JPH08219146A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device

Info

Publication number
JPH08219146A
JPH08219146A JP4650595A JP4650595A JPH08219146A JP H08219146 A JPH08219146 A JP H08219146A JP 4650595 A JP4650595 A JP 4650595A JP 4650595 A JP4650595 A JP 4650595A JP H08219146 A JPH08219146 A JP H08219146A
Authority
JP
Japan
Prior art keywords
dynamic pressure
resin
bearing device
shaft body
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4650595A
Other languages
Japanese (ja)
Inventor
Norihisa Tsutsui
徳久 筒井
Hironori Kurosawa
博徳 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP4650595A priority Critical patent/JPH08219146A/en
Publication of JPH08219146A publication Critical patent/JPH08219146A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To form a resin layer on a dynamical pressure surface simply, at a low cost, thickly and with high accuracy by forming a shaft body which consists of aluminum or aluminum alloy, and also attaching lubricative resin on the outer circumference of a shaft body. CONSTITUTION: A dynamic pressure generating groove 33 is formed in a closing condition in which the groove 33 is not communicated with the axial direction both end parts of the dynamical pressure surface of a shaft inserting body 32 side on which the groove 33 is formed. In such dynamical pressure bearing device, tightly sticking property of lubricative resin 34 is improved while utilizing rough surface of a bearing body 31 made of aluminum or aluminum alloy, the lubricative resin 34 is formed without pre-working, and also cut working is enabled. When cut working is carried on an outer circumference, a dynamical pressure generating groove is formed simultaneously, and size accuracy is improved by cut working to more extent. Since dynamical frictional coefficient of the lubricative resin 34 is set to 0.6 and less and a bending elastic coefficient is set to 5 GPa or more, generation of seize and the like is eliminated at the time of rotation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軸体と軸嵌挿体とを動
圧により相対的に回転自在に支承する動圧軸受装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device for rotatably supporting a shaft body and a shaft fitting insert body by a dynamic pressure.

【0002】[0002]

【従来の技術】ポリゴンミラー駆動用モータやハードデ
ィスク駆動モータ等は、高精度かつ高速回転が要求され
ることから、空気あるいはオイル等の流体を利用した動
圧軸受装置が用いられつつある。この動圧軸受装置を用
いた装置例として、例えば図1に示されているようなポ
リゴンミラー駆動用モータがある。この図1に示された
ポリゴンミラー駆動用モータは、デジタルコピー、レー
ザプリンタ等におけるレーザスキャナーとを構成するも
のであって、10000〜3000RPM程度の高速回
転をするため、軸受には非接触で回転支持可能な空気動
圧軸受等が用いられている。
2. Description of the Related Art Since a polygon mirror driving motor, a hard disk driving motor and the like are required to rotate with high precision and high speed, a dynamic pressure bearing device using a fluid such as air or oil is being used. An example of a device using this dynamic pressure bearing device is a polygon mirror drive motor as shown in FIG. 1, for example. The motor for driving the polygon mirror shown in FIG. 1 constitutes a laser scanner in a digital copy, a laser printer, etc. Since it rotates at a high speed of about 10,000 to 3000 RPM, it rotates without contacting the bearing. A supportable air dynamic pressure bearing or the like is used.

【0003】すなわち図1において、ベース8にネジ止
め固定された軸受5内に、数μm〜十数μmの隙間を隔
ててロータ2が挿入されており、当該ロータ2の外周面
14に形成されたスパイラル溝15と軸受5の内周面と
で構成される空気動圧軸受4によって上記ロータ2が高
速回転可能に支承される構成になされている。さらに上
記ベース8の中央柱状部の外周には、駆動コイル9が嵌
合固定されており、その駆動コイル9に周対向するよう
にして、駆動用の磁気回路をつくる環状マグネット10
が配置されている。この環状マグネット10は、上記ロ
ータ2の内部に鉄製のヨーク19を介して配置されてお
り、上記駆動コイル9とともにモータ駆動部を構成して
いる。
That is, in FIG. 1, a rotor 2 is inserted into a bearing 5 fixed to a base 8 with a screw with a gap of several μm to several tens of μm, and is formed on an outer peripheral surface 14 of the rotor 2. The rotor 2 is rotatably supported by the air dynamic pressure bearing 4 which is composed of the spiral groove 15 and the inner peripheral surface of the bearing 5. Further, a drive coil 9 is fitted and fixed on the outer periphery of the central columnar portion of the base 8, and the annular magnet 10 forms a magnetic circuit for drive so as to face the drive coil 9 in the circumferential direction.
Is arranged. The annular magnet 10 is arranged inside the rotor 2 via a yoke 19 made of iron, and constitutes a motor drive unit together with the drive coil 9.

