JP3922459B2 - Separation and cavity detection method and apparatus by percussion method - Google Patents

Separation and cavity detection method and apparatus by percussion method Download PDF

Info

Publication number
JP3922459B2
JP3922459B2 JP2004014362A JP2004014362A JP3922459B2 JP 3922459 B2 JP3922459 B2 JP 3922459B2 JP 2004014362 A JP2004014362 A JP 2004014362A JP 2004014362 A JP2004014362 A JP 2004014362A JP 3922459 B2 JP3922459 B2 JP 3922459B2
Authority
JP
Japan
Prior art keywords
wave
sound
frequency
cavity
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004014362A
Other languages
Japanese (ja)
Other versions
JP2005207870A (en
Inventor
雄平 岸村
Original Assignee
株式会社シスミック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シスミック filed Critical 株式会社シスミック
Priority to JP2004014362A priority Critical patent/JP3922459B2/en
Publication of JP2005207870A publication Critical patent/JP2005207870A/en
Application granted granted Critical
Publication of JP3922459B2 publication Critical patent/JP3922459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、構造物や各種複合材などの検査対象物の表面を打撃して得られる応答音の違いを分析してクラックや剥離、空洞などの内部劣化を非破壊検査によって検出する打音法による剥離および空洞検出方法および装置に関する。   The present invention relates to a sound percussion method that analyzes the difference in response sound obtained by striking the surface of an object to be inspected such as a structure or various composite materials, and detects internal deterioration such as cracks, separation, and cavities by nondestructive inspection The present invention relates to a method and an apparatus for peeling and detecting a cavity.

検査対象物の内部劣化を非破壊検査によって検出する方法として打音法、レーダー法、赤外線法、超音波法などがあるが、いずれも再現性、信頼性、効率性、適用条件などに難点があり、本格的な実用化には至っておらず、さらなる技術開発が望まれている。
このうち打音法に関しては、人の聴覚に頼る従来のやり方では検出精度や再現性に問題があるので、打撃音の周波数や振幅などの特性をコンピュータで分析して自動的に剥離および空洞を検出する方法が検討されている。そのためには剥離および空洞のある個所とない個所で異なる音質の違いを明確に識別する必要がある。
There are methods such as the percussion method, the radar method, the infrared method, and the ultrasonic method for detecting the internal deterioration of the inspection object by non-destructive inspection, but all have difficulties in reproducibility, reliability, efficiency, application conditions, etc. Yes, full-scale practical use has not been achieved, and further technological development is desired.
Of these methods, the conventional method that relies on human hearing has a problem with detection accuracy and reproducibility, so the characteristics such as the frequency and amplitude of the impact sound are analyzed by a computer to automatically remove and remove the cavity. Methods of detection are being considered. For this purpose, it is necessary to clearly distinguish the difference in sound quality between the part with and without the separation and the cavity.

しかしながら、打撃位置や剥離、空洞の大きさ、さらに各種複合材などの場合、含浸接着樹脂の塗布量のムラなどによって打撃音の周波数成分が異なり、劣化部と健全部の周波数成分が近似して音質の違いを明確に識別するのは容易でない。
例えば、特開平5−322861では打撃音の波形および周波数スペクトルを分析し、図4(a)に示す剥離のある個所では図4(b)に示す剥離のない個所に比べて周波数の低い音の卓越が明確であり、差異があるとしているが、差異を識別するための判定基準が明確に示されていない。
特開平5−322861号公報
However, in the case of striking position, separation, cavity size, and various composite materials, the frequency component of the striking sound differs depending on the application amount of the impregnated adhesive resin, etc., and the frequency component of the deteriorated part and the healthy part approximate. It is not easy to clearly identify the difference in sound quality.
For example, in Japanese Patent Laid-Open No. 5-322861, the waveform and frequency spectrum of a hitting sound are analyzed, and in a place where there is separation shown in FIG. 4 (a), a sound having a lower frequency than in a place where there is no separation shown in FIG. The excellence is clear and there are differences, but the criteria for identifying the differences are not clearly stated.
JP-A-5-322861

解決しようとする問題点は、剥離または空洞のある個所とない個所で異なる打撃音の音質の違いを識別するのが困難な点であり、本発明は、打撃音の音質の違いを明確に識別できる打音法による剥離および空洞検出方法および装置を提供することを目的になされたものである。   The problem to be solved is that it is difficult to discriminate the difference in sound quality of different impact sounds between where there is separation or void and where the present invention clearly identifies the difference in sound quality of the impact sound. An object of the present invention is to provide a method and an apparatus for detecting peeling and cavity by a percussive method.

