JP3956486B2 - Method and apparatus for detecting thermal spray coating peeling on structure surface - Google Patents

Method and apparatus for detecting thermal spray coating peeling on structure surface Download PDF

Info

Publication number
JP3956486B2
JP3956486B2 JP17002598A JP17002598A JP3956486B2 JP 3956486 B2 JP3956486 B2 JP 3956486B2 JP 17002598 A JP17002598 A JP 17002598A JP 17002598 A JP17002598 A JP 17002598A JP 3956486 B2 JP3956486 B2 JP 3956486B2
Authority
JP
Japan
Prior art keywords
waveform
spray coating
thermal spray
peeling
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17002598A
Other languages
Japanese (ja)
Other versions
JP2000002691A (en
Inventor
宏明 畠中
敬弘 荒川
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP17002598A priority Critical patent/JP3956486B2/en
Publication of JP2000002691A publication Critical patent/JP2000002691A/en
Application granted granted Critical
Publication of JP3956486B2 publication Critical patent/JP3956486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はボイラ火炉壁等の構造物表面に形成されている溶射被膜の剥離を検出するための方法及び装置に関するものである。
【0002】
【従来の技術】
発電用ボイラの火炉壁は、耐摩耗性等を向上させるために、通常、金属による溶射被膜が表面に施工される。
【0003】
上記溶射被膜には、経年変化により剥離や割れ等の欠陥が発生するので、定期的に検査を行う必要がある。そのため、従来では、カラーチェック(浸色探傷検)や目視による検査が行われている。
【0004】
【発明が解決しようとする課題】
ところが、溶射被膜の割れはカラーチェックや目視により検出することはできるが、剥離の場合、表面欠陥ではないので、カラーチェックでは検出することはできず、大きな剥離ではその膨らみによってある程度は目視により検出できるものの、小さな剥離の検出は極めて困難である。
【0005】
そこで、本発明は、これまで目視でも困難であった溶射被膜の剥離を容易且つ確実に検出することができるような構造物表面の溶射被膜剥離検出方法及び装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するために、構造物の表面に形成されている溶射被膜の健全部上にAE装置の受信用探触子を置き、上記溶射被膜の検査個所の上に超音波発振器の送信用探触子を順次当接させて超音波発振器の作動で検査位置の溶射被膜を加振し、そのとき構造物を伝搬する振動を、上記溶射被膜の健全部上に配置した受信用探触子を介してAE装置で受信させてから表示器にその振動波形を表示させて、その波形の周波数をFFT演算し、FFT演算した後の波形のピーク周波数領域の位置から溶射被膜の剥離部と健全部とを区別して、剥離部を検出する構造物表面の溶射被膜剥離検出方法及び装置とする。
【0007】
溶射被膜が剥離している個所を加振すると、剥離していない健全部に比して母材まで振動が伝わりにくいので、受信した振動の周波数は高い周波数成分をより多くもっていることになる。したがって、ピーク周波数の位置から健全部と剥離部とを区別することができる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0009】
先ず、本発明の基本原理を説明すると、一般に、構造物(板)を伝搬する波動の固有周期は、板厚が薄いほど高い。したがって、溶射被膜が剥離していなければ母材を含めて振動し、剥離していれば母材まで伝わりにくくなり、その2つを比べると振動周波数に差が出てくる。
【0010】
図1は上記基本原理を基になした本発明の構造物表面の溶射被膜検出装置の実施の一形態を示すもので、ボイラ火炉壁の如き構造物1の表面に形成されている溶射被膜2の検査位置に送信用探触子3aを当接させるようにする超音波発振器(パルサー)3と、該超音波発振器3の作動で発生して伝搬される振動を溶射被膜2の健全部上に配置した受信用探触子4aを介して受けるようにしたAE装置4と、該AE装置4で受けた振動波形を表示するオシロスコープの如き表示器5と、該表示器5で表示された波形の周波数をFFT演算するスペクトルラムアナライザ又はパソコンの如き周波数解析装置6とからなる。なお、2aは溶射被膜2の剥離部を示す。又、7はプリアンプの如きアンプを示す。
【0011】
構造物1の表面に形成されている溶射被膜2の剥離部2aの有無を検出する場合には、AE装置4の受信用探触子4aを溶射被膜2の健全部上に置き、超音波発振器3の送信用探触子3aを、検査個所の上に順次当接させて行くようにする。なお、この場合、受信用探触子4aを置く位置が健全部かどうかは最初は判らないので、数個所の予備検査を行う必要がある。超音波発振器3の作動で溶射被膜2を加振すると、そのとき、構造物1中を伝搬した振動がAE装置4で受信されて表示器5にてその振動波形が表示される。次に、その波形の周波数が周波数解析装置6にてFFT演算される。かかるFFT演算した後の波形は、図2(イ)に示す如く、剥離部2aからのものである場合、図2(ロ)に示す如き健全部からのものである場合に比してピーク周波数領域が高周波数側にシフトしているので、健全部と剥離部2aとを区別することができる。
【0012】
このように、これまで、目視では困難であった剥離部2aの有無を周波数の高低で判別することができ、剥離部2aの検出を簡単に行うことができる。
【0013】
なお、上記実施の形態では、構造物表面への加振を超音波発振器3にて、又、振動受信をAE装置4で行うようにした場合を示したが、ハンマーで振動を与えて加速度計で受信するようにしてもよいこと、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ること勿論である。
【0014】
【実施例】
次に、擬似AE法による剥離検出を試験片を用いて行った結果について説明する。
【0015】
先ず、本発明者は、予備試験として、板厚の変化による板を伝わる波の周波数の特長をつかむために、SUS304鋼板を用い、板厚をそれぞれ5mm、3mm、2mm、1mm、0.6mm、0.1mmと変えたときの擬似AE波形を測定した。得られた波形は図3(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)に示す如くであった。次に、これらにFFTをかけたグラフを図4(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)に示す。これらから、図3(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)では板厚による差異は見られなかったが、周波数解析を行った後の図4(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)では、板厚が薄くなるにつれて、ピーク周波数領域が高周波数側にシフトしているということが確認された。
