JPS6282350A - Ultrasonic flaw detecting device - Google Patents

Ultrasonic flaw detecting device

Info

Publication number
JPS6282350A
JPS6282350A JP60223254A JP22325485A JPS6282350A JP S6282350 A JPS6282350 A JP S6282350A JP 60223254 A JP60223254 A JP 60223254A JP 22325485 A JP22325485 A JP 22325485A JP S6282350 A JPS6282350 A JP S6282350A
Authority
JP
Japan
Prior art keywords
reflected
signal
converter
waveform
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60223254A
Other languages
Japanese (ja)
Other versions
JPH0346070B2 (en
Inventor
Hiroshi Yoneyama
米山 弘志
Saburo Shibata
三郎 芝田
Masashi Nakadai
中代 雅士
Akira Otomo
大友 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60223254A priority Critical patent/JPS6282350A/en
Publication of JPS6282350A publication Critical patent/JPS6282350A/en
Publication of JPH0346070B2 publication Critical patent/JPH0346070B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To grasp accurately the quantity of creep damage without being affected by variation in plate thickness due to corrosion, etc., by detecting an acoustic wave which is scattered and reflected by an extremely fine defect in a material as a noise and grasping the progress state of a creep. CONSTITUTION:When an ultrasonic wave signal (n) is inputted to the material 1 to be inspected, a part of the signal (n) is scattered and reflected by its internal extremely fine defect 14 and the remainder is reflected by the bottom surface 15 to pass through a probe 2 and sent to a gate circuit 4 through an ultrasonic wave transmitter receiver 3. The circuit 4 extracts a signal (g) received in a gate interval (t) among respective signals, i.e. a noise component and sends it to an A/D converter 8. A computing element 9 analyzes the frequency of the noise waveform digitized by the converter 8. The digital waveform which is sampled at the same timing when the object material 1 is in a sound state and in various creep damage states and frequency-analyzed is stored as a sample in a memory device 10, and a comparator 12 displays a sample similar to a selected and detected waveform and the detected waveform on a monitor 13 as an image; and the degree of the similarity is observed to grasp the quantity of creep damage numerically.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種産業用プラント機器および構造物などの
材料欠陥を超音波を用いて非破壊的に検査する装置、と
くに金属材料内部のクリープ損傷を精度よく検出し得る
超音波探傷装置に関するものでおる。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an apparatus for non-destructively inspecting material defects in various industrial plant equipment and structures using ultrasonic waves, particularly for detecting creep inside metal materials. This invention relates to an ultrasonic flaw detection device that can accurately detect damage.

「従来の技術」 各種産業プラントの安全性、信頼性、経済性を向上させ
るため、稼動中のプラントを構成する機器、構造物など
を非破壊検査し余寿命を予測する上で重要な役割を果た
してきた従来の超音波探傷装置は、第3図ないし第5図
に示すように探触子aから被検査材すの板厚方向に超音
波Cを入射し、被検査材底面dから反射したエコーe、
f 、(eは第1回目のエコー、fは第2回目のエコー
)が現われる時間差9および振幅差りを計測装置iを用
いてそれぞれ測定し、プラント稼動前、すなわち新材に
ついて同じ検査を行って得られた時間差および振幅差の
データ9’、h’を用いて音速変化量g−9′および減
衰率変化1h−h’を求め、これらの変化量の大きさと
クリープ損傷量の対応関係からクリープの進行状態を把
握し、機器などの安全性を確認するようにしていた。な
お、第4図中、符号jは入射される送信波の電気信号を
示す。
"Conventional technology" In order to improve the safety, reliability, and economic efficiency of various industrial plants, non-destructive inspection of the equipment and structures that make up the plants in operation plays an important role in predicting their remaining life. Conventional ultrasonic flaw detection equipment, as shown in Figures 3 to 5, injects ultrasonic waves C from a probe a in the thickness direction of the material to be inspected, and reflects them from the bottom surface d of the material to be inspected. echo e,
The time difference 9 and amplitude difference in which f, (e is the first echo, f is the second echo) appear are measured using the measuring device i, and the same inspection is performed on the new material before plant operation. Using the time difference and amplitude difference data 9' and h' obtained in They were monitoring the progress of the creep and checking the safety of equipment. Note that in FIG. 4, the symbol j indicates an electrical signal of an incident transmission wave.

