to specify the resonance peak frequency fp of the refractory brick on the vibration response frequency spectrum y (f) or h (f). At this time, the brick thickness can be measured by the above method by press-fitting the mortar material in the vicinity of the measurement location and performing pretreatment for eliminating the gap between the iron shell and the refractory brick.

【0058】更に、鉄皮が開口されていたりして、耐火
物に直接加振力を与えることが可能な場合には、ハンマ
により耐火物表面を打撃した際に得られる耐火物の振動
を耐火物表面にとりつけた振動センサを用いて測定し、
本発明方法により耐火物の厚みを測定することができる
ことはいうまでもない。
Further, when the refractory can be directly vibrated due to the opening of the iron shell, vibration of the refractory obtained when the surface of the refractory is hit with a hammer is refractory. Measure with a vibration sensor attached to the surface of the object,
It goes without saying that the thickness of the refractory can be measured by the method of the present invention.

【0059】[0059]

【実施例】本発明の第2および第3の方法を図1に示す
装置構成で実施した例の測定経過を図2に示す。図2は
打撃強度・強(約2000Kgf)および打撃強度・弱
(約200Kgf)にて鉄皮表面を打撃した際に得られ
た正規化振動応答周波数スペクトルhs (f)〔図2
(a)〕,hw (f)〔図2(b)〕および差分処理結
果h2 (f)〔図2(c)〕の一例を示す。この図2に
おいて、図2(a)および図2(b)では、表面材等の
共振ピークが支配的であるが、差分処理を行った結果
の図2(c)では、前記共振ピークが除去され耐火レ
ンガの共振ピークが顕在化してくる過程がよく判る。
この差分処理結果h2 (f)の共振ピークの周波数f
p から(1)式を用いて得られたレンガ厚みは、約65
0mmであった。
FIG. 2 shows the measurement process of an example in which the second and third methods of the present invention were carried out with the apparatus configuration shown in FIG. FIG. 2 is a normalized vibration response frequency spectrum hs (f) obtained when the surface of the iron skin is hit with impact strength / strong (about 2000 Kgf) and impact strength / weak (about 200 Kgf) [FIG. 2]
(A)], hw (f) [FIG. 2 (b)] and the difference processing result h2 (f) [FIG. 2 (c)]. In FIG. 2, the resonance peaks of the surface material and the like are dominant in FIGS. 2A and 2B, but the resonance peaks are removed in FIG. 2C as a result of the difference processing. The process by which the resonance peak of refractory bricks becomes apparent is well understood.
The frequency f of the resonance peak of this difference processing result h2 (f)
The brick thickness obtained from p using equation (1) is about 65.
It was 0 mm.

【0060】一方、図4は前記測定場所でのコアサンプ
ルによる測定結果を模式的に表したものである。図4に
おいて、凝固物は耐火レンガのくずと炉の内容物とが混
ざりあって固まった部位を、脆化部は耐火レンガが熱応
力等によりぼろぼろに劣化した部位を(約130m
m)、健全部は測定目的とするまだ耐火機能を有する耐
火レンガの部位を示す。図4において、測定場所での健
全部のレンガ厚みは約630mmであり、本発明方法によ
り精度良く耐火レンガの厚みが測定可能であることを確
認した。
On the other hand, FIG. 4 schematically shows the measurement result of the core sample at the measurement place. In FIG. 4, the solidified material is a portion where refractory brick waste and the contents of the furnace are mixed and solidified, and the embrittlement portion is a portion where the refractory brick is deteriorated into pieces due to thermal stress (about 130 m).
m), the sound part indicates the part of the refractory brick which still has the refractory function for the purpose of measurement. In FIG. 4, the brick thickness of the sound part at the measurement location was about 630 mm, and it was confirmed that the thickness of the refractory brick could be accurately measured by the method of the present invention.

【0061】また、図3に同じく第1および第3の方法
により行った他の実施例の測定過程を示す。
Further, FIG. 3 shows a measuring process of another embodiment similarly performed by the first and third methods.