【0016】
次に、上記結果を踏まえて、板材に金属を溶射し、且つ人工的に剥離部を作った試験片を用いて擬似波形を測定した結果を図5(イ)(ロ)(ハ)及び図6(イ)(ロ)(ハ)に示す。この場合、受信用探触子は剥離部のない健全部に固定し、送信用探触子からの送信パルスは15MHz と500KHz との2種類を用いて、図5(イ)(ロ)及び図6(イ)(ロ)に示す如く、異なる2個所の健全部から送信したときと、図5(ハ)及び図6(ハ)に示す如く、剥離部から送信したときの結果を示すものである。次に、これら各波形をFFTにかけて周波数解析を行ったところ、図7(イ)(ロ)(ハ)及び図8(イ)(ロ)(ハ)に示す如き結果が得られた。図5(イ)(ロ)(ハ)及び図6(イ)(ロ)(ハ)と、図7(イ)(ロ)(ハ)及び図8(イ)(ロ)(ハ)との比較から、剥離部から送信した場合の振動数が高くなっていることがわかる。
【0017】
【発明の効果】
以上述べた如く、本発明によれば、構造物の表面に形成されている溶射被膜の健全部上にAE装置の受信用探触子を置き、上記溶射被膜の検査個所の上に超音波発振器の送信用探触子を順次当接させて超音波発振器の作動で検査位置の溶射被膜を加振し、そのとき構造物を伝搬する振動を、上記溶射被膜の健全部上に配置した受信用探触子を介してAE装置で受信させてから表示器にその振動波形を表示させて、その波形の周波数をFFT演算し、FFT演算した後の波形のピーク周波数領域の位置から溶射被膜の剥離部と健全部とを区別して、剥離部を検出する構造物表面の溶射被膜剥離検出方法と、構造物の表面に形成されている溶射被膜の検査個所の上に超音波発振器の送信用探触子を当接させるようにして、該超音波発振器の作動で溶射被膜を加振するようにし、且つ上記超音波発振器の作動により発生して構造物を伝搬される振動を溶射被膜の健全部上に配置した受信用探触子を介してAE装置で受信させるようにし、更に、該AE装置で受けた振動波形を表示する表示器と、該表示器で表示された振動波形の周波数をFFT演算する周波数解析装置とを備えてなり、FFT演算した後の波形のピーク周波数領域の位置から溶射被膜の剥離部と健全部とを区別して、剥離部を検出するようにした構成を有する構造物表面の溶射被膜剥離検出装置としてあるので、従来では、目視でも困難であった剥離の有無を周波数の高低で判別することができ、剥離部の検出作業を簡単に行うことができる、という優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の構造物表面の溶射被膜剥離検出装置の実施の一形態を示す概要図である。
【図2】受信波をFFT演算した後の状態を模式的に示すもので、(イ)は剥離部から送信した場合の結果を示す図、(ロ)は健全部から送信した場合の結果を示す図である。
【図3】板厚の変化による周波数の特長をつかむために行った予備試験の結果を示すもので、(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)は板厚を5mm、3mm、2mm、1mm、0.6mm、0.1mmと変化させたときの擬似AE波形図である。
【図4】擬似AE波形の周波数スペクトルを示すもので、(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)はそれぞれ図3(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)に示す波形の解析結果を示す図である。
【図5】送信パルスを15MHz として試験片を用いて測定した擬似AE波形を示すもので、(イ)は健全部から送信した場合の波形を示す図、(ロ)は(イ)とは異なる位置の健全部から送信した場合の波形を示す図、(ハ)は剥離部から送信した場合の波形を示す図である。
【図6】送信パルスを500KHz として試験片を用いて測定した擬似AE波形を示すもので、(イ)は健全部から送信した場合の波形を示す図、(ロ)は(イ)とは異なる位置の健全部から送信した場合の波形を示す図、(ハ)は剥離部から送信した場合の波形を示す図である。
【図7】擬似AE波形の周波数スペクトルを示すもので、(イ)(ロ)(ハ)はそれぞれ図5(イ)(ロ)(ハ)に示す波形の解析結果を示す図である。
【図8】擬似AE波形の周波数スペクトルを示すもので、(イ)(ロ)(ハ)はそれぞれ図6(イ)(ロ)(ハ)に示す波形の解析結果を示す図である。
【符号の説明】
1 構造物
2 溶射被膜
2a 剥離部
3 超音波発振器
3a 送信用探触子
4 AE装置
4a 受信用探触子
6 周波数解析装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for detecting peeling of a sprayed coating formed on the surface of a structure such as a boiler furnace wall.
[0002]
[Prior art]
In order to improve wear resistance and the like, the furnace wall of a power generation boiler is usually provided with a metal spray coating on the surface.
[0003]
The sprayed coating has defects such as peeling and cracking due to secular change, and therefore needs to be inspected regularly. Therefore, conventionally, color check (immersion test) and visual inspection are performed.
[0004]
[Problems to be solved by the invention]
However, cracks in the thermal spray coating can be detected by color check or visual inspection, but in the case of peeling, since it is not a surface defect, it cannot be detected by color check. Although possible, detection of small delamination is extremely difficult.
[0005]
Therefore, the present invention is intended to provide a method and an apparatus for detecting a thermal spray coating peeling on the surface of a structure that can easily and reliably detect the thermal spray coating peeling that has been difficult to observe visually.