JP4669928B2 - Intra-tree diagnostic method and apparatus - Google Patents

Intra-tree diagnostic method and apparatus Download PDF

Info

Publication number
JP4669928B2
JP4669928B2 JP2007180478A JP2007180478A JP4669928B2 JP 4669928 B2 JP4669928 B2 JP 4669928B2 JP 2007180478 A JP2007180478 A JP 2007180478A JP 2007180478 A JP2007180478 A JP 2007180478A JP 4669928 B2 JP4669928 B2 JP 4669928B2
Authority
JP
Japan
Prior art keywords
trunk
resonance frequency
frequency
tree
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007180478A
Other languages
Japanese (ja)
Other versions
JP2009019881A (en
JP2009019881A5 (en
Inventor
大志 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP2007180478A priority Critical patent/JP4669928B2/en
Publication of JP2009019881A publication Critical patent/JP2009019881A/en
Publication of JP2009019881A5 publication Critical patent/JP2009019881A5/ja
Application granted granted Critical
Publication of JP4669928B2 publication Critical patent/JP4669928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

この発明は、樹幹内の状態を非破壊で診断する樹幹内診断方法及び装置に関する。   The present invention relates to an in-tree diagnosis method and apparatus for diagnosing a state in a tree trunk nondestructively.

腐朽等の欠陥がある樹木1は、強度が弱く、見た目も悪いため、木材としての価値が低く、早期の間伐が望まれる。しかし、腐朽等の欠陥は、樹幹内部に発生することが殆どであり、樹木を破壊することなく樹幹内の状態を診断できる技術が切望されていた。このような背景から、樹幹に振動を加えて内部に振動波を伝搬させ、該振動波を受振して周波数成分を分析することにより樹幹内の診断を非破壊で行う非特許文献1に示すような樹幹内診断方法が公知となっている。   Tree 1 having defects such as decay is weak in strength and looks bad, and therefore has low value as wood, and early thinning is desired. However, most of the defects such as decay occur within the trunk, and a technology that can diagnose the state of the trunk without destroying the tree has been desired. From such a background, as shown in Non-Patent Document 1, in which non-destructive diagnosis is performed in a tree by applying vibration to the trunk, propagating a vibration wave inside, receiving the vibration wave, and analyzing the frequency component. Intra-trunk diagnostic methods are known.

また、非特許文献1と略同一構成の樹幹内診断方法として図7に示すものがある。同図に示す樹幹内診断方法は、ハンマー51等で樹木52の幹53(樹幹)を打撃して振動を加え、樹幹53内を伝搬した振動波を、樹幹53に押し当てた加速度ピックアップセンサ等の受振器54により受振し、周波数分析装置56(FFTアナライザ)を用いて周波数分析を行うことにより、樹幹53内の診断を非破壊で行う構成になっている。
釜口、他2名、「横打撃共振法によるスギ立木の心材含水率非破壊的推定」、木材学会誌、木材学会、2000年、第46巻、第1号、p.13−19
FIG. 7 shows an in-tree diagnostic method having substantially the same configuration as that of Non-Patent Document 1. The in-tree diagnosis method shown in FIG. 1 is an acceleration pickup sensor in which a hammer 51 or the like hits a trunk 53 (tree trunk) of a tree 52 to apply vibration, and a vibration wave propagating through the tree 53 is pressed against the tree 53. In this configuration, the diagnosis in the trunk 53 is performed nondestructively by performing frequency analysis using a frequency analyzer 56 (FFT analyzer).
Kamaguchi and two others, “Non-destructive estimation of the moisture content of heartwood of cedar standing by the lateral impact resonance method”, Journal of the Wood Society of Japan, 2000, Vol. 46, No. 1, p. 13-19

しかし、非特許文献1及び図7の樹幹内診断方法は、受振器54を一定以上の力で樹幹に押し当てる必要があり、樹皮の状態によって手ブレ等が生じて樹幹53内の振動波をうまく測定できない場合がある。また、樹幹53内に非対称な心材腐朽等が発生していると、受振器54を押し当てる箇所によって周波数成分が異なり、樹幹53内診断に支障をきたすことがあるという問題もある。さらに、受振器54として用いる加速度ピックアップセンサ54及び加速度ピックアップセンサ54を接続可能な周波数分析器56が相当高価であるため、診断コストが高くなってしまうという問題もある。   However, in the non-patent document 1 and the in-tree diagnosis method of FIG. 7, it is necessary to press the geophone 54 against the tree trunk with a force of a certain level or more. It may not be possible to measure well. In addition, when asymmetric heartwood decay or the like occurs in the trunk 53, the frequency component varies depending on the location where the geophone 54 is pressed, which may hinder the diagnosis within the trunk 53. In addition, the acceleration pickup sensor 54 used as the vibration receiver 54 and the frequency analyzer 56 to which the acceleration pickup sensor 54 can be connected are quite expensive, and there is a problem that the diagnostic cost is increased.

上記課題を解決するため本発明は、第1に、樹幹2の周囲より打撃によって樹幹2内に振動を加え、該振動を受振して周波数成分を分析することにより樹幹2内が正常であるか否かの診断を非破壊で行う樹幹内診断方法において、樹幹2の周囲に非接触状態で配置され多方位から音波を受振可能なマイクロホン7により前記振動を打撃音の音波として受振する際に正確な周波数成分の分析を行うことを目的として無指向性のマイクロホン7を用い、受振した音波の周波数成分から共振周波数Fを検出し、該共振周波数Fと、樹幹2内が正常である場合における共振周波数Fとを比較することにより樹幹2内の診断を行うにあたり、樹幹2内が腐朽している場合における共振周波数Fの減少率と、樹幹断面に占める腐朽部分の面積の割合との関係を用いて前記診断を行うことを特徴としている。   In order to solve the above-mentioned problem, first, the present invention first determines whether the inside of the trunk 2 is normal by applying vibration to the trunk 2 by hitting from around the trunk 2 and receiving the vibration to analyze the frequency component. In the in-trunk diagnosis method for non-destructive diagnosis, it is accurate when the vibration is received as a sound wave of the hitting sound by the microphone 7 that is arranged in a non-contact state around the trunk 2 and can receive the sound wave from multiple directions. The non-directional microphone 7 is used for the purpose of analyzing the correct frequency component, the resonance frequency F is detected from the frequency component of the received sound wave, and the resonance frequency F and the resonance in the case where the trunk 2 is normal are detected. In making a diagnosis in the trunk 2 by comparing the frequency F, the relationship between the decrease rate of the resonance frequency F when the trunk 2 is decayed and the ratio of the area of the decayed portion in the trunk section It is characterized by performing said diagnosis using.

第2に、受振した音波の周波数成分のうちから、樹幹2の径D、材質等の構成から共振周波数Fとなることが想定し難い低周波成分及び高周波成分を除去し、共振周波数Fの検出精度を高めるにあたって、腐朽による減少率を考慮してもその共振周波数Fとなることが尚想定し難い低周波成分及び高周波成分をカットすることを特徴としている。   Second, from the frequency components of the received sound wave, the low frequency component and the high frequency component that are difficult to assume the resonance frequency F from the configuration of the diameter D, material, etc. of the trunk 2 are removed, and the resonance frequency F is detected. In order to increase the accuracy, the low frequency component and the high frequency component, which are still difficult to assume that the resonance frequency F is considered even if the reduction rate due to decay is taken into consideration, are characterized.