本出願人は剥離または空洞のある箇所では打撃音が高い音に変化することに気付き、種々の観測を重ねた結果、特に第1波の波形にかなり周波数の高い波形が重なっているのが顕著に観測された。
例えば楽器の音は物が共振して発生し、物の質量が大きければ音程は低くなり、小さければ高くなる。そのため、剥離があるとその部分の質量が剥離のない部分に比べて小さくなるので、このように打撃音が高い音に変化するものと考えられる。
The present applicant notices that the hitting sound changes to a high sound at a part where there is a separation or a cavity, and as a result of various observations, it is remarkable that a waveform having a considerably high frequency overlaps with the waveform of the first wave in particular. Observed.
For example, the sound of a musical instrument is generated when an object resonates. For this reason, if there is separation, the mass of the portion becomes smaller than that of the portion without separation, and thus it is considered that the hitting sound changes to a high sound.

楽器の音は、周波数が整数比の関係にある複数の正弦波が合成されてできている。
これらの正弦波のうち、最も周波数の低い正弦波が基本波で、それ以外の正弦波が高調波である。楽器の音色はどの高調波成分をどれだけ含むかによって決まり、音の高さ(音程)を表すのは基本波の周波数(基本周波数)である。
そのため、第1波に含まれる基本波を切り出してその周波数を特定すれば、打撃音の高さ(音程)が判り、その結果剥離のある個所とない個所で異なる音質の違いを明確に識別できるようになる。
The sound of a musical instrument is made by synthesizing a plurality of sine waves whose frequencies have an integer ratio relationship.
Of these sine waves, the sine wave with the lowest frequency is the fundamental wave, and the other sine waves are harmonics. The timbre of a musical instrument is determined by how much harmonic component it contains, and it is the frequency of the fundamental wave (fundamental frequency) that represents the pitch (pitch).
Therefore, if the fundamental wave included in the first wave is cut out and its frequency is specified, the pitch (pitch) of the hitting sound can be known, and as a result, the difference in sound quality that is different between the part with and without the separation can be clearly identified. It becomes like this.

以上の観点から本発明は、応答音の第1波に含まれる基本周波数を判定基準として剥離のある個所とない個所を識別することを最も主要な特徴とする。   From the above viewpoints, the present invention has the main feature of identifying a part where there is no separation and a part where there is no separation, using the fundamental frequency included in the first wave of the response sound as a criterion.

本発明は、応答音の第1波だけを抽出してその基本周波数を判定基準とするので、従来の波形や周波数スペクトル全体を分析する方法に比べて簡単な識別回路を用いて剥離評価、空洞検出できるようになる。
また、応答音の第1波の基本周波数は比較的変動要素が少ないので、安定した評価結果を得ることができる。
In the present invention, only the first wave of the response sound is extracted and the fundamental frequency is used as a criterion. Therefore, the separation evaluation and the cavity are performed using a simple identification circuit as compared with the conventional method of analyzing the entire waveform and frequency spectrum. Can be detected.
In addition, since the fundamental frequency of the first wave of the response sound has relatively few fluctuation elements, a stable evaluation result can be obtained.

以下、本発明の実施の形態について説明する。
図1に、本発明を実施した剥離および空洞検出装置の構成図を示す。
剥離および空洞検出装置は、打撃部1と検査部2を一体化した打撃検査ユニット3にパソコン4を接続して構成する。
打撃部1にはソレノイドで駆動するハンマ5とハンマ5の駆動を制御する制御装置6を設け、検査部2にはマイク7とマイク7が受音した音波を分析する分析装置8を設ける。
分析装置8はコイル、コンデンサ、トランジスタ、オペアンプなどのアナログ回路素子をデジタル信号処理で代用するDSP(デジタル信号処理用集積回路)を用いて構成する。
Embodiments of the present invention will be described below.
FIG. 1 shows a configuration diagram of a separation and cavity detection apparatus embodying the present invention.
The peeling and cavity detecting device is configured by connecting a personal computer 4 to a hitting inspection unit 3 in which the hitting unit 1 and the inspection unit 2 are integrated.
The hammering section 1 is provided with a hammer 5 driven by a solenoid and a control device 6 for controlling the driving of the hammer 5, and the inspection section 2 is provided with a microphone 7 and an analyzer 8 for analyzing sound waves received by the microphone 7.
The analyzer 8 is configured using a DSP (Digital Signal Processing Integrated Circuit) that substitutes analog circuit elements such as coils, capacitors, transistors, and operational amplifiers for digital signal processing.