【0062】図3は打撃強度・強(約2000Kgf)
および打撃強度・弱(約200Kgf)にて鉄皮表面を
打撃した際に得られた振動応答周波数スペクトルys
(f)〔図3(a)〕,yw (f)〔図3(b)〕およ
び差分処理結果y2 (f)〔図3(c)〕の一例を示
す。この図3から、図3(a)および図3(b)では、
表面材等の共振ピークが支配的であるが、差分処理を
行った結果の図3(c)では、前記共振ピークが除去
され耐火レンガの共振ピークが顕在化してくる過程が
よく判る。この差分処理結果y2 (f)の共振ピーク
の周波数fp から(1)式を用いて得られたレンガ厚み
は、約880mmであった。一方、この測定場所でのコ
アーサンプルによる耐火レンガ厚みの測定結果は約90
0mmであり、両者はよく一致している。
FIG. 3 shows the impact strength and strength (about 2000 Kgf).
And vibration response frequency spectrum ys obtained when the surface of the iron skin was hit with a weak impact strength / weakness (about 200 Kgf)
An example of (f) [FIG. 3 (a)], yw (f) [FIG. 3 (b)] and difference processing result y2 (f) [FIG. 3 (c)] is shown. From this FIG. 3, in FIG. 3 (a) and FIG. 3 (b),
Although the resonance peaks of the surface material and the like are dominant, the process in which the resonance peaks are removed and the resonance peaks of refractory bricks become apparent are well understood in FIG. 3C as a result of the difference processing. The brick thickness obtained by using the equation (1) from the frequency fp of the resonance peak of the difference processing result y2 (f) was about 880 mm. On the other hand, the measurement result of the refractory brick thickness by the core sample at this measurement location is about 90.
It is 0 mm, and both are in good agreement.

【0063】[0063]

【発明の効果】上述のように、本発明方法によれば弾性
波を用いた厚み測定において、次の効果が発揮され、優
れた耐火物の厚み測定精度を実現することが可能となっ
た。
As described above, according to the method of the present invention, the following effects are exhibited in the thickness measurement using the elastic wave, and it becomes possible to realize the excellent thickness measurement accuracy of the refractory material.

【0064】(1)共振周波数を用いてレンガの厚み測
定をおこなうことで、低周波弾性波(周波数帯域:50
0〜3000Hz)を耐火レンガ内に伝搬させた際にお
こる測定精度の低下を抑制する。
(1) By measuring the thickness of the brick using the resonance frequency, the low frequency elastic wave (frequency band: 50
(0 to 3000 Hz) is suppressed in the measurement accuracy when it is propagated in the refractory brick.

【0065】(2)表皮材等の測定の妨げになる振動応
答を取り除き、耐火レンガのみの振動応答を検出するこ
とにより測定精度が向上する。
(2) The measurement accuracy is improved by removing the vibration response of the skin material and the like which hinders the measurement and detecting the vibration response of only the refractory bricks.

【0066】(3)振動応答周波数スペクトルを加振周
波数スペクトルで正規化することで加振状態の影響を抑
制し、測定値の再現性および精度を向上させる。
(3) By normalizing the vibration response frequency spectrum with the vibration frequency spectrum, the influence of the vibration state is suppressed, and the reproducibility and accuracy of the measured values are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施した一例の装置構成図であ
る。
FIG. 1 is a block diagram of an example of an apparatus that implements a method of the present invention.

【図2】強・弱2種類の打撃強度にて鉄皮表面を打撃し
た際に得られた正規化振動応答周波数スペクトルhs
(f),hw (f)およびその差分処理結果h2 (f)
の一例を示すスペクトル分布図である。
[Fig. 2] Normalized vibration response frequency spectrum hs obtained when striking the surface of a steel skin with two types of striking strength, strong and weak
(F), hw (f) and the difference processing result h2 (f)
It is a spectrum distribution diagram which shows an example.

【図3】強・弱2種類の打撃強度にて鉄皮表面を打撃し
た際に得られた振動応答周波数スペクトルys (f)と
yw (f)とその差分処理結果h2 (f)の一例を示す
スペクトル分布図である。
FIG. 3 is an example of vibration response frequency spectra ys (f) and yw (f) obtained when the surface of the steel skin is hit with two types of impact strength, strong and weak, and the difference processing result h2 (f). It is a spectrum distribution diagram shown.

【図4】コアサンプルによる計測結果の模式図である。FIG. 4 is a schematic diagram of a measurement result using a core sample.