【0004】また上記ロータ2の先端部(図示上端部)
には凸部13が設けられており、この凸部13に対して
ポリゴンミラー1が嵌合されている。このポリゴンミラ
ー1上には、波形ばね17を介してバランスプレート1
6が同軸に載置されており、そのバランスプレート16
側から差し込まれた固定ネジ18がロータ2の凸部13
に螺着されることによってポリゴンミラー1の固定が行
われている。
The tip of the rotor 2 (the upper end in the figure)
Is provided with a convex portion 13, and the polygon mirror 1 is fitted into the convex portion 13. The balance plate 1 is provided on the polygon mirror 1 via a wave spring 17.
6 is mounted coaxially and its balance plate 16
The fixing screw 18 inserted from the side is the convex portion 13 of the rotor 2
The polygon mirror 1 is fixed by being screwed on.

【0005】さらに上記ベース8の中央柱状部の上部外
周及びバランスプレート16の内周には、一対の環状マ
グネット11,12が周対向するように取り付けられて
いる。これらの各環状マグネット11,12には、軸方
向に極性を逆にして着磁が行われており、これによって
磁気スラスト軸受が構成されている。
Further, a pair of annular magnets 11 and 12 are attached to the outer periphery of the upper part of the central columnar portion of the base 8 and the inner periphery of the balance plate 16 so as to face each other. The respective annular magnets 11 and 12 are magnetized by reversing the polarities in the axial direction, thereby forming a magnetic thrust bearing.

【0006】このような動圧軸受において、アルミニウ
ム材等の金属動圧面に樹脂層をコーティングあるいは一
体成形し、起動停止時の摩耗を防止するとともに大きな
外乱による接触事故においても軸受の機能を損ねること
なく長寿命化を可能とするようにした動圧軸受が従来か
ら提案されている。
In such a dynamic pressure bearing, a metal dynamic pressure surface such as an aluminum material is coated or integrally molded with a resin layer to prevent wear at the time of starting and stopping and to impair the function of the bearing even in the case of a contact accident due to a large disturbance. Conventionally, there has been conventionally proposed a dynamic pressure bearing which enables a longer life.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
ように動圧面に樹脂コーティングを施す場合には、必要
な厚さの樹脂膜を得るために、例えば何回も塗装を繰り
返さねばならず生産性が悪いという問題がある。一方、
樹脂膜の厚さを小さくすれば切削加工したときに下地面
が露出するおそれがある。従って従来では、動圧面に直
接塗装等を行うことはできず前加工を要している。さら
に摺動性の樹脂材料は一般に難接着性であるため、接着
力を増強するための対策を講じる必要がある。
However, when a resin coating is applied to the dynamic pressure surface as described above, in order to obtain a resin film having a required thickness, for example, the coating must be repeated many times and the productivity is improved. There is a problem that is bad. on the other hand,
If the thickness of the resin film is reduced, the underlying surface may be exposed during cutting. Therefore, conventionally, the dynamic pressure surface cannot be directly coated, and pre-processing is required. Further, since the slidable resin material is generally difficult to adhere, it is necessary to take measures to enhance the adhesive force.

【0008】金属動圧面に樹脂を一体成形することも考
えられるが、その場合には樹脂材料の成形収縮によって
金属動圧面との密着性が悪くなる。また一体成形による
樹脂厚を厚くした場合には、樹脂の熱膨張が金属に比較
して大きいために、動圧を得るための隙間を狭くするこ
とができなくなるという問題を招来する。
It may be possible to integrally mold a resin on the metal dynamic pressure surface, but in that case, the adhesion with the metal dynamic pressure surface deteriorates due to the molding shrinkage of the resin material. In addition, when the resin is thickened by integral molding, the thermal expansion of the resin is larger than that of metal, which causes a problem that the gap for obtaining the dynamic pressure cannot be narrowed.