剥離および空洞検出装置は以上のような構成で、制御装置6の制御によって検査対象物9の表面を一定の力でハンマ5で打撃し、その応答音をマイク7で受音して分析装置8でその周波数特性を分析する。
応答音は、打撃面で発生した空気中を伝播する音波でなく、検査対象物9の内部を通過して底面で反射した音波を応答音として受音する。
分析結果はパソコン4に転送して統計的に解析し、空隙のある個所では応答音の第1波が高い音に変化するという知見に基づいて検査対象物9内部に空隙があるかどうかを検定する。
なお、簡易に行う場合は、パソコンを使用しないで、分析装置のみで判定を行うことも可能である。
The peeling and cavity detecting device is configured as described above, and the surface of the inspection object 9 is hit with a hammer 5 with a constant force under the control of the control device 6, and the response sound is received by the microphone 7, and the analysis device 8. The frequency characteristics are analyzed with.
The response sound is not a sound wave propagating through the air generated on the striking surface, but a sound wave that passes through the inside of the inspection object 9 and is reflected on the bottom surface is received as a response sound.
The analysis result is transferred to the personal computer 4 and statistically analyzed. Based on the knowledge that the first wave of the response sound changes to a high sound where there is a gap, it is verified whether there is a gap inside the inspection object 9. To do.
In addition, when performing simply, it is also possible to make a determination only with an analyzer without using a personal computer.

検定は、最初に検査対象物9内部に空隙のないことが確認されている複数の個所をそれぞれ数回打撃し、各応答音の第1波を基本波と高調波成分に分解して基本周波数を特定し、その平均値を求めて基準周波数f0とし、同時に標準偏差σを算出する。
次に、検査対象物9の検査すべき個所を数回打撃し、同様に各応答音の第1波を基本波と高調波成分に分解して基本周波数を特定し、その平均値を求めて測定周波数f1とする。
The test first hits a plurality of locations where it is confirmed that there are no voids in the inspection object 9 several times, and decomposes the first wave of each response sound into a fundamental wave and a harmonic component to obtain a fundamental frequency. , And the average value is obtained as the reference frequency f0, and at the same time, the standard deviation σ is calculated.
Next, the portion to be inspected of the inspection object 9 is hit several times, the first wave of each response sound is similarly decomposed into the fundamental wave and the harmonic component, the fundamental frequency is specified, and the average value is obtained. The measurement frequency is f1.

次に、標本分布が正規分布に近いとき、基準周波数f0から1.95σ以上離れているものは約5%にすぎないというチェビシェフの不等式に基づいて有意水準(危険率)α=5%の検定を行い、測定周波数f1と基準周波数f0の差が1.95σ以下であればOK(空隙なし)、1.95σ以上のときはNG(空隙あり)と判定する。   Next, when the sample distribution is close to the normal distribution, the significance level (risk rate) α = 5% test based on Chebyshev's inequality that only about 5% is 1.95σ or more away from the reference frequency f0 When the difference between the measurement frequency f1 and the reference frequency f0 is 1.95σ or less, it is determined that the OK (no gap) is OK, and when the difference is 1.95σ or more, NG (the gap is present) is determined.

打撃検査は、検査対象物9の同じ位置をハンマ5で数回打撃して空隙の有無を判定するが、ハンマ5を等間隔に移動して縦横に走査しながら検査対象物9の異なる位置をそれぞれ数回打撃することにより、検査対象物9内部の空隙の大きさや深さを定量的に把握することもできる。   In the batting inspection, the same position of the inspection object 9 is struck with the hammer 5 several times to determine the presence or absence of a gap. However, the hammer 5 is moved at equal intervals and scanned in the vertical and horizontal directions. By hitting several times, it is possible to quantitatively grasp the size and depth of the gap inside the inspection object 9.

物質には硬質なものほど振動をよく伝える性質がある。音響は振動でもあるので、高密度の硬い物質中の方が空気中よりも音の伝わる速度が速くなる。これを表す固有音響抵抗値(音響インピーダンス)は空気では約4×10の2乗、金属では約10の7乗とされ、桁違いの差がある。そのため、この差がある界面に音の反射が発生する。   The harder the substance is, the more likely it is to transmit vibration. Since sound is also vibration, the speed of sound transmission is higher in a dense, hard substance than in air. The specific acoustic resistance value (acoustic impedance) representing this is about 4 × 10 2 for air and about 10 7 for metal, and there is an order of magnitude difference. Therefore, sound reflection occurs at the interface having this difference.

検査対象物9の空隙のある個所の上を叩いたとき発生した音は空隙に到達して反射する。このとき底面まで到達して反射する音と途中の空隙で反射する音が重なるが、底面まで到達して戻る音は途中の空隙で反射する音よりも振動が伝わる時間が長いため周波数が低く(波長が長く)なる。   The sound generated when the object 9 is struck over a part with a gap reaches the gap and is reflected. At this time, the sound that reaches the bottom surface and reflects is overlapped with the sound that reflects in the middle gap, but the sound that reaches the bottom surface and returns is lower in frequency because vibration takes longer than the sound reflected in the middle gap ( The wavelength becomes longer).