【符号の説明】[Explanation of symbols]

1 鉄皮 2 スタンプ材 3 レンガ 4 ハンマ 5 打撃チップ 6 打撃強度計 7 振動センサ 9 フィルタ(バンドパスフィルタまたはローパスフ
ィルタ) 10 周波数解析装置 11 信号処理器
1 Iron Skin 2 Stamp Material 3 Brick 4 Hammer 5 Hitting Tip 6 Hitting Strength Meter 7 Vibration Sensor 9 Filter (Bandpass Filter or Lowpass Filter) 10 Frequency Analysis Device 11 Signal Processor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄皮内面に張りめぐらされた耐火物の厚み
を弾性波を伝搬させた際に得られる共振周波数成分から
測定する方法であって、振動を鉄皮に加えたのち、前記
振動に対する振動応答から所定の周波数を除去した振動
応答周波数スペクトルを測定し、前記振動応答周波数ス
ペクトルのピーク周波数から耐火物の厚みを算出するこ
とを特徴とする弾性波による耐火物の厚み測定方法。
1. A method for measuring the thickness of a refractory material stretched on the inner surface of an iron shell from a resonance frequency component obtained when an elastic wave is propagated, wherein vibration is applied to the iron shell and then the vibration is applied. A method for measuring the thickness of a refractory by elastic waves, characterized by measuring a vibration response frequency spectrum in which a predetermined frequency is removed from the vibration response to, and calculating the thickness of the refractory from the peak frequency of the vibration response frequency spectrum.
【請求項2】加振強度の異なる複数の振動を鉄皮に加え
たのち、前記複数の加振強度に対応する振動応答周波数
スペクトルを測定し、前記加振強度毎の振動応答周波数
スペクトルの値について差分処理を行い、前記差分処理
で得られる差分周波数スペクトルのピーク周波数から耐
火物の厚みを算出することを特徴とする請求項1に記載
の弾性波による耐火物の厚み測定方法。
2. A vibration response frequency spectrum corresponding to each of the plurality of vibration intensities is measured after a plurality of vibrations having different vibration intensities are applied to the iron skin, and a value of the vibration response frequency spectrum for each of the vibration intensity is measured. The refractory thickness measurement method using elastic waves according to claim 1, wherein the refractory thickness is calculated from the peak frequency of the difference frequency spectrum obtained by the difference process.
【請求項3】振動応答周波数スペクトルを鉄皮に加えた
加振周波数スペクトルで正規化することを特徴とする請
求項1または請求項2に記載の弾性波による耐火物の厚
み測定方法。
3. The method for measuring the thickness of a refractory by elastic waves according to claim 1 or 2, wherein the vibration response frequency spectrum is normalized by an excitation frequency spectrum added to the iron skin.
JP7027791A 1995-02-16 1995-02-16 Refractory thickness measurement method using elastic waves Expired - Fee Related JP3039308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7027791A JP3039308B2 (en) 1995-02-16 1995-02-16 Refractory thickness measurement method using elastic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7027791A JP3039308B2 (en) 1995-02-16 1995-02-16 Refractory thickness measurement method using elastic waves

Publications (2)

Publication Number Publication Date
JPH08219751A true JPH08219751A (en) 1996-08-30
JP3039308B2 JP3039308B2 (en) 2000-05-08

Family

ID=12230807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7027791A Expired - Fee Related JP3039308B2 (en) 1995-02-16 1995-02-16 Refractory thickness measurement method using elastic waves

Country Status (1)

Country Link
JP (1) JP3039308B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057122A1 (en) * 1997-06-12 1998-12-17 Thermoteknix Systems Ltd Monitoring kiln linings
EP1846728A1 (en) * 2005-01-17 2007-10-24 P-Response IP Pty Ltd Non-destructive testing of the lining of a process vessel
JP2009139075A (en) * 2007-01-29 2009-06-25 Mhi Environment Engineering Co Ltd Furnace bottom refractory erosion detection method and its device for melting furnace, and furnace bottom refractory erosion monitoring method using the detection method
JP2009257945A (en) * 2008-04-17 2009-11-05 Jfe Steel Corp Thin steel pipe thickness measurement method
JP2012013522A (en) * 2010-06-30 2012-01-19 Korea Atomic Energy Research Inst Method and apparatus for low frequency vibration excitation using ultrasonic wave
WO2012044003A3 (en) * 2010-09-29 2012-06-21 (주)엘지하우시스 Vacuum thermal-insulation material, and a device and method for assessing the degree of vacuum in the vacuum insulation material by using the frequency response method
KR101229622B1 (en) * 2010-08-30 2013-02-04 (주)엘지하우시스 Apparatus and method for evaluating internal vacuum level of vacuum insulation panel using frequency response method
KR101282726B1 (en) * 2012-02-09 2013-07-05 박철 Method of monitering vacuum of vacuum insulation material
WO2021105758A1 (en) * 2019-11-29 2021-06-03 Arcelormittal System and method for estimating both thickness and wear state of refractory material of a metallurgical furnace
JP2022059579A (en) * 2020-10-01 2022-04-13 Jfeスチール株式会社 Refractory remaining state estimation method, refractory remaining state estimation unit and metal smelting furnace