第3に、受振した音波の周波数成分における極大値を示す周波数のうちで、最も低い周波数を共振周波数Fとしたことを特徴としている。   Thirdly, the lowest frequency among the frequencies indicating the maximum value in the frequency component of the received sound wave is the resonance frequency F.

第4に、打撃によって樹幹2内に加えられた振動を受振する受振手段9と、該振動から周波数成分を分析する分析手段13とを備え、樹幹2内が正常であるか否かの診断を非破壊で行う樹幹内診断装置において、受振手段9が樹幹2の周囲に非接触状態で配置されて樹幹2内の振動を打撃音の音波として受振する無指向性のマイクロホン7であり、診断結果を表示するユーザインターフェース画面を備え、分析手段13が樹幹2の共振周波数Fを検出する検出部19を備え、該共振周波数Fと、樹幹2内が正常である場合における共振周波数Fとを比較することにより樹幹2内の診断を行うにあたり、樹幹2が正常である場合の共振周波数Fがデータベース12に蓄積されるとともに、樹幹2内が腐朽している場合における共振周波数Fの減少率と、樹幹断面に占める腐朽部分の面積の割合との関係を用いて前記診断を行うように該分析手段13を構成し、所定音量以上の音波の受信手段9への入力を監視して、所定音量以上の音波が受信手段9に入力されると、自動的に診断処理を開始し、診断結果をユーザインターフェース画面に表示することを特徴としている。 Fourthly, it comprises a vibration receiving means 9 for receiving vibration applied to the trunk 2 by striking and an analysis means 13 for analyzing a frequency component from the vibration, and diagnosing whether the trunk 2 is normal or not. In the non-destructive in-tree diagnostic device, the vibration receiving means 9 is a non-directional microphone 7 that is arranged in a non-contact state around the trunk 2 and receives vibration in the trunk 2 as a sound wave of an impact sound. The analysis means 13 includes a detection unit 19 that detects the resonance frequency F of the trunk 2 and compares the resonance frequency F with the resonance frequency F when the inside of the trunk 2 is normal. Therefore, when performing diagnosis within the trunk 2, the resonance frequency F when the trunk 2 is normal is accumulated in the database 12, and the resonance frequency F when the trunk 2 is corrupted is reduced. And rate, by using the relationship between the ratio of the area of the decay portion occupying the trunk section constitutes said analysis means 13 to perform the diagnostic monitors the input to the receiving means 9 of a predetermined volume or more waves, When a sound wave having a predetermined volume or more is input to the receiving means 9, a diagnostic process is automatically started, and a diagnostic result is displayed on the user interface screen.

第5に、前記ユーザインターフェース画面に、腐朽の有無及び樹幹断面に占める腐朽部分の面積の割合を推定値で表示することを特徴としている。 Fifth, the present invention is characterized in that the presence / absence of decay and the ratio of the area of the decayed portion in the trunk section are displayed as estimated values on the user interface screen.

第6に、分析手段13が、受振した音波の周波数成分のうちから、樹幹2の径D、材質等の構成から共振周波数Fとなることが想定し難い低周波数成分及び高周波数成分を除去するにあたって、腐朽による減少率を考慮してもその共振周波数Fとなることが尚想定し難い低周波成分及び高周波成分をカットする除去部18を備えたことを特徴としている。 Sixth, the analysis means 13 removes the low frequency component and the high frequency component that are unlikely to become the resonance frequency F from the configuration of the diameter D, material, etc. of the trunk 2 from the frequency components of the received sound wave. In this case, it is characterized in that a removal unit 18 for cutting a low frequency component and a high frequency component, which is still difficult to assume that the resonance frequency F is considered even if the reduction rate due to decay is taken into consideration.

第7に、検出部19が、受振した音波の周波数成分における極大値を示す周波数のうちで最も低い周波数を共振周波数Fとして検出することを特徴としている。 Seventh, the detection unit 19 is characterized in that the lowest frequency among the frequencies indicating the maximum value in the frequency component of the received sound wave is detected as the resonance frequency F.

第8に、分析手段13が、音波信号をフーリエ変換処理して周波数成分を算出する処理部17を備えたことを特徴としている。 Eighth, the analysis means 13 includes a processing unit 17 that performs a Fourier transform process on the sound wave signal to calculate a frequency component.

以上のように構成される本発明によれば、樹幹内の振動を受振する受振手段として樹幹と接触させる必要がないマイクロホンを用いるため、樹皮の状態によって手ブレ等が生じて樹幹内の振動波をうまく測定できない事態が防止されるとともに、多方位からの受信可能なマイクロホンを用いるため、受振する箇所によって周波数成分が変動することも防止される。以上により、正確な周波数成分の分析を行うことが可能になり、樹幹内診断の精度が向上するという効果がある。くわえて、多方位からの受信可能なマイクロホンは安価で、パソコン等の汎用品に接続して使用できるため、樹幹内診断のコストを低く抑えることが可能になる。   According to the present invention configured as described above, since a microphone that does not need to be brought into contact with the tree trunk is used as a vibration receiving unit that receives vibration in the tree trunk, camera shake or the like occurs depending on the state of the bark, and vibration waves in the tree trunk are generated. Since the microphone that can receive from multiple directions is used, it is also possible to prevent the frequency component from fluctuating depending on the receiving location. As described above, accurate frequency component analysis can be performed, and the accuracy of in-tree diagnosis is improved. In addition, a microphone capable of receiving from multiple directions is inexpensive and can be used by connecting to a general-purpose product such as a personal computer, so that the cost of in-tree diagnosis can be kept low.

図1は、本発明を適用した樹幹内診断方法の模式図である。本発明の適用した樹幹内診断方法は、縦方向の樹木1の幹2(樹幹)を、樹幹2の軸方向に対して垂直方向(即ち、ここでは横方向)から木槌等のハンマー3で打撃して、樹幹2に振動を加え、該振動を本発明の樹幹内診断装置を適用した診断装置4で受振して周波数分析を行うことにより樹幹2内の診断を行うように構成されている。   FIG. 1 is a schematic diagram of an in-tree diagnostic method to which the present invention is applied. In the trunk diagnosis method to which the present invention is applied, the trunk 2 (tree trunk) of the tree 1 in the vertical direction is moved from the direction perpendicular to the axial direction of the trunk 2 (that is, the lateral direction here) with a hammer 3 such as a wooden hammer. The trunk 2 is vibrated, and vibration is applied to the trunk 2. The vibration is received by the diagnostic device 4 to which the intra-tree diagnostic device of the present invention is applied, and frequency analysis is performed to diagnose the trunk 2. .