[発明が解決しようとする問題点」 しかし、前述の測定方法によると第5図に示すように被
検歪材底面dに腐食または孔食りが発生し板厚が不同に
なった場合その影響がエコーe、fに強く現われ音速変
化化および減衰率変化酊の測定、すなわちクリープ損傷
量の推定を困難にするなどの問題点があった。
[Problems to be Solved by the Invention] However, according to the above-mentioned measurement method, as shown in Fig. 5, if corrosion or pitting occurs on the bottom surface d of the strained material to be tested and the plate thickness becomes uneven, the effect will be appears strongly in the echoes e and f, making it difficult to measure changes in sound speed and attenuation rate, that is, to estimate the amount of creep damage.

[問題点を解決するための手段] 本発明は、前述の問題点を解決するためになしたもので
、その目的は、探触子を介して超音波を発信および受信
する超音波送受信器と、該超音波送受信器から送られた
電気信号のうちから一部の電気信号を取り出すゲート回
路と、該ゲート回路から送られた電気信号をデジタル信
号に変換するA/D変換器と、該A/D変換器から送ら
れたデジタル信号を周波数分析する演算器と1種々のク
リープ邑に対応するデジタル波形を記′[、た記憶器と
、前記演算器から送られたデジタル波形と前記記憶器か
ら取り出したデジタル波形を比較する比較器とを備え、
前記ゲート回路のグー1ル間隔を、被検査材から反射し
た第1回目のエコーを受取った時点に先行させて設定し
た超音波探傷装置によって達成される。
[Means for Solving the Problems] The present invention was made to solve the above-mentioned problems, and its purpose is to provide an ultrasonic transmitter/receiver that transmits and receives ultrasonic waves through a probe. , a gate circuit that extracts some of the electrical signals sent from the ultrasonic transceiver, an A/D converter that converts the electrical signals sent from the gate circuit into digital signals, and the A/D converter that converts the electrical signals sent from the gate circuit into digital signals. an arithmetic unit that frequency-analyzes the digital signal sent from the /D converter; a memory unit that records digital waveforms corresponding to various creep regions; and a digital waveform sent from the arithmetic unit and the memory unit. Equipped with a comparator that compares the digital waveforms extracted from the
This is accomplished by using an ultrasonic flaw detector that sets the ghoul spacing of the gate circuit prior to the time when the first echo reflected from the material to be inspected is received.

[作  用] 材料内部の微小欠陥によって散乱・反射した音波をノイ
ズとして検出し、クリープ損傷量との対応関係からクリ
ープの進行状況を把握するので、材料の腐食、偏肉など
による悪影響を受けることがない。
[Function] Sound waves scattered and reflected by minute defects inside the material are detected as noise, and the progress of creep is determined from the relationship with the amount of creep damage, so there is no possibility of the material being adversely affected by material corrosion, uneven thickness, etc. There is no.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。第1
図及び第2図は本発明の一実施例を示すもので、図中、
1は被検査材、2は探触子、3は超音波送受信器、4は
超音波送受信器3から送られた、増幅した反射波の電気
信号を所定のタイミングで且つ所定の経過時間、すなわ
ち第1回目のエコーの電気信@m (第2図参照)が現
われろ時点5よりt+atだけ先行する時点6とAtだ
け先行する時点7の間をゲート間隔とするノイズ採取用
ゲート回路、8はゲート回路4が取り出した電気信号を
デジタル信号に変換するA、/D変換器で、小さな振幅
をもつ故多くの信号の集団であるノイズ波形を粘度よく
デジタル化するため4ノンプリング点数を2048点と
多くとれるようにしている。9はデジタル化された波形
を周波数分析しその結果を記憶器10および比較器12
に送ると共にすでに記憶されているデジタル波形を記憶
器10から取り出して比較器12に送る演算器、13は
比較した結果をCRT画面上に画像表示するモニタでお
る。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure and FIG. 2 show one embodiment of the present invention, and in the figure,
1 is a material to be inspected, 2 is a probe, 3 is an ultrasonic transceiver, and 4 is an electric signal of an amplified reflected wave sent from the ultrasonic transceiver 3 at a predetermined timing and for a predetermined elapsed time, i.e. When the first echo electric signal @m (see Figure 2) appears, the noise sampling gate circuit 8 has a gate interval between time 6, which precedes time 5 by t+at, and time 7, which precedes by At. This is an A/D converter that converts the electric signal extracted by the gate circuit 4 into a digital signal.The number of 4 non-pulling points is set to 2048 in order to digitize the noise waveform, which is a group of many signals with small amplitude, with good viscosity. I try to get as much as possible. 9 analyzes the frequency of the digitized waveform and sends the results to a memory 10 and a comparator 12
A calculator 13 takes out the already stored digital waveform from the memory 10 and sends it to the comparator 12. A monitor 13 displays the comparison result as an image on a CRT screen.