そのため、途中の空隙で反射した高い周波数の波と底面で反射した低い周波数の波が重なるとき、図2に示すように、第1波の半サイクルでは重ね合わせの原理(媒質のある点に2つ以上の波が同時に到達したとき、その点の振動は各波が別々に到達したときの振動の和になる)により必ず高い方の周波数の波高が高くなる。以上の理由により空隙のある個所では空隙のない個所に比べ応答音の第1波が高い音に変化すると考えられる。   Therefore, when the high-frequency wave reflected by the air gap in the middle and the low-frequency wave reflected by the bottom surface overlap, the half-cycle of the first wave, as shown in FIG. When two or more waves arrive at the same time, the vibration at that point will be the sum of the vibrations when each wave arrives separately), so that the wave height of the higher frequency will always increase. For the above reason, it is considered that the first wave of the response sound changes to a higher sound at a place with a gap than at a place without a gap.

図3に、本発明を実施した剥離および空洞検出装置の処理内容をフローチャートにして示す。
まず、最初にステップ101においてマイク7で受音したアナログ音波信号SをA/D変換してデジタル音波信号S(n)に変換する。
このとき、A/D変換前にアナログ音波信号SをLPF(ローパスフィルタ)に通して分析に不必要な高い周波数成分を除去する。この場合のカットオフ周波数としては、検査対象物9をハンマ5で打撃して観測される最高周波数を設定する。
同時に、増幅器を用いてA/D変換器の入力端子の仕様に合う電圧にまでアナログ音波信号Sを増幅する。
FIG. 3 is a flowchart showing the processing contents of the peeling and cavity detecting apparatus embodying the present invention.
First, in step 101, the analog sound wave signal S received by the microphone 7 is A / D converted into a digital sound wave signal S (n).
At this time, the analog sound wave signal S is passed through an LPF (low pass filter) before A / D conversion to remove high frequency components unnecessary for analysis. As the cut-off frequency in this case, the highest frequency observed by hitting the inspection object 9 with the hammer 5 is set.
At the same time, the analog sound wave signal S is amplified to a voltage that meets the specifications of the input terminal of the A / D converter using an amplifier.

次のステップ102において上記デジタル音波信号S(n)に矩形波の窓関数W(n)を掛けて時間を限定し、1サイクル分の第1波のデジタル音波信号SW(n)=S(n)×W(n)を切り出す。
このとき、打撃直後に発生する第1波の音波を切り出すために窓関数W(n)を掛けるタイミングをハンマ5の駆動パルスに同期させる。
また、切り出す幅を1サイクル分とするために検査対象物9をハンマ5で打撃して観測される第1波の音波の波長に合わせて窓関数W(n)の観測時間を設定する。
In the next step 102, the digital sound wave signal S (n) is multiplied by the rectangular wave window function W (n) to limit the time, and the first wave digital sound wave signal SW (n) = S (n) for one cycle. ) × W (n).
At this time, the timing of applying the window function W (n) in order to cut out the first-wave sound wave generated immediately after the impact is synchronized with the drive pulse of the hammer 5.
Further, in order to set the width to be cut out for one cycle, the observation time of the window function W (n) is set in accordance with the wavelength of the sound wave of the first wave observed by hitting the inspection object 9 with the hammer 5.

次のステップ103において上記デジタル音波信号SW(n)のFFT(高速フーリエ変換)処理を行い、時間軸上に連続的に分布するデジタル音波信号SW(n)を基本波と高調波成分に分解して周波数軸上に離散的に分布させた線スペクトルX(n)に変換し、これより第1波の基本周波数を特定する。   In the next step 103, the digital sound wave signal SW (n) is subjected to FFT (Fast Fourier Transform) processing, and the digital sound wave signal SW (n) continuously distributed on the time axis is decomposed into a fundamental wave and a harmonic component. To a line spectrum X (n) distributed discretely on the frequency axis, thereby identifying the fundamental frequency of the first wave.

次のステップ104において上記第1波の基本周波数をパソコン4に転送して前述の検定を行い、検定結果をOK(空隙なし)あるいはNG(空隙あり)として表示する。   In the next step 104, the fundamental frequency of the first wave is transferred to the personal computer 4 to perform the above-described verification, and the verification result is displayed as OK (no gap) or NG (with gap).