診断装置4は、パソコン6と、パソコン6のマイク端子に接続されるマイクロホン7とからなる。該マイクロホン7は、多方位からの音波を受振可能な無指向性のものを用い、ハンマー3で樹幹2を打撃した際に発生する打撃音がひろえる程度に樹幹2に近づけられる一方で、樹幹2とは接触させないように樹幹2周囲に配置され、ハンマー3により樹幹2に与えた振動を音波として受振する。   The diagnostic device 4 includes a personal computer 6 and a microphone 7 connected to a microphone terminal of the personal computer 6. The microphone 7 is a non-directional microphone that can receive sound waves from multiple directions. The microphone 7 can be brought close to the trunk 2 to such an extent that the hitting sound generated when hitting the trunk 2 with the hammer 3 is expanded. 2 is arranged around the trunk 2 so as not to come into contact with it, and the vibration applied to the trunk 2 by the hammer 3 is received as sound waves.

図2は、診断装置の構成を示すブロック図である。診断装置4は診断システム8を搭載している。診断システム8は、音波を受振する受振手段9と、パソコン6のキーボードやマウス及びユーザインターフェース画面等からなる入力手段11と、樹木1の種類や樹幹2の径Dに対応した各種データが蓄積されているデータベース12と、受振した音波を分析する分析手段13と、分析手段13による分析結果を診断装置4に表示する出力手段14とから構成されている。   FIG. 2 is a block diagram showing the configuration of the diagnostic apparatus. The diagnostic device 4 is equipped with a diagnostic system 8. The diagnosis system 8 stores vibration receiving means 9 for receiving sound waves, input means 11 including a keyboard, mouse and user interface screen of the personal computer 6, and various data corresponding to the type of the tree 1 and the diameter D of the trunk 2. Database 12, analysis means 13 for analyzing the received sound wave, and output means 14 for displaying the analysis result by the analysis means 13 on the diagnostic device 4.

受振手段9は、前述のマイクロホン7と、マイクロホン7からのアナログ信号をデジタル信号に変換するA/D変換部16とからなり、ハンマー3で樹幹2を打撃した際の打撃音を、デジタル信号に変換してパソコン6等で処理可能な状態にした後、分析手段13に送る。   The vibration receiving means 9 includes the above-described microphone 7 and an A / D conversion unit 16 that converts an analog signal from the microphone 7 into a digital signal. The hammering sound when the tree 2 is hit with the hammer 3 is converted into a digital signal. The data is converted into a state that can be processed by the personal computer 6 or the like and then sent to the analysis means 13.

分析手段13は、受振手段9から送られてきたデジタル信号をFFT変換処理(高速フーリエ変換処理,Fast Fourier Transform)して上記打撃音に関する周波数成分を算出する処理部17と、上記打撃音の周波数成分から不要な周波数成分を除去する除去部18と、不要な周波数成分が除去された上記打撃音の周波数成分から樹幹内診断に必要な樹幹2の共振周波数F(横打撃共振周波数)を検出する検出部19と、検出された樹幹2の共振周波数Fから樹幹2内の状態を推定する推定部21とから構成されている。   The analysis unit 13 includes a processing unit 17 that calculates a frequency component related to the hitting sound by performing an FFT conversion process (fast Fourier transform process, Fast Fourier Transform) on the digital signal transmitted from the vibration receiving unit 9, and the frequency of the hitting sound. The removal unit 18 that removes unnecessary frequency components from the components, and the resonance frequency F (lateral strike resonance frequency) of the trunk 2 necessary for in-tree diagnosis from the frequency components of the hit sound from which the unnecessary frequency components have been removed are detected. The detection unit 19 and an estimation unit 21 that estimates the state in the trunk 2 from the detected resonance frequency F of the trunk 2 are configured.

なお、入力手段11によって樹木1の種類及び樹幹直径Dが入力され、データベース12には樹幹2が健全木である場合(正常である場合)の樹木1の種類及び樹幹2の径Dに応じた共振周波数Fが記録されている。上記入力データ及びデータベース12のデータを用いて、除去部18における処理及び推定部21における樹幹2内の状態推定を行う。   The input means 11 inputs the type of the tree 1 and the trunk diameter D, and the database 12 corresponds to the type of the tree 1 and the diameter D of the trunk 2 when the trunk 2 is a healthy tree (when normal). The resonance frequency F is recorded. Using the input data and the data in the database 12, processing in the removal unit 18 and state estimation in the trunk 2 in the estimation unit 21 are performed.

図3は、心材腐朽が発生している樹木の幹をハンマーで横方向から打撃した際に発生する打撃音の周波数スペクトルの一例を表す特性グラフである。同図に示す特性グラフでは、横軸が周波数に、縦軸が強度に対応しており、上記強度が高いほどその周波数の正弦波(又は余弦波)がより多く打撃音に含まれていることを意味している。   FIG. 3 is a characteristic graph showing an example of a frequency spectrum of a percussion sound generated when a tree trunk in which heartwood decay has occurred is hit with a hammer from the lateral direction. In the characteristic graph shown in the figure, the horizontal axis corresponds to the frequency, and the vertical axis corresponds to the intensity. The higher the intensity, the more sine waves (or cosine waves) of that frequency are included in the impact sound. Means.

樹幹2を打撃した際の打撃音は、強度が所定の周波数帯で極大値となるような特性を有しており、極大値を示す周波数が樹幹2の共振周波数Fとなる。そして、強度が極大値を示す周波数のうちで最も低い周波数における極大値P(1次ピーク)と、その次に低い周波数における極大値P(2次ピーク)と、その次に低い周波数における極大値P(3次ピーク)とでは、1次ピークPが最も樹幹2内の情報をより正確に捉えたものであることが実験等から明らかになっている。 The striking sound when hitting the trunk 2 has such a characteristic that the intensity becomes a maximum value in a predetermined frequency band, and the frequency showing the maximum value becomes the resonance frequency F of the trunk 2. Then, the maximum value P 1 (primary peak) at the lowest frequency among the frequencies having the maximum value, the maximum value P 2 (secondary peak) at the next lowest frequency, and the next lowest frequency. From the maximum value P 3 (third order peak), it has become clear from experiments and the like that the first order peak P 1 most accurately captures the information in the trunk 2.

よって、上記検出部19では打撃音の周波スペクトルから1次ピークPを検出し、推定部21では該1次ピークPを示す周波数を共振周波数Fとして樹幹内診断に用いる(図3においては880Hzが樹幹内診断に用いる共振周波数Fになる)。なお、上記データベース12には、上記1次ピークPを示す周波数が共振周波数Fとして蓄積されている。なお、樹幹に与える打撃の大きさ等により、1次ピークや2次ピークぐらいまでしか検出されないこともある。 Therefore, the detection unit 19 detects the primary peak P 1 from the frequency spectrum of the impact sound, and the estimation unit 21 uses the frequency indicating the primary peak P 1 as the resonance frequency F for in-tree diagnosis (in FIG. 3). 880 Hz becomes the resonance frequency F used for in-tree diagnosis). Incidentally, in the database 12, the frequency indicating the primary peak P 1 is stored as a resonance frequency F. Note that only the primary peak or the secondary peak may be detected depending on the magnitude of the impact on the trunk.