【0009】そこで本発明は、動圧面に樹脂層を、簡易
・低コストでしかも厚肉で高精度に成形することができ
るようにした動圧軸受装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a dynamic pressure bearing device capable of molding a resin layer on a dynamic pressure surface with high precision with a simple, low cost and thick wall.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
本第1発明にかかる手段は、軸体と軸嵌挿体とを動圧に
より相対的に回転自在に支承するものであって、上記軸
体の外周面及び軸嵌挿体の内周面からなる動圧面の少な
くとも一方側に、動圧発生用の溝が形成された動圧軸受
装置において、上記軸体がアルミニウム又はアルミニウ
ム合金からなるとともに、当該軸体の外周面に潤滑性樹
脂が被着された構成になされている。
Means for Solving the Problems In order to achieve the above object, the means according to the first aspect of the present invention rotatably supports a shaft body and a shaft fitting insert body by a dynamic pressure. In a dynamic pressure bearing device in which a groove for dynamic pressure generation is formed on at least one side of a dynamic pressure surface composed of an outer peripheral surface of a shaft body and an inner peripheral surface of a shaft fitting body, the shaft body is made of aluminum or aluminum alloy. At the same time, the outer peripheral surface of the shaft body is coated with a lubricating resin.

【0011】このとき上記潤滑性樹脂としては、動摩擦
係数が0.6以下の樹脂またはその樹脂に耐摩耗性及び
潤滑性を向上させるための改質材を充填した複合化樹脂
が採用される。
At this time, as the above-mentioned lubricating resin, a resin having a dynamic friction coefficient of 0.6 or less or a composite resin obtained by filling the resin with a modifier for improving wear resistance and lubricity is adopted.

【0012】さらに本第2発明にかかる手段は、軸体と
軸嵌挿体とを動圧により相対的に回転自在に支承するも
のであって、上記軸体の外周面及び軸嵌挿体の内周面か
らなる動圧面の少なくとも一方側に、動圧発生用の溝が
形成された動圧軸受装置において、上記軸体が高剛性樹
脂からなるとともに、当該軸体の外周面に潤滑性樹脂が
被着された構成になされている。
Further, the means according to the second aspect of the present invention rotatably supports the shaft body and the shaft fitting insert body by a dynamic pressure, wherein the outer peripheral surface of the shaft body and the shaft fitting insert body are supported. In a dynamic pressure bearing device in which a groove for dynamic pressure generation is formed on at least one side of a dynamic pressure surface formed of an inner peripheral surface, the shaft body is made of high-rigidity resin, and a lubricating resin is provided on the outer peripheral surface of the shaft body. It is configured to be attached.

【0013】このとき高剛性樹脂は、前述した潤滑性樹
脂と同様の各樹脂またはこれらの樹脂に充填材を複合化
した樹脂が用いられ、回転中の回転部材が軸体と衝突し
て変形を起こさないように曲げ弾性率が5GPa(ギガ
パスカル)以上の樹脂が用いられる。
At this time, as the high-rigidity resin, each resin similar to the above-mentioned lubricating resin or a resin obtained by compounding a filler with these resins is used, and the rotating member during rotation collides with the shaft body to be deformed. A resin having a flexural modulus of 5 GPa (gigapascal) or more is used so as not to cause it.

【0014】[0014]

【作用】このような第1発明にかかる手段においては、
アルミニウム又はアルミニウム合金からなる軸体の粗い
表面を利用して潤滑性樹脂との密着性が高められ、厚肉
かつ高精度の潤滑性樹脂が前加工なしで成形可能となる
とともに、切削加工も可能となる。外周部分の切削加工
時には、動圧発生用溝を同時に形成することができる。
In the means according to the first aspect of the invention,
The rough surface of the shaft body made of aluminum or aluminum alloy is used to improve the adhesion to the lubrication resin, making it possible to form a thick and highly accurate lubrication resin without pre-processing, and it is also possible to cut Becomes At the time of cutting the outer peripheral portion, the dynamic pressure generating groove can be formed at the same time.

【0015】このとき潤滑性樹脂の動摩擦係数が0.6
以下に設定されていれば、焼き付きを一層生じなくさせ
ることができる。
At this time, the dynamic friction coefficient of the lubricating resin is 0.6.
If it is set below, it is possible to further prevent the image sticking.

【0016】また潤滑性樹脂は厚いほど耐焼き付き性に
優れるが、その潤滑性樹脂をインサート形成すれば安価
で厚い潤滑性樹脂膜が得られ、内側金属の面精度が多少
悪くても塗装のような前加工を行う必要がない。
Further, the thicker the lubricating resin is, the better the seizure resistance is. However, if the lubricating resin is insert-formed, a thick lubricating resin film can be obtained at a low cost, and even if the surface precision of the inner metal is slightly poor, it may be painted. There is no need to perform pre-processing.