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057122A1 (en) * 1997-06-12 1998-12-17 Thermoteknix Systems Ltd Monitoring kiln linings
EP1846728A1 (en) * 2005-01-17 2007-10-24 P-Response IP Pty Ltd Non-destructive testing of the lining of a process vessel
EP1846728A4 (en) * 2005-01-17 2012-01-04 Response Ip Pty Ltd P Non-destructive testing of the lining of a process vessel
JP2009139075A (en) * 2007-01-29 2009-06-25 Mhi Environment Engineering Co Ltd Furnace bottom refractory erosion detection method and its device for melting furnace, and furnace bottom refractory erosion monitoring method using the detection method
JP2009257945A (en) * 2008-04-17 2009-11-05 Jfe Steel Corp Thin steel pipe thickness measurement method
JP2012013522A (en) * 2010-06-30 2012-01-19 Korea Atomic Energy Research Inst Method and apparatus for low frequency vibration excitation using ultrasonic wave
KR101229622B1 (en) * 2010-08-30 2013-02-04 (주)엘지하우시스 Apparatus and method for evaluating internal vacuum level of vacuum insulation panel using frequency response method
WO2012044003A3 (en) * 2010-09-29 2012-06-21 (주)엘지하우시스 Vacuum thermal-insulation material, and a device and method for assessing the degree of vacuum in the vacuum insulation material by using the frequency response method
US9194782B2 (en) 2010-09-29 2015-11-24 Lg Hausys, Ltd. Vacuum thermal-insulation material, and a device and method for assessing the degree of vacuum in the vacuum insulation material by using the frequency response method
KR101282726B1 (en) * 2012-02-09 2013-07-05 박철 Method of monitering vacuum of vacuum insulation material
WO2021105758A1 (en) * 2019-11-29 2021-06-03 Arcelormittal System and method for estimating both thickness and wear state of refractory material of a metallurgical furnace
WO2021105940A1 (en) * 2019-11-29 2021-06-03 Arcelormittal System and method for estimating both thickness and wear state of refractory material of a metallurgical furnace
CN114514406A (en) * 2019-11-29 2022-05-17 安赛乐米塔尔公司 System and method for estimating both the thickness and the state of wear of refractory material in a metallurgical furnace
JP2022059579A (en) * 2020-10-01 2022-04-13 Jfeスチール株式会社 Refractory remaining state estimation method, refractory remaining state estimation unit and metal smelting furnace

Also Published As

Publication number Publication date
JP3039308B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
JPWO2002040959A1 (en) Acoustic diagnosis / measurement device using pulsed electromagnetic force and their diagnosis / measurement method
JP3039308B2 (en) Refractory thickness measurement method using elastic waves
Kietov et al. Study of dynamic crack formation in nodular cast iron using the acoustic emission technique
Sun et al. Acoustic emission sound source localization for crack in the pipeline
JP5666334B2 (en) Quality diagnosis method for concrete structures
JP6130778B2 (en) Method and apparatus for inspecting interface of composite structure
JP2004325224A (en) Diagnostic method of corrosion thinning of anchor bolt, and device used therefor
JP4553458B2 (en) Tunnel diagnostic apparatus and method
JP3895573B2 (en) Elastic wave propagation velocity measurement calculation method and nondestructive compressive strength test apparatus using the method
JP2000028582A (en) Surface layer thickness measuring instrument
JP4577957B2 (en) Tunnel diagnostic equipment
JP3922459B2 (en) Separation and cavity detection method and apparatus by percussion method
JP3510835B2 (en) Deterioration measurement device for concrete structures.
JP3514690B2 (en) Evaluation method of grout filling condition of concrete structure
JPH0196584A (en) Method for surveying position of piping buried under ground
US6386037B1 (en) Void detector for buried pipelines and conduits using acoustic resonance
JP2003329656A (en) Degree of adhesion diagnosis method and device for concrete-sprayed slope
JP3956486B2 (en) Method and apparatus for detecting thermal spray coating peeling on structure surface
JPH08220074A (en) Method and device for measuring crack depth of reinforced concrete structure
JP2001124744A (en) Inspection apparatus for concrete structure
JPS5827002A (en) Method for measuring thickness of refractory material
JP3070475B2 (en) Ultrasonic probe
JPH0682244A (en) Ultrasonic thickness measuring method for furnace wall
JP3977671B2 (en) Method and apparatus for measuring the depth of cracks in structures
US6497151B1 (en) Non-destructive testing method and apparatus to determine microstructure of ferrous metal objects

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080303

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090303

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100303

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110303

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130303

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20140303

LAPS Cancellation because of no payment of annual fees