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention places a receiving probe of an AE device on a sound part of a sprayed coating formed on the surface of a structure, and ultrasonic waves on the inspection portion of the sprayed coating. The transmitter for transmitting the oscillator is sequentially brought into contact with the ultrasonic oscillator to excite the thermal spray coating at the inspection position , and then the vibration propagating through the structure is received on the healthy part of the thermal spray coating. The vibration waveform is displayed on the display after being received by the AE device via the probe for the FFT, and the frequency of the waveform is subjected to FFT calculation. From the position of the peak frequency region of the waveform after the FFT calculation , A method and an apparatus for detecting a thermal spray coating peeling on the surface of a structure that detects the peeling portion by distinguishing the peeling portion from the healthy portion.
[0007]
When the portion where the thermal spray coating is peeled is vibrated, the vibration is less likely to be transmitted to the base material as compared with a healthy portion that is not peeled, and therefore the frequency of the received vibration has a higher frequency component. Therefore, the healthy part and the peeled part can be distinguished from the peak frequency position.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
First, the basic principle of the present invention will be described. Generally, the natural period of a wave propagating through a structure (plate) is higher as the plate thickness is thinner. Therefore, if the thermal spray coating is not peeled off, it vibrates including the base material, and if it is peeled off, it is difficult to transmit to the base material, and a difference in vibration frequency appears when the two are compared.
[0010]
FIG. 1 shows an embodiment of a thermal spray coating detection apparatus for a structure surface according to the present invention based on the above basic principle. The thermal spray coating 2 formed on the surface of the structure 1 such as a boiler furnace wall. An ultrasonic oscillator (pulsar) 3 that makes the transmitting probe 3 a abut on the inspection position and vibrations generated and propagated by the operation of the ultrasonic oscillator 3 on the healthy portion of the thermal spray coating 2. The AE device 4 that is received through the receiving probe 4 a arranged, the display 5 such as an oscilloscope that displays the vibration waveform received by the AE device 4, and the waveform displayed on the display 5 It consists of a spectrum analyzer such as a spectrum ram analyzer or a personal computer that performs an FFT operation on the frequency. In addition, 2a shows the peeling part of the thermal spray coating 2. FIG. Reference numeral 7 denotes an amplifier such as a preamplifier.
[0011]
When detecting the presence or absence of the peeled portion 2a of the thermal spray coating 2 formed on the surface of the structure 1, the receiving probe 4a of the AE device 4 is placed on the healthy portion of the thermal spray coating 2, and an ultrasonic oscillator The three transmission probes 3a are sequentially brought into contact with the inspection portion. In this case, since it is not initially known whether or not the position where the receiving probe 4a is placed is a healthy part, it is necessary to perform several preliminary inspections. When the sprayed coating 2 is vibrated by the operation of the ultrasonic oscillator 3, the vibration propagated through the structure 1 is received by the AE device 4 and the vibration waveform is displayed on the display 5. Next, the frequency of the waveform is FFT-calculated by the frequency analyzer 6. As shown in FIG. 2 (a), the waveform after the FFT calculation has a peak frequency when it is from the peeled portion 2a as compared with a case from the sound portion as shown in FIG. 2 (b). Since the region is shifted to the high frequency side, the healthy part and the peeled part 2a can be distinguished.