以下、本発明を実施した剥離および空洞検出装置の実験結果について説明する。
実験は、複数の試験片の中央にドリル穴加工を施して空隙を設け、中央の加工穴の上と4隅をそれぞれハンマ5で4回打撃して行った。
各試験片は素材と厚さがそれぞれ異なるものの全て100×100mmの正方形に統一した。また、実験は応答音の第1波の基本周波数でなく基本波の波長を測定して行った。
以下に試験片毎の実験結果を示す。
Hereinafter, experimental results of the peeling and cavity detection apparatus embodying the present invention will be described.
In the experiment, a drill hole was drilled in the center of a plurality of test pieces to provide a gap, and the top and four corners of the center hole were hit with a hammer 5 four times.
Each test piece was unified into a square of 100 × 100 mm although the material and thickness were different. The experiment was performed by measuring the wavelength of the fundamental wave, not the fundamental frequency of the first wave of the response sound.
The experimental results for each test piece are shown below.

試験片1:厚さ15mmのアルミ合金(5052)の中央に直径16mm、深さ8mmのドリル穴加工を施した。
応答音の測定結果は以下の通りである。
中央:55.25μs
隅1:67.88μs
隅2:66.13μs
隅3:60.13μs
隅4:62.25μs
以上の測定結果より、4隅の波長の平均値(基準波長λ)と標準偏差σを求めると、λ=64.09、σ=3.065となる。
次に、基準波長λと中央の波長の平均値(測定波長λ)の差を求めると、
λ−λ=64.09−55.25=8.84となる。
以上により、λ−λ=8.84>1.95σ=5.98であるから判定結果はNGとなり、中央の加工穴は検出可能であることが分かった。
Test piece 1: A drill hole with a diameter of 16 mm and a depth of 8 mm was formed in the center of an aluminum alloy (5052) having a thickness of 15 mm.
The response sound measurement results are as follows.
Center: 55.25 μs
Corner 1: 67.88μs
Corner 2: 66.13 μs
Corner 3: 60.13 μs
Corner 4: 62.25 μs
From the above measurement results, when the average value of the wavelengths at the four corners (reference wavelength λ 0 ) and the standard deviation σ are obtained, λ 0 = 64.09 and σ = 3.065 are obtained.
Next, when the difference between the reference wavelength λ 0 and the average value of the central wavelength (measurement wavelength λ 1 ) is obtained,
λ 0 −λ 1 = 64.09−55.25 = 8.84.
As described above, since λ 0 −λ 1 = 8.84> 1.95σ = 5.98, the determination result is NG, and it was found that the central machining hole can be detected.

試験片2:厚さ20mmの樹脂(PP)の中央に直径16mm、深さ13mmのドリル穴加工を施した。
応答音の測定結果は以下の通りである。
中央:83.25μs
隅1:90.50μs
隅2:91.50μs
隅3:88.63μs
隅4:87.50μs
以上の測定結果より、基準波長λ0と標準偏差σを求めると、
λ=89.53、σ=1.562となる。
次に、基準波長λ0と測定波長λ1の差を求めると、
λ−λ=89.53−83.25=6.28となる。
以上により、λ−λ=6.28>1.95σ=3.05であるから同様に判定結果はNGとなり、中央の加工穴は検出可能であることが分かった。
Test piece 2: A drill hole with a diameter of 16 mm and a depth of 13 mm was formed in the center of a resin (PP) having a thickness of 20 mm.
The response sound measurement results are as follows.
Center: 83.25 μs
Corner 1: 90.50 μs
Corner 2: 91.50 μs
Corner 3: 88.63μs
Corner 4: 87.50 μs
From the above measurement results, when obtaining the reference wavelength λ0 and the standard deviation σ,
λ 0 = 89.53 and σ = 1.562.
Next, when the difference between the reference wavelength λ0 and the measurement wavelength λ1 is obtained,
λ 0 −λ 1 = 89.53−83.25 = 6.28.
As described above, since λ 0 −λ 1 = 6.28> 1.95σ = 3.05, the determination result is similarly NG, and it was found that the center machining hole can be detected.