【0017】さらに動圧発生用溝が、動圧面の軸方向両
端部に連通しない閉塞状態にて形成されていれば、起動
・停止時等における溝パターン近傍の摩耗を低減し安定
した軸受性能を維持することができる。
Further, if the dynamic pressure generating groove is formed in a closed state so as not to communicate with both axial end portions of the dynamic pressure surface, wear in the vicinity of the groove pattern at the time of starting / stopping is reduced and stable bearing performance is obtained. Can be maintained.

【0018】また第2発明にかかる手段においては、軸
体の高剛性樹脂と潤滑性樹脂とが溶融接着により密着性
が高められ、厚肉かつ高精度の潤滑性樹脂が前加工なし
で成形可能となるとともに、切削加工も可能となる。外
周部分の切削加工時には、動圧発生用溝を同時に形成す
ることができる。
In the means according to the second aspect of the present invention, the high rigidity resin and the lubricating resin of the shaft body are melt-bonded to enhance the adhesion, and the thick and highly accurate lubricating resin can be molded without pre-processing. In addition, cutting processing is possible. At the time of cutting the outer peripheral portion, the dynamic pressure generating groove can be formed at the same time.

【0019】このとき高剛性樹脂及び潤滑性樹脂のベー
スとなる樹脂材を共通とした場合には、密着性が一層高
められるようになっている。
At this time, if the resin material serving as the base of the high-rigidity resin and the lubricating resin is common, the adhesion is further enhanced.

【0020】高剛性樹脂は、動摩擦係数が0.6以下か
つ曲げ弾性率が5GPa以上に設定されていれば、焼き
付き等を一層生じなくさせることができるとともに、軸
体と軸嵌挿体との相対回転時における衝突による変形を
なくすことができる。
If the high-rigidity resin has a dynamic friction coefficient of 0.6 or less and a bending elastic modulus of 5 GPa or more, seizure and the like can be further prevented, and at the same time, the shaft body and the shaft fitting body can be prevented. It is possible to eliminate deformation due to collision during relative rotation.

【0021】また特に高剛性樹脂の膜厚を3μm以上に
設定すれば、焼き付き等を確実に生じなくさせることが
できる。
Further, particularly when the film thickness of the high-rigidity resin is set to 3 μm or more, seizure or the like can be surely prevented.

【0022】[0022]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。本発明の適用例としては図1におけるポリ
ゴンミラー駆動用モータがあるが、当該モータの全体構
造は従来技術の欄で既に説明したので省略することと
し、以下、本発明の要部に関する実施例を説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings. As an application example of the present invention, there is a polygon mirror driving motor in FIG. 1. However, since the entire structure of the motor has already been described in the section of the prior art, it will be omitted. explain.

【0023】図2に示されている動圧軸受装置では、空
気動圧軸受装置に本発明を適用したものであって、固定
部材(ステータ)としての軸体31に対し、回転部材
(ロータ)としての軸嵌挿体32が、空気動圧により回
転自在に支承されるように構成されている。すなわち上
記軸体31の外周面及び軸嵌挿体32の内周面は、それ
ぞれ動圧面を構成しており、軸嵌挿体32の内周面側の
動圧面に無電解ニッケルメッキが施されているととも
に、動圧発生用の溝33が切削加工により形成されてい
る。
In the dynamic pressure bearing device shown in FIG. 2, the present invention is applied to an air dynamic pressure bearing device, and a rotating member (rotor) is used with respect to a shaft body 31 as a fixed member (stator). The shaft fitting insert 32 as is rotatably supported by pneumatic pressure. That is, the outer peripheral surface of the shaft body 31 and the inner peripheral surface of the shaft fitting insert 32 respectively form dynamic pressure surfaces, and the dynamic pressure surfaces on the inner peripheral surface side of the shaft fitting insert 32 are electroless nickel plated. In addition, the groove 33 for generating dynamic pressure is formed by cutting.

【0024】このとき上記軸体31は、アルミニウム又
はアルミニウム合金から形成されており、当該軸体31
の外周面に潤滑性樹脂34が被着されている。この潤滑
性樹脂34としては、動摩擦係数が0.6以下の樹脂ま
たはそれに耐摩耗性及び潤滑性を向上させるための改質
材を充填した複合化樹脂が用いられている。
At this time, the shaft body 31 is made of aluminum or aluminum alloy, and the shaft body 31 is
Lubricating resin 34 is adhered to the outer peripheral surface of the. As the lubricating resin 34, a resin having a dynamic friction coefficient of 0.6 or less, or a composite resin filled with a modifier for improving abrasion resistance and lubricity is used.