次に、本装置の作動について説明づ゛る。内部微小欠陥
14(ヘアクラックまたはキャビィティなど)が存在す
る被検査材1に超音波信号nが入射すると、この信@n
の一部は内部微小欠陥14によって散乱・反射し、また
、残りは被検食材底面15で反射し、これらは探触子2
を通って電気信号に変換され超音波送受信器3に送られ
る。超音波送受信器3は、第2図に示ずように前記散乱
・反射()た音波pをノイズとして観測される電気信号
qに、また底面15で反射した音波rをエコーとして観
測される電気信号m、sにそれぞれ増幅してゲート回路
4に送る。
Next, the operation of this device will be explained. When an ultrasonic signal n is incident on the inspected material 1 in which an internal microdefect 14 (hair crack or cavity, etc.) exists, this signal @n
A part of it is scattered and reflected by the internal micro defects 14, and the rest is reflected by the bottom surface 15 of the food to be tested, and these are reflected by the probe 2.
The signal is converted into an electrical signal and sent to the ultrasonic transceiver 3. As shown in FIG. 2, the ultrasonic transmitter/receiver 3 converts the scattered and reflected sound wave p into an electrical signal q observed as noise, and the sound wave r reflected at the bottom surface 15 into an electrical signal q observed as an echo. The signals m and s are each amplified and sent to the gate circuit 4.

ゲート回路4は受は取った名僧@q、m、sのうちゲー
ト間隔tの間に受は取ったiM号qすなわちノイズ分だ
けを取り出してA/D変換器8に送る。A/D変換器8
は小さな振幅をもつ小さな波形の集団からなるノイズ信
号を正確にデジタル化するためサンプリング間隔0.1
〜insで2048ポイントデジタル化してこのデジタ
ル化されたノイズ波形を演算器9に送り、演算器9は受
は取ったノイズを周波数分析する。
The gate circuit 4 extracts only the iM number q, that is, the noise component, which is received during the gate interval t, from among the received signals @q, m, and s, and sends it to the A/D converter 8. A/D converter 8
has a sampling interval of 0.1 in order to accurately digitize a noise signal consisting of a group of small waveforms with small amplitudes.
2048 points are digitized at ~ins, and the digitized noise waveform is sent to the computing unit 9, which analyzes the frequency of the received noise.

一方、記憶器10には、被検査材1が健全な状態(新!
1)および種々のクリープ損傷状態にあるときに同じタ
イミングで採取し且つ周波数分析したデジタル波形が標
本として記憶されており、比較器12は、この標本と検
出波形を一つ一つ比較して検出波形に近似する標本を選
び出し、この標本と検出波形をモニタ13に画像表示し
、検査iは波形の類似の程度を観察して被検査材1のク
リープ損傷量を数量的に把握する。なお、比較器12に
は図示しない警報装置が設けてあり、検出波形が°“し
きい値″で規定した波形を逸脱した際に警報を発する。
On the other hand, the material to be inspected 1 is stored in the storage device 10 in a healthy state (new!
1) and digital waveforms taken at the same timing and subjected to frequency analysis during various creep damage states are stored as samples, and the comparator 12 compares these samples with the detected waveforms one by one for detection. A sample that approximates the waveform is selected, this sample and the detected waveform are displayed as images on the monitor 13, and the inspection i observes the degree of similarity of the waveforms to quantitatively grasp the amount of creep damage on the inspected material 1. Note that the comparator 12 is provided with an alarm device (not shown), which issues an alarm when the detected waveform deviates from the waveform defined by the "threshold".