そして、樹幹2の共振周波数Fは、粗密波である縦振動に関する以下の式でモデル化できる。   Then, the resonance frequency F of the trunk 2 can be modeled by the following expression relating to longitudinal vibration which is a dense wave.

Figure 0004669928
Figure 0004669928

Dは樹幹直径(cm)、Fは共振周波数(Hz)、Eは縦弾性係数であるヤング率(Pa)、ρは密度(g/cm)、kは形状係数を意味し、上記形状定数kは常に略一定であると仮定する。そして、同一種類且つ同一径の樹木1において、樹幹2内が腐朽した樹木1は、健全木と比較して、ヤング率E及び密度ρの両方が低下するとともに樹幹直径Dと共振周波数Fとの乗算値D・Fが低下することが実験等から明らかになった。また、この関係を樹幹直径Dが略同一の樹木1で考えると、樹幹2内に腐朽が発生している場合の共振周波数Fは、樹幹2内が健全な場合の共振周波数よりも低くなる。 D is trunk diameter (cm), F is resonance frequency (Hz), E is Young's modulus (Pa) which is a longitudinal elastic modulus, ρ is density (g / cm 3 ), k is a shape factor, and the above shape constant Assume that k is always substantially constant. And in the tree 1 of the same kind and the same diameter, the tree 1 in which the trunk 2 has decayed has a decrease in both the Young's modulus E and the density ρ and a difference between the trunk diameter D and the resonance frequency F compared to a healthy tree. It has become clear from experiments and the like that the multiplication value D · F decreases. Further, when considering this relationship with the tree 1 having the substantially same trunk diameter D, the resonance frequency F when the decay is occurring in the trunk 2 is lower than the resonance frequency when the trunk 2 is healthy.

上記特性から、本診断装置4は、検出部19により検出される共振周波数Fと、同一種類且つ同一径の健全木における樹幹2の共振周波数Fとを推定部21において比較することにより、樹幹2内が腐朽しているか否かの判断を行う構成になっている。ちなみに、同一種類且つ同一径の健全木における樹幹2の共振周波数Fのデータは前述したようにデータベース12から取得する。   From the above characteristics, the diagnostic device 4 compares the resonance frequency F detected by the detection unit 19 with the resonance frequency F of the trunk 2 in a healthy tree of the same type and the same diameter in the estimation unit 21, whereby the trunk 2 It is configured to determine whether or not the inside is corrupt. Incidentally, the data of the resonance frequency F of the trunk 2 in a healthy tree of the same type and the same diameter is acquired from the database 12 as described above.

また、樹幹2内が腐朽している場合における共振周波数Fの減少率と、樹幹断面(ハンマー3で打撃した部分における樹幹2の垂直断面)に占める腐朽部分の面積の割合である腐朽面積率との関係は、樹木1の種類に拘わらず略同一になることが実験等で明らかになっている。このため、本診断装置4は、所定の種類の樹木1における共振周波数Fの減少率と腐朽面積率との関係を求めてデータベース12に蓄積しておくことにより、診断対象となっている樹幹2の腐朽面積率を推定部21によって算出する構成になっている。   In addition, the decrease rate of the resonance frequency F when the trunk 2 is decayed, and the decay area ratio that is the ratio of the area of the decayed portion to the trunk cross section (the vertical cross section of the trunk 2 at the portion hit by the hammer 3) It has been clarified through experiments and the like that the relationship is substantially the same regardless of the type of the tree 1. For this reason, the diagnostic device 4 obtains the relationship between the reduction rate of the resonance frequency F and the decayed area rate in a predetermined type of tree 1 and accumulates it in the database 12, whereby the trunk 2 that is the object of diagnosis. In this configuration, the estimation area 21 calculates the decay area ratio.

以上のようにして、本診断装置4は、樹幹2内が腐朽しているか否かの判断及び樹幹2内が腐朽している場合には腐朽面積率の算出を行い、これによって樹幹内診断を行う。なお、前述の除去部18は、診断対象の樹幹2と同一種且つ同一径の健全木の共振周波数Fと、算出される樹幹2の周波数成分とを対比し、腐朽による減少率等を考慮しても共振周波数Fとなることが想定し難い高周波数成分及び低周波数低分をカットするように構成されており、1次ピークPの検出精度を向上させている。 As described above, the diagnosis device 4 determines whether or not the trunk 2 is decayed and, when the trunk 2 is decayed, calculates the decay area ratio, thereby performing the diagnosis within the trunk. Do. The above-described removal unit 18 compares the resonance frequency F of a healthy tree of the same type and the same diameter as the trunk 2 to be diagnosed with the calculated frequency component of the trunk 2 and considers the reduction rate due to decay and the like. However, it is configured to cut high frequency components and low frequency components that are unlikely to become the resonance frequency F, and the detection accuracy of the primary peak P 1 is improved.

次に、診断システム8のユーザインターフェース画面について説明する。
図4は、本診断装置のユーザインターフェース画面を示している。本診断装置4は、グラフィカルユーザインターフェース22(GUI)を備えており、樹木1の種類と樹幹直径Dを入力する入力欄23と、周波数スペクトル及び該周波数スペクトルより検出された1次ピークP、2次ピークP及び3次ピークPでの各周波数を表示する検出結果表示欄24と、診断結果を表示する診断結果表示欄26と、該診断結果をパソコン6内に保存する「保存」ボタン27と、保存せずに次の樹幹内診断に移行する「次へ」ボタン28とから構成されている。そして、上記診断結果表示欄26では、樹幹2内が腐朽しているか否かの判定結果を表示する判定結果欄26aと、算出された腐朽面積率を表示する推定腐朽面積率欄26bとを備えている。
Next, the user interface screen of the diagnostic system 8 will be described.
FIG. 4 shows a user interface screen of the diagnostic apparatus. The diagnostic device 4 includes a graphical user interface 22 (GUI), an input field 23 for inputting the type of the tree 1 and the trunk diameter D, a frequency spectrum and a primary peak P 1 detected from the frequency spectrum, A detection result display field 24 for displaying each frequency at the secondary peak P 2 and the tertiary peak P 3 , a diagnosis result display field 26 for displaying the diagnosis result, and “save” for storing the diagnosis result in the personal computer 6. The button 27 and a “next” button 28 for shifting to the next in-tree diagnosis without saving. The diagnosis result display column 26 includes a determination result column 26a that displays a determination result as to whether or not the trunk 2 is decayed, and an estimated decay area rate column 26b that displays the calculated decayed area rate. ing.

また、本診断システム8は、パソコン6のOS(オペレーティングシステム)上で常駐するソフトであり、所定音量以上の音波の受振手段9への入力を常に監視し、所定以上の音量の音波が入力されると、その音をハンマー3による打撃音とみなし、前述した処理に基づき樹幹内診断を行い、上記検出結果表示欄24に検出結果を、診断結果表示欄26に診断結果を表示するように構成されている。   The diagnostic system 8 is software that is resident on the OS (operating system) of the personal computer 6 and constantly monitors the input of sound waves of a predetermined volume or higher to the vibration receiving means 9 and receives sound waves of a predetermined volume or higher. Then, the sound is regarded as a hitting sound by the hammer 3, and in-tree diagnosis is performed based on the above-described processing, and the detection result is displayed in the detection result display column 24 and the diagnosis result is displayed in the diagnosis result display column 26. Has been.