【0025】潤滑性樹脂34は、熱硬化性プラスチック
の場合には、例えばフェノール、不飽和ポリエステル、
エポキシ樹脂、ポリイミド等が採用され、熱可塑性プラ
スチックの場合には、例えばポリスチレン、ABS樹
脂、ポリエーテルサルフォン、ポリカーボネート、ポリ
フェニレンサルファイド(PPS)、ポリエーテルエー
テルケトン(PEEK)、ポリアミド樹脂(ポリアミド
6、ポリアミド66、ポリアミド12)、ポリアセター
ル(ポリオキシメチレン)、ポリふっ化エチレン(PT
EE)、液晶樹脂(エコノール等)などが採用される。
In the case of thermosetting plastic, the lubricating resin 34 is, for example, phenol, unsaturated polyester,
Epoxy resin, polyimide, etc. are adopted, and in the case of thermoplastics, for example, polystyrene, ABS resin, polyether sulfone, polycarbonate, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyamide resin (polyamide 6, Polyamide 66, Polyamide 12), Polyacetal (Polyoxymethylene), Polyfluorinated ethylene (PT
EE), liquid crystal resin (econol, etc.), etc. are adopted.

【0026】さらに改質用の充填材としては、カーボン
繊維、カーボン粒子、アモルファスカーボン、グラファ
イト、二硫化モリブデン(Mo S2 )、ポリ四ふっ化エ
チレン(PTFE)、チタン酸カリウムなどが用いられ
る。
Further, as the filler for modification, carbon fiber, carbon particles, amorphous carbon, graphite, molybdenum disulfide (Mo S 2 ), polytetrafluoroethylene (PTFE), potassium titanate and the like are used.

【0027】また本実施例における動圧発生用溝33
は、当該動圧発生用溝33が形成されている軸嵌挿体3
2側の動圧面の軸方向両端部に連通しない閉塞状態にて
形成されている。
Further, the dynamic pressure generating groove 33 in the present embodiment.
Is a shaft fitting insert 3 in which the dynamic pressure generating groove 33 is formed.
It is formed in a closed state where it does not communicate with both axial end portions of the dynamic pressure surface on the second side.

【0028】このような第1実施例にかかる動圧軸受装
置においては、アルミニウム又はアルミニウム合金から
なる軸体31の粗い表面を利用して潤滑性樹脂34との
密着性が高められ、潤滑性樹脂34が前加工なしで成形
可能となるとともに、切削加工も可能となる。外周部分
の切削加工時には、動圧発生用溝を同時に形成すること
ができ、また切削加工により寸法精度が一層向上され
る。
In the hydrodynamic bearing device according to the first embodiment as described above, the rough surface of the shaft body 31 made of aluminum or aluminum alloy is utilized to improve the adhesion with the lubricating resin 34, and the lubricating resin 34 can be formed without pre-processing, and can be cut. At the time of cutting the outer peripheral portion, the dynamic pressure generating groove can be formed at the same time, and the dimensional accuracy is further improved by the cutting.

【0029】そしてこの第1実施例のように潤滑性樹脂
34の動摩擦係数が0.6以下に設定されていれば、回
転時における焼き付き発生等をなくすことができる。
If the dynamic friction coefficient of the lubricating resin 34 is set to 0.6 or less as in the first embodiment, the occurrence of seizure during rotation can be eliminated.

【0030】さらに本第1実施例における動圧発生用溝
33は、動圧面の軸方向両端部に連通しない閉塞状態に
て形成されているため、起動・停止時等における溝パタ
ーンと軸嵌挿体32との摺接が防止され、軸嵌挿体の摩
耗を低減し安定した軸受性能が維持されるようになって
いる。
Further, since the dynamic pressure generating groove 33 in the first embodiment is formed in a closed state so as not to communicate with both axial end portions of the dynamic pressure surface, the groove pattern and the shaft fitting insertion at the time of starting / stopping. Sliding contact with the body 32 is prevented, wear of the shaft fitting body is reduced, and stable bearing performance is maintained.