[0012]
As described above, the presence or absence of the peeling portion 2a, which has been difficult to visually observe so far, can be determined based on the frequency level, and the detection of the peeling portion 2a can be easily performed.
[0013]
In the above embodiment, the case where the ultrasonic vibration is applied to the surface of the structure by the ultrasonic oscillator 3 and the vibration reception is performed by the AE device 4 has been described. Of course, various changes may be added without departing from the scope of the present invention.
[0014]
【Example】
Next, a description will be given of the result of performing the peeling detection by the pseudo AE method using a test piece.
[0015]
First, as a preliminary test, the present inventor used a SUS304 steel plate in order to grasp the characteristics of the frequency of waves transmitted through the plate due to the change in the plate thickness, and the plate thickness was 5 mm, 3 mm, 2 mm, 1 mm, 0.6 mm, respectively. The pseudo AE waveform when changing to 0.1 mm was measured. The obtained waveforms were as shown in FIGS. 3 (a), (b), (c), (d), (e), and (f). Next, graphs obtained by applying FFT to these are shown in FIGS. 4 (a), (b), (c), (d), (e), and (f). From these results, there was no difference due to the plate thickness in FIGS. 3 (a), (b), (c), (d), (e), and (f), but FIG. 4 (a) (b) after frequency analysis was performed. In (c), (d), (e), and (f), it was confirmed that the peak frequency region was shifted to the high frequency side as the plate thickness was reduced.
[0016]
Next, based on the above results, the results of measuring the pseudo waveform using a test piece in which metal was sprayed on the plate material and an exfoliation portion was artificially formed were shown in FIGS. 5 (a), (b), (c) and FIG. 6 (a) (b) (c). In this case, the receiving probe is fixed to a sound part without a peeling part, and two types of transmission pulses from the transmitting probe, 15 MHz and 500 KHz, are used, as shown in FIGS. As shown in 6 (a) and (b), it shows the result when it is transmitted from two different healthy parts and when it is transmitted from the peeling part as shown in FIGS. 5 (c) and 6 (c). is there. Next, when these waveforms were subjected to FFT and subjected to frequency analysis, the results shown in FIGS. 7 (A), (B), and (C) and FIGS. 8 (A), (B), and (C) were obtained. 5 (a) (b) (c) and FIG. 6 (b) (b) (c) and FIG. 7 (b) (b) (c) and FIG. 8 (b) (b) (c) From the comparison, it can be seen that the frequency when transmitted from the peeling portion is high.
[0017]
【The invention's effect】
As described above, according to the present invention, the receiving probe of the AE device is placed on the sound part of the sprayed coating formed on the surface of the structure, and the ultrasonic oscillator is placed on the inspection portion of the sprayed coating. The receiving probe is placed on the healthy part of the thermal spray coating, with the transmission probe in contact with each other and the ultrasonic oscillator operating to vibrate the thermal spray coating at the inspection position. The vibration waveform is displayed on the display after being received by the AE device via the probe , the frequency of the waveform is subjected to FFT calculation, and the thermal spray coating is peeled off from the position of the peak frequency region of the waveform after the