さらに、入力欄23に、樹木1の種類や樹幹直径Dが入力されていない場合には、検出結果表示欄24に周波数スペクトル、1次ピークP、2次ピークP及び3次ピークPが表示されるとともに、診断結果表示欄26に「樹木種類が○○で、樹幹直径が○○cmの場合は樹幹内に腐朽が無しで、推定腐朽面積率が0%」、「樹木種類が△△で、樹幹直径が△△cmの場合は樹幹内に腐朽が有りで、推定腐朽面積率が△△%」等の表示が樹木1の種類毎、樹幹直径D毎にされる。 Further, when the type of tree 1 and the trunk diameter D are not input in the input field 23, the frequency spectrum, the primary peak P 1 , the secondary peak P 2 and the tertiary peak P 3 are displayed in the detection result display field 24. Is displayed in the diagnosis result display column 26, "If the tree type is XX and the trunk diameter is XX cm, there is no decay in the trunk and the estimated decay area rate is 0%" When the trunk diameter is ΔΔcm, the indication that there is decay in the trunk and the estimated decay area ratio is ΔΔ% is displayed for each type of tree 1 and for each trunk diameter D.

診断システム8の上記構成によれば、所定音量以上の音よって樹幹内診断処理が自動的に開始されるため、同一種類且つ同一直径の樹木1の樹幹内診断を行う際、樹木1毎にデータを入力し直す手間が省かれ、樹幹内診断作業を効率的に行うことできる。また、樹木1の種類や樹幹直径Dの異なる樹木1を診断する場合にも、前述したように樹木1の種類毎、樹幹直径D毎に診断結果が表示され、診断対象の樹木1の種類や樹幹直径Dを作業者が目視により確認して適切なデータを選択すればよいため、樹幹内診断を効率的に行うことが可能になる。   According to the above configuration of the diagnostic system 8, the in-tree diagnosis process is automatically started by a sound of a predetermined volume or higher. Therefore, when performing the in-tree diagnosis of the tree 1 of the same type and the same diameter, data for each tree 1 is obtained. This saves the trouble of re-entering and can efficiently perform in-tree diagnosis work. Also, when diagnosing a tree 1 having a different tree type or trunk diameter D, as described above, a diagnosis result is displayed for each type of tree 1 and for each trunk diameter D, and the type of tree 1 to be diagnosed Since it is only necessary for the operator to visually confirm the trunk diameter D and select appropriate data, it is possible to efficiently perform in-trunk diagnosis.

なお、本診断装置4では、診断システム8をパソコン6に搭載したが、マイクロホン7が接続可能で診断システム8に関するプログラムを実行できる装置であれば、PDAや携帯電話等を用いてもよい。   In the present diagnostic device 4, the diagnostic system 8 is mounted on the personal computer 6, but a PDA, a mobile phone, or the like may be used as long as the microphone 7 can be connected and a program related to the diagnostic system 8 can be executed.

また、本診断装置4では、腐朽した樹木1の特性を用いて樹幹内診断を行っているが、樹木の腐朽以外に、樹木が冷却されて樹幹に縦方向の裂け目ができる「凍裂」、スギの内部が黒く変色する「スギ黒心」、細菌等による変色する「材変色」、急傾斜で育ったことにより繊維や密度等が偏る「あて」、乾燥等によって内部に裂け目できる「内部割」が生じた場合の樹木1の特性を利用することもできる。これらの状態が生じた場合、樹木1の樹幹直径Dと共振周波数Fとの乗算値D・Fは下記表のようになる。   In addition, in this diagnostic device 4, in-tree diagnosis is performed using the characteristics of the decayed tree 1, but in addition to the decay of the tree, the tree is cooled and “frozen crack” that can cause a longitudinal tear in the trunk, "Sugi black heart" where the inside of the cedar turns black, "material discoloration" where the color changes due to bacteria, etc. It is also possible to use the characteristics of the tree 1 when “ When these conditions occur, the multiplication value D · F of the trunk diameter D of the tree 1 and the resonance frequency F is as shown in the following table.

Figure 0004669928
Figure 0004669928

樹木1の種類によって、これらの異常状態が生じる確率がかなり異なるため、健全木の共振周波数Fと、検出した共振周波数Fとを比較することにより、樹幹内にどのような異常が生じているかも、ある程度推測可能になる。ちなみに、樹幹内の腐朽は多くの樹木に生じる異常であるため、上記診断装置4では、腐朽した樹木1の特性を樹幹内診断に用いている。   Since the probability of occurrence of these abnormal states varies greatly depending on the type of the tree 1, what kind of abnormality is occurring in the trunk by comparing the resonance frequency F of the healthy tree with the detected resonance frequency F. It becomes possible to guess to some extent. Incidentally, since decay in the trunk is an abnormality that occurs in many trees, the diagnostic device 4 uses the characteristics of the decayed tree 1 for in-trunk diagnosis.

次に、樹幹2に接触させる必要のない受振手段であるマイクロホン7を用いた樹幹内診断方法(音響法)と、樹幹2に接触させる必要がある受振手段である加速度ピックアップセンサ29を用いた樹幹内診断方法(振動法)との比較例について、以下に説明する。図5(A)は振動法での樹幹内診断方法を示した模式図であり、(B)は音響法での樹幹内診断方法を示した模式図である。   Next, an in-tree diagnostic method (acoustic method) using the microphone 7 that is a vibration receiving means that does not need to be in contact with the trunk 2 and a tree trunk that uses the acceleration pickup sensor 29 that is a vibration receiving means that needs to be in contact with the trunk 2 A comparative example with the internal diagnosis method (vibration method) will be described below. FIG. 5A is a schematic diagram showing an in-tree diagnostic method using a vibration method, and FIG. 5B is a schematic diagram showing an in-tree diagnostic method using an acoustic method.

診断対象の樹木1としては、直径Dが18cmの向上ヒノキを用い、樹幹2内に三日月状の隙間Sを切抜形成し、樹幹2内部が腐朽しているのを同様の状態にして1次ピークPが920〜960Hz、2次ピークPが1180〜1220Hz、3次ピークPが1460〜1540Hzとなる状態にした。そして、樹幹2の打撃箇所Iを同一にし、振り子を用いて上記打撃箇所Iを略一定の力で打撃して、比較実験を行った。 As the tree 1 to be diagnosed, an improved cypress with a diameter D of 18 cm is used, a crescent-shaped gap S is cut out in the trunk 2, and the inside of the trunk 2 is decayed in the same state and the primary peak P 1 was 920 to 960 Hz, secondary peak P 2 was 1180 to 1220 Hz, and tertiary peak P 3 was 1460 to 1540 Hz. And the hit | damage location I of the trunk 2 was made the same, the said hit location I was hit with the substantially constant force using the pendulum, and the comparative experiment was done.