なお、本発明は前述の実施例にのみ限定されるものでは
なく、本発明の要旨を逸脱しない範囲において種々の変
更を加え得ることは勿論である。
It should be noted that the present invention is not limited only to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

[弁明の効果] 以上に述べたごとく、本発明は次の優れた効果を発揮す
る。
[Effects of Explanation] As described above, the present invention exhibits the following excellent effects.

(+)  材料内部の微小欠陥によって散乱、反射する
音波をノイズとして検出するので、腐食などによる板厚
変化の影響を受けることなく、クリープ損傷量を正確に
把握することができる。
(+) Since sound waves scattered and reflected by minute defects inside the material are detected as noise, the amount of creep damage can be accurately determined without being affected by changes in plate thickness due to corrosion, etc.

(ii)  第(1)項と同じ理由ににり本装置は厚肉
月料の検査にも幅広く適用することができる。
(ii) For the same reason as in item (1), this device can be widely applied to the inspection of thick-walled materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例を示し、第1図は
本装置のブロック線図、第2図は本装置による測定原理
を示す説明図、第3図ないし第5図は従来の装置の測定
原理の説明図である。 図中、1は被検査材、2は探触子、3は超音波送受信器
、4はゲート回路、8はA/D変換器、9は演算器、1
0は記憶器、12は比較器を示す。
1 and 2 show an embodiment of the present invention, FIG. 1 is a block diagram of this device, FIG. 2 is an explanatory diagram showing the principle of measurement by this device, and FIGS. 3 to 5 are conventional FIG. 2 is an explanatory diagram of the measurement principle of the device. In the figure, 1 is the material to be inspected, 2 is the probe, 3 is the ultrasonic transceiver, 4 is the gate circuit, 8 is the A/D converter, 9 is the arithmetic unit, 1
0 indicates a memory, and 12 indicates a comparator.

Claims (1)

【特許請求の範囲】[Claims] 1)探触子を介して超音波を発信および受信する超音波
送受信器と、該超音波送受信器から送られた電気信号の
うちから一部の電気信号を取り出すゲート回路と、該ゲ
ート回路から送られた電気信号をデジタル信号に変換す
るA/D変換器と、該A/D変換器から送られたデジタ
ル信号を周波数分析する演算器と、種々のクリープ量に
対応するデジタル波形を記憶した記憶器と、前記演算器
から送られたデジタル波形と前記記憶器から取り出した
デジタル波形を比較する比較器とを備え、前記ゲート回
路のゲート間隔を、被検査材から反射した第1回目のエ
コーを受取つた時点に先行させて設定したことを特徴と
する超音波探傷装置。
1) An ultrasonic transceiver that transmits and receives ultrasonic waves via a probe, a gate circuit that extracts some of the electrical signals from the electrical signals sent from the ultrasonic transceiver, and from the gate circuit. An A/D converter that converts the sent electrical signal into a digital signal, an arithmetic unit that frequency-analyzes the digital signal sent from the A/D converter, and digital waveforms corresponding to various creep amounts are stored. A comparator that compares the digital waveform sent from the arithmetic unit and the digital waveform taken out from the memory, and the gate interval of the gate circuit is determined by the first echo reflected from the material to be inspected. An ultrasonic flaw detection device characterized in that the setting is made in advance of the time when the item is received.
JP60223254A 1985-10-07 1985-10-07 Ultrasonic flaw detecting device Granted JPS6282350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60223254A JPS6282350A (en) 1985-10-07 1985-10-07 Ultrasonic flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223254A JPS6282350A (en) 1985-10-07 1985-10-07 Ultrasonic flaw detecting device

Publications (2)

Publication Number Publication Date
JPS6282350A true JPS6282350A (en) 1987-04-15
JPH0346070B2 JPH0346070B2 (en) 1991-07-15

Family

ID=16795214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223254A Granted JPS6282350A (en) 1985-10-07 1985-10-07 Ultrasonic flaw detecting device

Country Status (1)