【0031】一方上記潤滑性樹脂34は、軸体31に対
するインサート形成によって厚肉かつ高精度に成形され
る。すなわちまず図3(a)のようにダイカスト成形さ
れた軸体31を、所定のインジェクション金型(図示省
略)内にインサートし、上述した潤滑性樹脂34を図3
(b)のように射出成形する。そしてその潤滑性樹脂3
4の外周面を切削加工して、図3(c)のように所定の
外径寸法に形成する。その切削加工時には動圧発生用溝
を同時形成する。
On the other hand, the above-mentioned lubricating resin 34 is thickly formed with high precision by insert forming on the shaft body 31. That is, first, the shaft body 31 die-cast as shown in FIG. 3 (a) is inserted into a predetermined injection mold (not shown), and the above-mentioned lubricous resin 34 is placed in FIG.
Injection molding is performed as in (b). And the lubricating resin 3
The outer peripheral surface of No. 4 is cut to form a predetermined outer diameter as shown in FIG. At the time of the cutting process, a groove for generating a dynamic pressure is simultaneously formed.

【0032】一方本発明の第2実施例においては、軸体
31が高剛性樹脂から形成されるとともに、当該軸体3
1の外周面に潤滑性樹脂34が膜状に被着されている。
軸体31を構成する高剛性樹脂としては、上述した第1
実施例における潤滑性樹脂またはそれに充填材を複合化
した樹脂が用いられるが、曲げ弾性率が5GPa以上を
有する樹脂が採用されている。
On the other hand, in the second embodiment of the present invention, the shaft body 31 is made of high-rigidity resin and the shaft body 3 is
Lubricant resin 34 is adhered to the outer peripheral surface of No. 1 in the form of a film.
As the high-rigidity resin that constitutes the shaft body 31, the above-mentioned first resin is used.
The lubricating resin or the resin in which the filler is compounded is used in the examples, and the resin having the flexural modulus of 5 GPa or more is used.

【0033】またこのときの充填材としては、カーボン
繊維、カーボン粒子、ガラス繊維、ガラス粒子などの無
機材料が用いられている。
As the filler at this time, an inorganic material such as carbon fiber, carbon particles, glass fiber or glass particles is used.

【0034】このような第2実施例にかかる動圧軸受装
置においては、軸体31の高剛性樹脂と潤滑性樹脂34
とが溶融接着により密着性が高められ、潤滑性樹脂34
が厚肉かつ高精度に前加工なしで成形されて切削加工も
可能となる。切削加工によれば、一層寸法精度が向上さ
れるとともに、この切削加工時には動圧発生用溝33が
同時形成されるようになっている。
In the hydrodynamic bearing device according to the second embodiment as described above, the highly rigid resin of the shaft body 31 and the lubricating resin 34 are used.
The adhesion between the and is improved by melt adhesion, and the lubricating resin 34
It is thick and can be cut with high precision without any pre-processing. According to the cutting process, the dimensional accuracy is further improved, and the dynamic pressure generating groove 33 is simultaneously formed during the cutting process.

【0035】このとき高剛性樹脂及び潤滑性樹脂のベー
スとなる樹脂材を共通としておけば、両者の密着性は一
層高められる。
At this time, if the resin material serving as the base of the high-rigidity resin and the lubricating resin is common, the adhesion between the two is further enhanced.

【0036】またこの第2実施例における高剛性樹脂
は、動摩擦係数が0.6以下で、かつ曲げ弾性率が5G
Pa以上に設定されているため、焼き付き等を生じなく
させつつ、軸体31と軸嵌挿体32との相対回転時にお
ける衝突による変形をなくすことができる。
The high-rigidity resin in the second embodiment has a dynamic friction coefficient of 0.6 or less and a flexural modulus of 5 G.
Since it is set to Pa or more, it is possible to prevent deformation due to a collision during relative rotation between the shaft body 31 and the shaft fitting body 32 while preventing seizure or the like.

【0037】例えば、図4に示されているように、加速
度10G、軸径10〜30mm及び回転数60,000/
分の駆動条件において、軸材料の曲げ弾性率(横軸)と
焼き付き確率(縦軸)との関係をとった場合に、5GP
a以上では焼き付き発生率が0であった。
For example, as shown in FIG. 4, an acceleration of 10 G, a shaft diameter of 10 to 30 mm, and a rotational speed of 60,000 /
When the relationship between the bending elastic modulus of the shaft material (horizontal axis) and the seizure probability (vertical axis) is taken under the driving condition of 5 minutes, 5 GP
When a or more, the seizure occurrence rate was 0.