試験片3:厚さ20mmの樹脂(POM)の中央に直径16mm、深さ13mmのドリル穴加工を施した。
応答音の測定結果は以下の通りである。
中央:78.00μs
隅1:89.75μs
隅2:92.13μs
隅3:98.00μs
隅4:95.38μs
以上の測定結果より、基準波長λと標準偏差σを求めると、
λ=93.81、σ=3.136となる。
次に、基準波長λと測定波長λの差を求めると、
λ−λ=93.81−78.00=15.81となる。
以上により、λ−λ=15.81>1.95、σ=6.12であるから同様に判定結果はNGとなり、中央の加工穴は検出可能であることが分かった。
Test piece 3: A drill hole with a diameter of 16 mm and a depth of 13 mm was formed in the center of a resin (POM) having a thickness of 20 mm.
The response sound measurement results are as follows.
Center: 78.00 μs
Corner 1: 89.75 μs
Corner 2: 92.13 μs
Corner 3: 98.00 μs
Corner 4: 95.38 μs
From the above measurement results, when obtaining the reference wavelength λ 0 and the standard deviation σ,
λ 0 = 93.81 and σ = 3.136.
Next, when the difference between the reference wavelength λ 0 and the measurement wavelength λ 1 is obtained,
λ 01 = 93.81-78.00 = 15.81.
As described above, since λ 0 −λ 1 = 15.81> 1.95 and σ = 6.12, the determination result is similarly NG, and it has been found that the center machining hole can be detected.

試験片4:厚さ20mmの樹脂(アクリル)の中央に直径16mm、深さ13mmのドリル穴加工を施した。
応答音の測定結果は以下の通りである。
中央:78.00μs
隅1:83.25μs
隅2:84.38μs
隅3:80.50μs
隅4:80.88μs
以上の測定結果より、基準波長λと標準偏差σを求めると、
λ=82.25、σ=1.618となる。
次に、基準波長λと測定波長λの差を求めると、
λ−λ=82.25−78.00=4.25となる。
以上により、λ−λ=4.25>1.95、σ=3.16であるから同様に判定結果はNGとなり、中央の加工穴は検出可能であることが分かった。
Test piece 4: A drill hole with a diameter of 16 mm and a depth of 13 mm was formed in the center of a resin (acrylic) having a thickness of 20 mm.
The response sound measurement results are as follows.
Center: 78.00 μs
Corner 1: 83.25 μs
Corner 2: 84.38 μs
Corner 3: 80.50 μs
Corner 4: 80.88 μs
From the above measurement results, when obtaining the reference wavelength λ 0 and the standard deviation σ,
λ 0 = 82.25 and σ = 1.618.
Next, when the difference between the reference wavelength λ 0 and the measurement wavelength λ 1 is obtained,
λ 0 −λ 1 = 82.25−78.00 = 4.25.
As described above, since λ 0 −λ 1 = 4.25> 1.95 and σ = 3.16, the determination result is similarly NG, and it has been found that the center machining hole can be detected.

試験片5:厚さ25mmの樹脂(CARBON/EPOXY)の中央3箇所に直径20、30、10mmのドリル穴加工を施した。
応答音の測定結果は以下の通りである。
中央:48.25μs
隅1:98.75μs
隅2:98.75μs
隅3:86.63μs
隅4:85.88μs
以上の測定結果より、基準波長λと標準偏差σを求めると、
λ=92.50、σ=6.253となる。
次に、基準波長λと測定波長λの差を求めると、
λ−λ=92.50−48.25=44.25となる。
以上により、λ−λ=44.25>1.95、σ=12.19であるから同様に判定結果はNGとなり、中央の加工穴は検出可能であることが分かった。
Test piece 5: Drill holes with diameters of 20, 30, and 10 mm were formed at three central positions of a resin (CARBON / EPOXY) having a thickness of 25 mm.
The response sound measurement results are as follows.
Center: 48.25 μs
Corner 1: 98.75 μs
Corner 2: 98.75 μs
Corner 3: 86.63 μs
Corner 4: 85.88 μs
From the above measurement results, when obtaining the reference wavelength λ 0 and the standard deviation σ,
λ 0 = 92.50 and σ = 6.253.
Next, when the difference between the reference wavelength λ 0 and the measurement wavelength λ 1 is obtained,
λ 0 −λ 1 = 92.50−48.25 = 44.25.
As described above, since λ 0 −λ 1 = 44.25> 1.95 and σ = 12.19, the determination result is similarly NG, and it has been found that the center machining hole can be detected.

本発明を実施した剥離および空洞検出装置の構成図である。It is a block diagram of the peeling and cavity detection apparatus which implemented this invention. 第1波の半サイクルで高い方の周波数の波高が高くなる説明図である。It is explanatory drawing where the wave height of the higher frequency becomes high in the half cycle of the first wave. 本発明を実施した剥離および空洞検出装置の処理内容のフローチャートである。It is a flowchart of the processing content of the peeling and cavity detection apparatus which implemented this invention. 打撃音の波形および周波数スペクトルを示す図である。It is a figure which shows the waveform and frequency spectrum of a hit sound.