上記比較実験において、振動法では、加速度ピックアップセンサ29(小野測器社製NP400)をFFTアナライザ31(小野測器社製CF1200)に接続し、樹幹2周囲上における等間隔な計60点において上記加速度ピックアップ29を押し当て、1次ピークPにおける強度及び2次ピークPにおける強度を計測した。 In the above comparative experiment, in the vibration method, the acceleration pickup sensor 29 (NP 400 manufactured by Ono Sokki Co.) is connected to the FFT analyzer 31 (CF 1200 manufactured by Ono Sokki Co., Ltd.), and the above-mentioned 60 points are equally spaced around the trunk 2. The acceleration pickup 29 was pressed to measure the intensity at the primary peak P 1 and the intensity at the secondary peak P 2 .

一方、音響法では、樹幹2からマイクロホン7を5cm又は30cmに離して設置し、各距離において1次ピークP及び2次ピークPにおける強度を計測した。なお、マイクロホン7(多方位からの音波を受振可能な無指向性のマイクロホン)をパソコン6に接続し、受振した音波を周波数分析プログラム(フリーウェアであるWaveSpectra)で周波数分析して1次ピークP及び2次ピークPの強度を算出した。 On the other hand, in the acoustic method, the microphone 7 was placed 5 cm or 30 cm away from the trunk 2 and the intensity at the primary peak P 1 and the secondary peak P 2 was measured at each distance. A microphone 7 (an omnidirectional microphone capable of receiving sound waves from multiple directions) is connected to the personal computer 6, and the received sound waves are subjected to frequency analysis with a frequency analysis program (WaveSpectra, which is freeware). It was calculated intensity of 1 and secondary peaks P 2.

図6(A)は振動法での各計測点における1次ピーク及び2次ピークの強度を示した特性グラフであり、(B)は樹幹から5cm離してマイクロホンを設置した場合の音響法での各計測点における1次ピーク及び2次ピークの強度を示した特性グラフであり、(C)は樹幹から30cm離してマイクロホンを設置した場合の音響法での各計測点における1次ピーク及び2次ピークの強度を示した特性グラフでる。同図(A)に示すように、振動法においては、1次ピークP及び2次ピークPの強度が樹幹2周囲で一定せず、1次ピークPの強度が低く、極大値として検出しずらい箇所が幾つかあった。このような場合、2次ピークPを1次ピークPとして検出してしまう恐れがあり、正確な樹幹内診断を行うことが困難である。 FIG. 6A is a characteristic graph showing the intensity of the primary peak and the secondary peak at each measurement point in the vibration method, and FIG. 6B is an acoustic method when a microphone is installed 5 cm away from the trunk. It is the characteristic graph which showed the intensity | strength of the primary peak in each measurement point, and a secondary peak, (C) is the primary peak and secondary in each measurement point in the acoustic method at the time of 30-cm away from a trunk and installing a microphone. It is the characteristic graph which showed the intensity | strength of the peak. As shown in FIG. 5A, in the vibration method, the intensity of the primary peak P 1 and the secondary peak P 2 is not constant around the trunk 2, and the intensity of the primary peak P 1 is low and the maximum value is obtained. There were some places that were difficult to detect. In this case, there is a fear that detects the second peak P 2 as the primary peak P 1, it is difficult to perform accurate trunk in diagnosis.

一方、音響法においては、同図(B),(C)に示すように、樹幹2周囲全体にわたり安定して高い強度の1次ピークPが検出され、さらに、マイクロホン7を5cm離した場合(同図(B)参照)よりも30cm(同図(C)参照)離した場合の方が、2次ピークPに対して安定した高い強度の1次ピークPが検出されている。 On the other hand, in the acoustic method, as shown in FIGS. 2B and 2C, when the primary peak P 1 having high intensity is stably detected over the entire circumference of the trunk 2 and the microphone 7 is further separated by 5 cm. A primary peak P 1 having a high intensity that is stable with respect to the secondary peak P 2 is detected when separated by 30 cm (see FIG. 10C) than (see FIG. 10B).

上記結果から、振動法よりも音響法が正確に共振周波数Fを検出することができとともに、音響法においても樹幹2から所定距離以上離した方が共振周波数Fの検出がより正確にできることが分かる。   From the above results, it can be seen that the acoustic method can detect the resonance frequency F more accurately than the vibration method, and that the resonance frequency F can be detected more accurately when the acoustic method is separated from the trunk 2 by a predetermined distance or more. .

本発明を適用した樹幹内診断方法の模式図である。It is a schematic diagram of the in-tree diagnosis method to which the present invention is applied. 診断装置の構成を示すブロック図である。It is a block diagram which shows the structure of a diagnostic apparatus. 心材腐朽が発生している樹木の幹をハンマーで横方向から打撃した際に発生する打撃音の周波数スペクトルの一例を表す特性グラフである。It is a characteristic graph showing an example of the frequency spectrum of the percussion sound generated when a tree trunk in which heartwood decay has occurred is hit with a hammer from the lateral direction. 本診断装置のユーザインターフェース画面を示している。The user interface screen of this diagnostic apparatus is shown. (A)は振動法での樹幹内診断方法を示した模式図であり、(B)は音響法での樹幹内診断方法を示した模式図である。(A) is the schematic diagram which showed the in-tree diagnostic method by the vibration method, (B) is the schematic diagram which showed the in-tree diagnostic method by the acoustic method. (A)は振動法での各計測点における1次ピーク及び2次ピークの強度を示した特性グラフであり、(B)は樹幹から5cm離してマイクロホンを設置した場合の音響法での各計測点における1次ピーク及び2次ピークの強度を示した特性グラフであり、(C)は樹幹から30cm離してマイクロホンを設置した場合の音響法での各計測点における1次ピーク及び2次ピークの強度を示した特性グラフでる。(A) is a characteristic graph showing the intensity of the primary peak and the secondary peak at each measurement point in the vibration method, and (B) is each measurement in the acoustic method when a microphone is installed 5 cm away from the trunk. It is the characteristic graph which showed the intensity | strength of the primary peak in a point, and a secondary peak, (C) is the primary peak and secondary peak in each measurement point in the acoustic method at the time of 30-cm away from a trunk and installing a microphone. It is the characteristic graph which showed intensity | strength. 従来公知の樹幹内診断方法の模式図である。It is a schematic diagram of a conventionally well-known in-tree diagnosis method.