【0038】さらに本第2実施例における潤滑性樹脂
は、高剛性樹脂との2色成形により一体成形される。す
なわち図5に示されているように、一対のインジェクシ
ョンノズルA,Bを有する金型を用い、まず高剛性樹脂
を注入するためのノズルAにより軸芯部分を射出成形
し、ついで型を開いてコアを180°回転させ、軸芯部
分をノズルB側に移動して型閉めし、ノズルBにより潤
滑性樹脂を射出成形して上記軸芯部分の外側に潤滑性樹
脂を成形する。このときノズルAによる軸芯部分の射出
成形を同時に並行形成する。このような2色成形によれ
ば、上述した軸体が自動で安価に成形される。
Further, the lubricating resin in the second embodiment is integrally molded by two-color molding with a high rigidity resin. That is, as shown in FIG. 5, using a mold having a pair of injection nozzles A and B, first, the shaft core portion is injection-molded by the nozzle A for injecting the high-rigidity resin, and then the mold is opened. The core is rotated 180 °, the shaft core portion is moved to the nozzle B side and the mold is closed, and the lubrication resin is injection-molded by the nozzle B to mold the lubrication resin outside the shaft core portion. At this time, the injection molding of the shaft core portion by the nozzle A is simultaneously formed in parallel. According to such two-color molding, the shaft body described above is automatically molded at low cost.

【0039】図6には、高剛性樹脂としてガラス繊維に
フィラーを強化配合したPPS(商品名;東レA31
0、熱膨張係数1.6〜2.3×10-5/℃)を用い、
潤滑性樹脂として摺動性PPS(商品名;東レA51
5、熱膨張係数2.3〜3.0×10-5/℃)を用いた
場合の評価が表されている。本図に示されているよう
に、従来品に対して本実施例にかかるものは、各種の評
価をそのままに維持しつつ生産コストが約半分に低減さ
れることが判明した。
FIG. 6 shows a PPS (trade name: Toray A31) in which glass fiber as a highly rigid resin is reinforced and mixed with a filler.
0, coefficient of thermal expansion 1.6 to 2.3 × 10 −5 / ° C.),
Sliding PPS as a lubricating resin (trade name: Toray A51
5, a thermal expansion coefficient of 2.3 to 3.0 × 10 −5 / ° C.) is used. As shown in this figure, it has been found that the production cost of the product according to the present embodiment is reduced to about half of the conventional product while maintaining various evaluations.

【0040】また外周を切削加工する場合には、潤滑樹
脂成分に無機フィラーのような硬い組成物を用いること
はできないが、その場合には材料の熱膨張が金属に比し
て大きくなり、従って相手摺動部材が金属であれば高寸
法精度のステータとロータとを構成することは不可能に
なる。しかしながら本発明では、外側樹脂層の厚さを精
度の向上に対応して薄くし、インサート成形あるいは2
色成形によって、内側は無機フィラー充填樹脂を用いて
金属と同等の熱膨張としたものを成形することができ、
高精度が得られる。
Further, when cutting the outer periphery, a hard composition such as an inorganic filler cannot be used as the lubricating resin component, but in that case, the thermal expansion of the material becomes larger than that of the metal, so If the mating sliding member is made of metal, it is impossible to form a stator and a rotor with high dimensional accuracy. However, in the present invention, the thickness of the outer resin layer is made thinner in accordance with the improvement in accuracy, and the insert molding or 2
By color molding, it is possible to mold what has the same thermal expansion as metal using an inorganic filler-filled resin on the inside,
High accuracy can be obtained.

【0041】例えばステータ(軸体)11とロータ(軸
嵌挿体)12とを、図7に示されているような寸法関係
にした場合における熱膨張性が図8に示めされている。
本図から明らかなように、モータ性能を維持するために
は、ステータ外径とロータ内径との隙間が、0.003
以下(両側で0.006以下)に保つ必要があり、実際
は平均値レベルにある熱膨張率を材料の持つ極端な値で
計算しても、モータの使用温度の5〜80℃では0.0
06であり全く問題がないことが判明した。
FIG. 8 shows the thermal expansibility when the stator (shaft body) 11 and the rotor (shaft fitting body) 12 have the dimensional relationship as shown in FIG. 7, for example.
As is clear from this figure, in order to maintain the motor performance, the gap between the stator outer diameter and the rotor inner diameter is 0.003.
It is necessary to keep below (0.006 or less on both sides). Actually, even if the coefficient of thermal expansion at the average value level is calculated with the extreme value of the material, it is 0.0 at the operating temperature of the motor of 5 to 80 ° C.
It was 06 and it turned out that there was no problem at all.