符号の説明Explanation of symbols

1 打撃部
2 検査部
3 打撃検査ユニット
4 パソコン
5 ハンマ
6 制御装置
7 マイク
8 分析装置
DESCRIPTION OF SYMBOLS 1 Blowing part 2 Inspection part 3 Blowing inspection unit 4 Personal computer 5 Hammer 6 Control apparatus 7 Microphone 8 Analyzer

Claims (8)

検査対象物の表面を打撃して得られる応答音の違いを分析して検査対象物内部の剥離および空洞を検出する方法において、
前記応答音の第1波に含まれる基本周波数を判定基準として剥離または空洞のある個所とない個所を識別することを特徴とする打音法による剥離および空洞検出方法。
In a method of detecting peeling and cavities inside the inspection object by analyzing the difference in response sound obtained by hitting the surface of the inspection object,
A separation and cavity detection method using a sounding method, wherein a part having separation or a cavity is identified from a part having or without a cavity based on a fundamental frequency included in the first wave of the response sound.
検査対象物の表面を打撃して得られる応答音の違いを分析して検査対象物内部の剥離および空洞を検出する方法において、
前記応答音に窓関数を掛けて第1波の音波信号を切り出す切出ステップと、
前記第1波の音波信号をFFT処理により基本波と高調波成分に分解して第1波の基本周波数を特定する特定ステップと、
前記第1波の基本周波数を測定周波数としてあらかじめ設定した基準周波数と比較して剥離および空洞の有無を判定する判定ステップと、
からなることを特徴とする打音法による剥離および空洞検出方法。
In a method of detecting peeling and cavities inside the inspection object by analyzing the difference in response sound obtained by hitting the surface of the inspection object,
A cutting step of cutting the first sound wave signal by multiplying the response sound by a window function;
A specifying step of decomposing the first wave sound wave signal into a fundamental wave and a harmonic component by FFT processing to specify a fundamental frequency of the first wave;
A determination step of determining the presence or absence of delamination and cavities by comparing the fundamental frequency of the first wave with a reference frequency set in advance as a measurement frequency;
A peeling and cavity detection method by a sound-striking method, characterized by comprising:
前記窓関数を掛けるタイミングを前記検査対象物の表面を打撃するハンマの駆動パルスに同期させることを特徴とする請求項2記載の打音法による剥離および空洞検出方法。   3. The peeling and cavity detection method according to claim 2, wherein the timing of applying the window function is synchronized with a driving pulse of a hammer that strikes the surface of the inspection object. 前記窓関数の観測時間を前記第1波の音波信号の1サイクル分とすることを特徴とする請求項2記載の打音法による剥離および空洞検出方法。   3. The peeling and cavity detection method according to claim 2, wherein the observation time of the window function is one cycle of the sound wave signal of the first wave. 前記判定ステップにおける測定周波数は前記検査対象物の検査すべき個所を複数回打撃して得られた応答音の第1波の基本周波数の平均値であることを特徴とする請求項2記載の打音法による剥離および空洞検出方法。   The striking frequency according to claim 2, wherein the measurement frequency in the determination step is an average value of a fundamental frequency of a first wave of a response sound obtained by hitting a portion to be inspected of the inspection object a plurality of times. Sound separation and cavity detection method. 前記判定ステップにおける基準周波数は前記検査対象物内部に剥離または空洞のないことが確認されている個所を複数回打撃して得られた応答音の第1波の基本周波数の平均値であることを特徴とする請求項2記載の打音法による剥離および空洞検出方法。   The reference frequency in the determination step is an average value of the fundamental frequency of the first wave of the response sound obtained by hitting a location where it is confirmed that there is no separation or cavity inside the inspection object. 3. A peeling and cavity detection method by a percussion method according to claim 2. 前記判定ステップにおける判定は前記検査対象物内部に剥離または空洞のないことが確認されている個所を複数回打撃して得られた応答音の第1波の基本周波数の標準偏差に所定係数を掛けた値と前記測定周波数と基準周波数の差を比較して行われることを特徴とする請求項2記載の打音法による剥離および空洞検出方法。   The determination in the determination step is performed by multiplying the standard deviation of the fundamental frequency of the first wave of the response sound obtained by hitting a location where it is confirmed that there is no separation or cavity inside the inspection object by a predetermined coefficient. 3. The peeling and cavity detection method according to claim 2, wherein the difference between the measured value and the difference between the measurement frequency and the reference frequency is compared. 検査対象物の表面を打撃して得られる応答音の違いを分析して検査対象物内部の剥離および空洞を検出する装置において、
前記応答音に窓関数を掛けて第1波の音波信号を切り出す切出手段と、
前記第1波の音波信号をFET処理により基本波と高調波成分に分解して第1波の基本周波数を特定する特定手段と、
前記第1波の基本周波数を測定周波数としてあらかじめ設定した基準周波数と比較して剥離および空洞の有無を判定する判定手段と、
からなることを特徴とする打音法による剥離および空洞検出装置
In a device that detects the separation and cavities inside the inspection object by analyzing the difference in response sound obtained by striking the surface of the inspection object,
Cutting means for cutting out the first wave sound wave signal by multiplying the response sound by a window function;
Identifying means for decomposing the first wave acoustic signal into a fundamental wave and a harmonic component by FET processing to identify a fundamental frequency of the first wave;
A determination means for determining the presence or absence of separation and a cavity by comparing the fundamental frequency of the first wave with a reference frequency set in advance as a measurement frequency;
An apparatus for detecting peeling and cavity by a sounding method, characterized by comprising:
JP2004014362A 2004-01-22 2004-01-22 Separation and cavity detection method and apparatus by percussion method Expired - Lifetime JP3922459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014362A JP3922459B2 (en) 2004-01-22 2004-01-22 Separation and cavity detection method and apparatus by percussion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014362A JP3922459B2 (en) 2004-01-22 2004-01-22 Separation and cavity detection method and apparatus by percussion method