FFT calculation. A method for detecting the peeling of the thermal spray coating on the surface of the structure that distinguishes between the healthy part and the healthy part, and a probe for transmitting the ultrasonic oscillator on the inspection portion of the thermal spray coating formed on the surface of the structure With the operation of the ultrasonic oscillator, The spray coating is vibrated, and the vibration generated by the operation of the ultrasonic oscillator and propagated through the structure is received by the AE device via the receiving probe disposed on the healthy portion of the spray coating. and so, further comprising: a display for displaying the oscillation waveform received by the AE device, Ri Na and a frequency analyzer for FFT calculating the frequency of the vibration waveform is displayed in the display unit, after the FFT operation to distinguish a release portion and a healthy section of the sprayed coating from the position of the peak frequency domain of the waveform, since the sprayed film peeling detecting device of a structure surface having a configuration which is adapted to detect the peeling unit, conventionally, even visually The presence or absence of peeling that has been difficult can be determined by the level of the frequency, and the excellent effect of easily performing the detection operation of the peeling portion is exhibited.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a thermal spray coating peeling detection apparatus on a structure surface according to the present invention.
FIG. 2 schematically shows a state after FFT calculation of a received wave, (A) shows a result when transmitted from a peeling portion, and (B) shows a result when transmitted from a healthy portion. FIG.
Fig. 3 shows the results of a preliminary test conducted in order to grasp the characteristics of the frequency due to the change in the plate thickness. (I) (b) (c) (d) (e) (f) It is a pseudo AE waveform diagram when changing to 3 mm, 2 mm, 1 mm, 0.6 mm, and 0.1 mm.
FIG. 4 shows a frequency spectrum of a pseudo AE waveform. (A), (b), (c), (d), (e), and (f) are respectively shown in FIGS. (E) It is a figure which shows the analysis result of the waveform shown to (f).
FIG. 5 shows a pseudo AE waveform measured using a test piece with a transmission pulse of 15 MHz. (A) shows a waveform when transmitted from a healthy part, and (B) is different from (A). The figure which shows the waveform at the time of transmitting from the sound part of a position, (c) is a figure which shows the waveform at the time of transmitting from a peeling part.
FIG. 6 shows a pseudo AE waveform measured using a test piece with a transmission pulse of 500 KHz. (A) shows a waveform when transmitted from a healthy part, and (b) is different from (a). The figure which shows the waveform at the time of transmitting from the sound part of a position, (c) is a figure which shows the waveform at the time of transmitting from a peeling part.
FIGS. 7A and 7B show the frequency spectrum of a pseudo AE waveform, and FIGS. 5A, 5B, and 5C show the analysis results of the waveforms shown in FIGS. 5A, 5B, and 5C, respectively.
FIG. 8 shows the frequency spectrum of a pseudo AE waveform, and (a), (b), and (c) show the analysis results of the waveforms shown in FIGS. 6 (a), (b), and (c), respectively.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Structure 2 Thermal spray coating 2a Peeling part 3 Ultrasonic oscillator 3a Transmitting probe 4 AE apparatus 4a Receiving probe 6 Frequency analysis apparatus