Country Link
JP (1) JPS6282350A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090354A (en) * 2000-09-12 2002-03-27 Sumitomo Metal Ind Ltd Ultrasonic attenuation anomaly determining device
US6877377B2 (en) * 2001-05-12 2005-04-12 Eads Deutschland Gmbh Non-destructive ultrasound test method for detection of damage and device for carrying out same
EP2006676A1 (en) * 2006-03-24 2008-12-24 IHI Corporation Defect inspection apparatus, and defect inspection method
JP2009204432A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Evaluation method of creep damage
JP2016188785A (en) * 2015-03-30 2016-11-04 株式会社ケー・エフ・シー Maintenance method for item fitted to concrete structure
CN110702042A (en) * 2019-10-15 2020-01-17 河海大学常州校区 Thickness estimation method under signal aliasing condition in ultrasonic pulse echo thickness measurement
JP2020201057A (en) * 2019-06-06 2020-12-17 一般財団法人電力中央研究所 Damage evaluation device for metal weld zone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604738B2 (en) * 2009-04-08 2014-10-15 独立行政法人海上技術安全研究所 Progress crack detection method, apparatus and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090354A (en) * 2000-09-12 2002-03-27 Sumitomo Metal Ind Ltd Ultrasonic attenuation anomaly determining device
US6877377B2 (en) * 2001-05-12 2005-04-12 Eads Deutschland Gmbh Non-destructive ultrasound test method for detection of damage and device for carrying out same
EP2006676A1 (en) * 2006-03-24 2008-12-24 IHI Corporation Defect inspection apparatus, and defect inspection method
EP2006676A4 (en) * 2006-03-24 2012-10-03 Ihi Corp Defect inspection apparatus, and defect inspection method
JP2009204432A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Evaluation method of creep damage
JP2016188785A (en) * 2015-03-30 2016-11-04 株式会社ケー・エフ・シー Maintenance method for item fitted to concrete structure
JP2020201057A (en) * 2019-06-06 2020-12-17 一般財団法人電力中央研究所 Damage evaluation device for metal weld zone
CN110702042A (en) * 2019-10-15 2020-01-17 河海大学常州校区 Thickness estimation method under signal aliasing condition in ultrasonic pulse echo thickness measurement
CN110702042B (en) * 2019-10-15 2021-07-02 河海大学常州校区 Thickness estimation method under signal aliasing condition in ultrasonic pulse echo thickness measurement

Also Published As

Publication number Publication date
JPH0346070B2 (en) 1991-07-15

Similar Documents

Publication Publication Date Title
CN104142195A (en) Device and method for detecting interior initial stress of steel structural member based on ultrasonic method
US6581014B2 (en) Apparatus and method for analysis of guided ultrasonic waves
US5280723A (en) Apparatus and method for data acquisition and processing
Yeh et al. An alternative Ultrasonic TimeofFlight Diffraction (TOFD) method
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
JPS6282350A (en) Ultrasonic flaw detecting device
KR20100121818A (en) System for monitoring wall thinned pipe, and method thereof
SU917711A3 (en) Method of tuning ultrasonic apparatus
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
KR19980049727A (en) Micro-Flaw Detection Method of Thread Using Ultrasound Rayleigh Wave
JPH0454447A (en) Fatigue damage measuring method
JPS5928261B2 (en) A method for dynamically distinguishing interference echoes and defective echoes in ultrasonic inspection
JPH08160020A (en) Ultrasonic creep damage evaluating apparatus
JP2575703B2 (en) Method and apparatus for diagnosing material deterioration of stainless steel
CN116908304B (en) Polycrystalline material grain size assessment method based on ultrasonic wake average power attenuation
RU2523781C1 (en) Method and apparatus for inspecting quality of acoustic contact during ultrasonic flaw detection
JPS6128841A (en) Corrosion testing apparatus
JP2799824B2 (en) Cavity generation evaluation method by hydrogen erosion
Seo et al. Measurement of elastic constants by simultaneously sensing longitudinal and shear waves as an overlapped signal
Purisev et al. Analysis of energy and spectral characteristics of acoustic emission signals from the Hsu-Nielsen source
Cerniglia et al. Analysis of laser-generated lamb waves with wavelet transform
JPH0933318A (en) Ultrasonic liquid level measuring method
Light Use of the Ultrasonic Cylindrical Guided Wave Technique for Inspecting Rod Geometries
Salazar et al. Two applications of independent component analysis for non-destructive evaluation by ultrasounds
JP2023119353A (en) Ultrasonic inspection method and ultrasonic inspection device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term