Publications (2)

Publication Number Publication Date
JP2005207870A JP2005207870A (en) 2005-08-04
JP3922459B2 true JP3922459B2 (en) 2007-05-30

Family

ID=34900175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014362A Expired - Lifetime JP3922459B2 (en) 2004-01-22 2004-01-22 Separation and cavity detection method and apparatus by percussion method

Country Status (1)

Country Link
JP (1) JP3922459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155365A (en) * 2013-05-14 2014-11-19 中国水电顾问集团贵阳勘测设计研究院 Detection method and device for tunnel lining concrete void

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895383B2 (en) * 2007-03-30 2012-03-14 首都高速道路株式会社 Filling degree inspection apparatus and filling degree inspection method
JP4669928B2 (en) * 2007-07-10 2011-04-13 島根県 Intra-tree diagnostic method and apparatus
JP5055253B2 (en) * 2008-12-03 2012-10-24 三菱重工業株式会社 Method for distinguishing ballast filler material
JP5519360B2 (en) * 2010-03-25 2014-06-11 三井造船株式会社 Underwater inspection system
JP6685086B2 (en) * 2015-04-17 2020-04-22 株式会社フジタ Inspection object condition evaluation device
CN110568073B (en) * 2019-09-16 2021-10-22 四川升拓检测技术股份有限公司 Method for picking up impact signal in noise environment
CN116773661A (en) * 2023-08-21 2023-09-19 广州市市政工程试验检测有限公司 Method, system and equipment for detecting internal cavity of structure based on sounding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155365A (en) * 2013-05-14 2014-11-19 中国水电顾问集团贵阳勘测设计研究院 Detection method and device for tunnel lining concrete void

Also Published As

Publication number Publication date
JP2005207870A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
CA2380988C (en) Log testing apparatus
US6782732B2 (en) Method for non-destructive stress wave testing of wood
JP3922459B2 (en) Separation and cavity detection method and apparatus by percussion method
JP5666334B2 (en) Quality diagnosis method for concrete structures
JP5208625B2 (en) How to determine the quality type of a structure
JP3456965B2 (en) Structure inspection method and apparatus
JPH0980033A (en) Judgment method for exfoliation of wall tile from building
US11162869B2 (en) Double force two sensor vibration method
JP2001208733A (en) Device for measuring degradation of concrete structure
JP2001124744A (en) Inspection apparatus for concrete structure
JP7357341B2 (en) Acoustic inspection device and method
US11175263B2 (en) Apparatus and method for generating, measuring, and evaluating vibrational modes in cylindrical objects
JP3006634B2 (en) Defect detection method and device
JP2007051991A (en) Method and system for measuring wall thickness of metal pipe
JP2734282B2 (en) Percussion equipment for building finishing materials
WO2005078435A1 (en) Method and system for determining the modulus of elasticity of green lumber
JPH0549933B2 (en)
Utami et al. Design of an acoustic-based nondestructive test (NDT) instrument to predict the modulus of elasticity of wood
JPS60256052A (en) Non-destructive inspection method
JP2005172430A (en) Flaw-detecting method of ceramic product
JP2009097890A (en) Non-destructive inspection method and apparatus of glulam for structure
Agrawal Quantitative Bridge Inspection Ratings using Autonomous Robotic Systems
JPS5948655A (en) Method and apparatus for inspecting quality of cast iron product
JP2001296214A (en) Deterioration measuring device for concrete structure, and its measuring method
Wiciak et al. Laser vibrometer condition assessment of cemented materials using wavelet synchro-squeezed transform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Ref document number: 3922459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term