Claims (2)

構造物の表面に形成されている溶射被膜の健全部上にAE装置の受信用探触子を置き、上記溶射被膜の検査個所の上に超音波発振器の送信用探触子を順次当接させて超音波発振器の作動で検査位置の溶射被膜を加振し、そのとき構造物を伝搬する振動を、上記溶射被膜の健全部上に配置した受信用探触子を介してAE装置で受信させてから表示器にその振動波形を表示させて、その波形の周波数をFFT演算し、FFT演算した後の波形のピーク周波数領域の位置から溶射被膜の剥離部と健全部とを区別して、剥離部を検出することを特徴とする構造物表面の溶射被膜剥離検出方法。The receiving probe of the AE device is placed on the sound part of the sprayed coating formed on the surface of the structure, and the transmitting probe of the ultrasonic oscillator is sequentially brought into contact with the inspection portion of the sprayed coating. Te vibrated the sprayed coating inspection position by operation of the ultrasonic oscillator, the vibration propagating through the time structure, is received by the AE device via the ultrasonic probe reception placed on healthy portion of said thermally sprayed coating comprising Then, the vibration waveform is displayed on the display, the frequency of the waveform is subjected to FFT calculation, and the peeling portion and the healthy portion of the sprayed coating are distinguished from the position of the peak frequency region of the waveform after the FFT calculation , A method for detecting a thermal spray coating delamination on a surface of a structure, wherein: 構造物の表面に形成されている溶射被膜の検査個所の上に超音波発振器の送信用探触子を当接させるようにして、該超音波発振器の作動で溶射被膜を加振するようにし、且つ上記超音波発振器の作動により発生して構造物を伝搬される振動を溶射被膜の健全部上に配置した受信用探触子を介してAE装置で受信させるようにし、更に、該AE装置で受けた振動波形を表示する表示器と、該表示器で表示された振動波形の周波数をFFT演算する周波数解析装置とを備えてなり、FFT演算した後の波形のピーク周波数領域の位置から溶射被膜の剥離部と健全部とを区別して、剥離部を検出するようにした構成を有することを特徴とする構造物表面の溶射被膜剥離検出装置。An ultrasonic oscillator transmitting probe is brought into contact with an inspection portion of the thermal spray coating formed on the surface of the structure, and the thermal spray coating is vibrated by the operation of the ultrasonic oscillator. The vibration generated by the operation of the ultrasonic oscillator and propagated through the structure is received by the AE device via the receiving probe arranged on the sound part of the thermal spray coating, and further, the AE device spraying a display for displaying the received oscillation waveform, Ri Na and a frequency analyzer for FFT calculating the frequency of the vibration waveform is displayed in the display unit, the position of the peak frequency domain of the waveform after FFT operation A spray coating peeling detection device for a structure surface, characterized in that a peeling portion is detected by distinguishing a peeling portion and a healthy portion of a coating.
JP17002598A 1998-06-17 1998-06-17 Method and apparatus for detecting thermal spray coating peeling on structure surface Expired - Lifetime JP3956486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17002598A JP3956486B2 (en) 1998-06-17 1998-06-17 Method and apparatus for detecting thermal spray coating peeling on structure surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17002598A JP3956486B2 (en) 1998-06-17 1998-06-17 Method and apparatus for detecting thermal spray coating peeling on structure surface