2 樹幹(幹)
7 マイクロホン
9 受振手段
12 データベース
13 分析手段
17 処理部
18 除去部
19 検出部
D 樹幹直径(径,直径)
F 共振周波数(横打撃共振周波数)
2 Tree trunk (trunk)
7 Microphone 9 Vibration receiving means 12 Database 13 Analyzing means 17 Processing part 18 Removal part 19 Detection part D Trunk diameter (diameter, diameter)
F Resonance frequency (lateral impact resonance frequency)

Claims (8)

樹幹(2)の周囲より打撃によって樹幹(2)内に振動を加え、該振動を受振して周波数成分を分析することにより樹幹(2)内が正常であるか否かの診断を非破壊で行う樹幹内診断方法において、樹幹(2)の周囲に非接触状態で配置され多方位から音波を受振可能なマイクロホン(7)により前記振動を打撃音の音波として受振する際に正確な周波数成分の分析を行うことを目的として無指向性のマイクロホン(7)を用い、受振した音波の周波数成分から共振周波数(F)を検出し、該共振周波数(F)と、樹幹(2)内が正常である場合における共振周波数(F)とを比較することにより樹幹(2)内の診断を行うにあたり、樹幹(2)内が腐朽している場合における共振周波数(F)の減少率と、樹幹断面に占める腐朽部分の面積の割合との関係を用いて前記診断を行う樹幹内診断方法。   Non-destructive diagnosis of whether or not the inside of the trunk (2) is normal by applying vibration to the trunk (2) by hitting from around the trunk (2), receiving the vibration and analyzing the frequency component In the trunk diagnostic method to be performed, when the vibration is received as a sound wave of the hitting sound by the microphone (7) arranged in a non-contact state around the trunk (2) and capable of receiving a sound wave from multiple directions, an accurate frequency component For the purpose of analysis, a non-directional microphone (7) is used to detect the resonance frequency (F) from the frequency component of the received sound wave, and the resonance frequency (F) and the trunk (2) are normal. When making a diagnosis in the trunk (2) by comparing the resonance frequency (F) in a certain case, the reduction rate of the resonance frequency (F) in the case where the trunk (2) is decayed and the cross section of the trunk Occupied area of decay Stem the diagnostic method of performing the diagnosis using the relationship between the ratio. 受振した音波の周波数成分のうちから、樹幹(2)の径(D)、材質等の構成から共振周波数(F)となることが想定し難い低周波成分及び高周波成分を除去し、共振周波数(F)の検出精度を高めるにあたって、腐朽による減少率を考慮してもその共振周波数(F)となることが尚想定し難い低周波成分及び高周波成分をカットする請求項1の樹幹内診断方法。   Among the frequency components of the received sound wave, the low frequency component and the high frequency component which are difficult to assume the resonance frequency (F) from the configuration of the diameter (D), material, etc. of the trunk (2) are removed, and the resonance frequency ( The in-tree diagnostic method according to claim 1, wherein in increasing the detection accuracy of F), the low-frequency component and the high-frequency component that are still difficult to assume that the resonance frequency (F) is obtained even when the reduction rate due to decay is taken into account. 受振した音波の周波数成分における極大値を示す周波数のうちで、最も低い周波数を共振周波数(F)とした請求項1又は2の何れかに記載の樹幹内診断方法。   The in-tree diagnosis method according to claim 1, wherein the lowest frequency among the frequencies indicating the maximum value in the frequency component of the received sound wave is the resonance frequency (F). 打撃によって樹幹(2)内に加えられた振動を受振する受振手段(9)と、該振動から周波数成分を分析する分析手段(13)とを備え、樹幹(2)内が正常であるか否かの診断を非破壊で行う樹幹内診断装置において、受振手段(9)が、樹幹(2)の周囲に非接触状態で配置されて樹幹(2)内の振動を打撃音の音波として受振する無指向性のマイクロホン(7)であり、診断結果を表示するユーザインターフェース画面を備え、前記分析手段(13)が樹幹(2)の共振周波数(F)を検出する検出部(19)を備え、該共振周波数(F)と、樹幹(2)内が正常である場合における共振周波数(F)とを比較することにより樹幹(2)内の診断を行うにあたり、樹幹(2)が正常である場合の共振周波数(F)がデータベース(12)に蓄積されるとともに、樹幹(2)内が腐朽している場合における共振周波数(F)の減少率と、樹幹断面に占める腐朽部分の面積の割合との関係を用いて前記診断を行うように該分析手段(13)を構成し、所定音量以上の音波の受信手段(9)への入力を監視して、所定音量以上の音波が受信手段(9)に入力されると、自動的に診断処理を開始し、診断結果をユーザインターフェース画面に表示する樹幹内診断装置。 Whether or not the trunk (2) is normal is provided with a vibration receiving means (9) for receiving vibration applied to the trunk (2) by the blow and an analysis means (13) for analyzing a frequency component from the vibration. In the in-trunk diagnostic apparatus that performs such diagnosis in a non-destructive manner, the vibration receiving means (9) is arranged in a non-contact state around the trunk (2) and receives vibration in the trunk (2) as a sound wave of a hit sound. The omnidirectional microphone (7) includes a user interface screen for displaying a diagnosis result, and the analysis means (13) includes a detection unit (19) for detecting the resonance frequency (F) of the trunk (2). When the trunk (2) is normal in making a diagnosis in the trunk (2) by comparing the resonance frequency (F) and the resonance frequency (F) when the trunk (2) is normal Resonance frequency (F) of the database (12 And the diagnosis is performed using the relationship between the reduction rate of the resonance frequency (F) when the trunk (2) is decayed and the ratio of the area of the decayed portion in the trunk section. The analysis means (13) is configured to monitor the input to the receiving means (9) of a sound wave with a predetermined volume or higher, and automatically diagnoses when a sound wave with a predetermined volume or higher is input to the receiving means (9). Intra-trunk diagnosis device that starts processing and displays the diagnosis result on the user interface screen. 前記ユーザインターフェース画面に、腐朽の有無及び樹幹断面に占める腐朽部分の面積の割合を推定値で表示する請求項4の樹幹内診断装置。 The in-tree diagnostic device according to claim 4 , wherein on the user interface screen, the presence / absence of decay and the ratio of the area of the decayed portion in the trunk section are displayed as estimated values. 分析手段(13)が、受振した音波の周波数成分のうちから、樹幹(2)の径(D)、材質等の構成から共振周波数(F)となることが想定し難い低周波数成分及び高周波数成分を除去するにあたって、腐朽による減少率を考慮してもその共振周波数(F)となることが尚想定し難い低周波成分及び高周波成分をカットする除去部(18)を備えた請求項4又は5の何れかに記載の樹幹内診断装置。 Of the frequency components of the received sound wave, the analysis means (13) is unlikely to have a resonance frequency (F) due to the configuration of the diameter (D), material, etc. of the trunk (2). when removing the component, removing unit for cutting a still assumed hard low frequency components and high frequency components also becomes the resonance frequency (F) taking into account the reduction rate due decay (18) equipped with claim 4 or The in-tree diagnostic device according to any one of 5 . 検出部(19)が、受振した音波の周波数成分における極大値を示す周波数のうちで最も低い周波数を共振周波数(F)として検出する請求項4乃至6の何れかに記載の樹幹内診断装置。 The in-tree diagnosis device according to any one of claims 4 to 6 , wherein the detection unit (19) detects the lowest frequency among the frequencies indicating the maximum value in the frequency component of the received sound wave as the resonance frequency (F). 分析手段(13)が、音波信号をフーリエ変換処理して周波数成分を算出する処理部(17)を備えた請求項4乃至6の何れかに記載の樹幹内診断装置。 The in-tree diagnostic apparatus according to any one of claims 4 to 6 , wherein the analyzing means (13) includes a processing unit (17) that calculates a frequency component by performing a Fourier transform process on the sound wave signal.
JP2007180478A 2007-07-10 2007-07-10 Intra-tree diagnostic method and apparatus Active JP4669928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180478A JP4669928B2 (en) 2007-07-10 2007-07-10 Intra-tree diagnostic method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180478A JP4669928B2 (en) 2007-07-10 2007-07-10 Intra-tree diagnostic method and apparatus

Publications (3)

Publication Number Publication Date
JP2009019881A JP2009019881A (en) 2009-01-29
JP2009019881A5 JP2009019881A5 (en) 2010-03-18
JP4669928B2 true JP4669928B2 (en) 2011-04-13

Family

ID=40359663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180478A Active JP4669928B2 (en) 2007-07-10 2007-07-10 Intra-tree diagnostic method and apparatus

Country Status (1)

Country Link
JP (1) JP4669928B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636148A (en) * 2012-04-16 2012-08-15 安徽农业大学 Nondestructive measurement method for tree deformation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280407B2 (en) * 2010-06-09 2013-09-04 日本電信電話株式会社 Damage detection method, damage detection apparatus and program for columnar structure

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293151A (en) * 1986-06-12 1987-12-19 Nippon Telegr & Teleph Corp <Ntt> Method and device for diagnosing deterioration of article
JPS63168555A (en) * 1986-12-29 1988-07-12 Taisei Corp Diagnosis of separation for finished surface of building
JPH07103945A (en) * 1992-02-26 1995-04-21 Shiro Aratake Simplified classification of sawn wood according to grade
JPH10318993A (en) * 1997-03-19 1998-12-04 Fujitsu Ltd Product inspection instrument and recording medium for recording product inspection program
JP2000131291A (en) * 1998-10-23 2000-05-12 Mitsubishi Electric Corp Material inspection device of casting
JP2001201490A (en) * 2000-01-23 2001-07-27 Yoshitaka Hirano Apparatus with sound-recognizing device for detecting concrete defect
JP2002286699A (en) * 2001-03-28 2002-10-03 Railway Technical Res Inst Apparatus and method of striking used for evaluation of soundness of concrete
JP2002544481A (en) * 1999-05-11 2002-12-24 リン、フランク Material inspection device
JP2005098855A (en) * 2003-09-25 2005-04-14 Koden Electronics Co Ltd Vibration inspection apparatus of inside of solid
JP2005207870A (en) * 2004-01-22 2005-08-04 Sysmic:Kk Exfoliation/cavity detection method and device by hammering method
JP2006242580A (en) * 2005-02-28 2006-09-14 Nsk Ltd Method and device for inspecting rolling member and rolling device
JP2006337102A (en) * 2005-05-31 2006-12-14 Akebono Brake Ind Co Ltd Loose detection device
JP2007064672A (en) * 2005-08-29 2007-03-15 Kozo Yoshizawa Method of estimating hollow state of tree trunk, its device and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581929B2 (en) * 1987-09-07 1997-02-19 株式会社 東横エルメス Measuring device for concrete thickness and intrinsic crack depth

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293151A (en) * 1986-06-12 1987-12-19 Nippon Telegr & Teleph Corp <Ntt> Method and device for diagnosing deterioration of article
JPS63168555A (en) * 1986-12-29 1988-07-12 Taisei Corp Diagnosis of separation for finished surface of building
JPH07103945A (en) * 1992-02-26 1995-04-21 Shiro Aratake Simplified classification of sawn wood according to grade
JPH10318993A (en) * 1997-03-19 1998-12-04 Fujitsu Ltd Product inspection instrument and recording medium for recording product inspection program
JP2000131291A (en) * 1998-10-23 2000-05-12 Mitsubishi Electric Corp Material inspection device of casting
JP2002544481A (en) * 1999-05-11 2002-12-24 リン、フランク Material inspection device
JP2001201490A (en) * 2000-01-23 2001-07-27 Yoshitaka Hirano Apparatus with sound-recognizing device for detecting concrete defect
JP2002286699A (en) * 2001-03-28 2002-10-03 Railway Technical Res Inst Apparatus and method of striking used for evaluation of soundness of concrete
JP2005098855A (en) * 2003-09-25 2005-04-14 Koden Electronics Co Ltd Vibration inspection apparatus of inside of solid
JP2005207870A (en) * 2004-01-22 2005-08-04 Sysmic:Kk Exfoliation/cavity detection method and device by hammering method
JP2006242580A (en) * 2005-02-28 2006-09-14 Nsk Ltd Method and device for inspecting rolling member and rolling device
JP2006337102A (en) * 2005-05-31 2006-12-14 Akebono Brake Ind Co Ltd Loose detection device
JP2007064672A (en) * 2005-08-29 2007-03-15 Kozo Yoshizawa Method of estimating hollow state of tree trunk, its device and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636148A (en) * 2012-04-16 2012-08-15 安徽农业大学 Nondestructive measurement method for tree deformation
CN102636148B (en) * 2012-04-16 2015-03-04 安徽农业大学 Nondestructive measurement method for tree deformation

Also Published As

Publication number Publication date
JP2009019881A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US10379000B2 (en) Method for rolling bearing fault detection based on enhancing statistical asymmetry
CN103575523A (en) Rotating machine fault diagnosis method based on Fast ICA-spectrum kurtosis-envelope spectrum analysis
US8942939B2 (en) Real-time detection system and the method thereof
JP6281273B2 (en) Acoustic device inspection apparatus, acoustic device inspection method, and acoustic device inspection program
JP2010271116A (en) Blow hammer for diagnosis of integrity, and method for diagnosis of integrity in concrete structure using the same
JP2017166960A (en) Measurement diagnostic apparatus and measurement diagnostic method
JP4669928B2 (en) Intra-tree diagnostic method and apparatus
JP2009019881A5 (en)
JP3920715B2 (en) Vibration signal processing method
KR101444506B1 (en) Method for monitoring status of a bearing apparatus for monitoring status of a bearing
JP5996569B2 (en) Soundness inspection device for concrete structure, hammer for soundness inspection and soundness inspection method
JP2013253947A (en) Inspection method of concrete structure, and inspection device of concrete structure
JP2010203866A (en) Device for detection of abnormal condition in apparatus
JP2006216039A (en) System for implementing condition monitoring activity
JP6389780B2 (en) Signal analysis device and knocking detection device
JP6273167B2 (en) Knocking detection device and knocking detection method
JP2022174981A (en) Clamping-bolt tightening state determination device, clamping-bolt fastening state determination system, and clamping-bolt fastening state determination method
JP2012177653A (en) Acoustic diagnosis method, program, and device
JP2001330595A (en) Hammering test method
JP2008286619A (en) Property evaluation apparatus and method
WO2004013589A1 (en) Vibration detecting method and device
WO2011125233A1 (en) Abnormality detecting device for equipment
KR102718880B1 (en) Apparatus for diagnosing defects of rolling bearing of motor for ship
JP2003083801A (en) Failure detection device and failure detection method
JP7357341B2 (en) Acoustic inspection device and method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100129

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101130

R150 Certificate of patent or registration of utility model

Ref document number: 4669928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250