Publications (2)

Publication Number Publication Date
JP2000002691A JP2000002691A (en) 2000-01-07
JP3956486B2 true JP3956486B2 (en) 2007-08-08

Family

ID=15897215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17002598A Expired - Lifetime JP3956486B2 (en) 1998-06-17 1998-06-17 Method and apparatus for detecting thermal spray coating peeling on structure surface

Country Status (1)

Country Link
JP (1) JP3956486B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341758B2 (en) * 2003-04-24 2008-03-11 General Electric Company Method for preparing and ultrasonically testing a thermal-spray coated article
JP5507267B2 (en) * 2010-01-08 2014-05-28 株式会社Ihi検査計測 Method and apparatus for calculating thickness of damping material
DE102015101117A1 (en) * 2015-01-27 2016-07-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for checking layer properties of a thermal sprayed coating on a substrate
JP6710653B2 (en) * 2017-03-17 2020-06-17 株式会社東芝 Sensor adhesion state determination system, sensor adhesion state determination device, and sensor adhesion state determination method

Also Published As

Publication number Publication date
JP2000002691A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
EP1344044B1 (en) Method for ultrasonically detecting multiple types of corrosion
JPWO2008007460A1 (en) Ultrasonic flaw detection apparatus and method
JP2005221496A (en) Method of measuring adhesive strength of coating to substrate
JP5069548B2 (en) Thermal spray coating inspection method and apparatus
JP2011523070A (en) Ultrasonic nondestructive inspection method and apparatus for performing the method
JP3956486B2 (en) Method and apparatus for detecting thermal spray coating peeling on structure surface
JP2010019622A (en) Ultrasonic flaw detection method and device
JP2000241397A (en) Method and apparatus for detecting surface defect
JP2002055089A (en) Apparatus and method for diagnosing of tunnel
JP4553459B2 (en) Structure diagnosis method and structure diagnosis apparatus
JPH08219751A (en) Method for measuring thickness of refractories using elastic wave
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP4126817B2 (en) Film thickness measuring method and apparatus
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JP2011196877A (en) Ultrasonic measuring method, and ultrasonic measuring instrument
JPS6282350A (en) Ultrasonic flaw detecting device
US7305884B1 (en) In situ monitoring of reactive material using ultrasound
KR20050042542A (en) Nondestructive acoustic evaluation device and method by using nonlinear acoustic responses
JP3070475B2 (en) Ultrasonic probe
JPH06118068A (en) Nondestructive inspection device and method for material
JPH07248317A (en) Ultrasonic flaw detecting method
JP2001337077A (en) Device for non-destructively inspecting exfoliation in concrete structure
JP4646012B2 (en) Nondestructive inspection equipment for concrete structures
JP2002195989A (en) Nondestructive inspection method for structure
JP2001343366A (en) Crystal grain measuring method and device for metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

EXPY Cancellation because of completion of term