【0042】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変形可能であるというのはいうまでもない。例え
ば、ポリゴンミラー以外の磁気ディスク、光ディスク等
の各種回転板を回転駆動するための装置、空気以外のオ
イル等の流体を用いた装置、軸回転型の装置、さらには
モータ以外の装置に対しても本発明は同様に適用するこ
とができる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, a device for rotationally driving various rotary plates such as a magnetic disk and an optical disk other than a polygon mirror, a device using fluid such as oil other than air, a shaft rotation type device, and a device other than a motor. The present invention can be similarly applied.

【0043】[0043]

【発明の効果】以上述べたように請求項1及び2にかか
る本願第1発明は、アルミニウム又はアルミニウム合金
から軸体を形成し、当該軸体の粗い表面を利用して潤滑
性樹脂との密着性を高め、厚肉かつ高精度の潤滑性樹脂
が前加工なしで成形可能とするとともに切削加工を可能
とし、さらに外周部分の切削加工時に動圧発生用溝を同
時に形成可能としたものであるから、動圧面に対して樹
脂層を簡易・低コストでしかも厚肉で高精度に成形する
ことができ、動圧軸受装置の信頼性及び生産性を向上さ
せることができる。
As described above, the first invention of the present application according to claims 1 and 2 forms a shaft body from aluminum or an aluminum alloy, and uses a rough surface of the shaft body to adhere to a lubricating resin. It is possible to form a thick and highly accurate lubrication resin without pre-processing and to enable cutting, and it is also possible to form a groove for generating dynamic pressure at the same time when cutting the outer peripheral part. Therefore, the resin layer can be formed on the dynamic pressure surface in a simple and low cost and with high thickness and high precision, and the reliability and productivity of the dynamic pressure bearing device can be improved.

【0044】また請求項3にかかる発明は、上記第1発
明の構成に加えて、潤滑性樹脂をインサート形成により
安価で厚い膜厚として得るられるものとして内側金属の
面精度が多少悪くても塗装のような前加工を行う必要を
なくしたものであるから、上記効果に加えて動圧軸受装
置の信頼性及び生産性を一層向上させることができる。
The invention according to claim 3 is, in addition to the structure of the first invention, that the lubricating resin can be obtained at a low cost and a thick film thickness by insert forming, even if the surface precision of the inner metal is slightly poor. Since it is not necessary to perform such pre-processing, the reliability and productivity of the dynamic pressure bearing device can be further improved in addition to the above effects.

【0045】さらに請求項4にかかる本願第2発明は、
軸体を高剛性樹脂から形成し、当該軸体の高剛性樹脂と
潤滑性樹脂との溶融接着により密着性を高め、厚肉かつ
高精度の潤滑性樹脂が前加工なしで成形可能とするとと
もに切削加工も可能とし、さらに外周部分の切削加工時
に動圧発生用溝を同時に形成可能としたものであるか
ら、動圧面に対して樹脂層を簡易・低コストでしかも厚
肉で高精度に成形することができ、動圧軸受装置の信頼
性及び生産性を向上させることができる。
Further, the second invention of the present application according to claim 4 is
The shaft body is made of high-rigidity resin, and the adhesion between the high-rigidity resin of the shaft body and the lubrication resin is improved by adhesion, making it possible to form a thick and highly accurate lubrication resin without pre-processing. Since cutting is possible and the groove for dynamic pressure generation can be formed at the same time when cutting the outer peripheral part, the resin layer can be easily and inexpensively formed on the dynamic pressure surface with high thickness and high precision. Therefore, the reliability and productivity of the dynamic pressure bearing device can be improved.

【0046】このとき請求項5にかかる発明は、上記第
2発明の構成に加えて、潤滑性樹脂を2色成形により高
剛性樹脂と一体成形したものであるから、第2発明にか
かる軸体を効率的に製造することができ、上記効果に加
えて動圧軸受装置の生産性を一層向上させることができ
る。
At this time, the invention according to claim 5 is, in addition to the structure of the second invention, a lubricating resin integrally molded with a high-rigidity resin by two-color molding. Therefore, the shaft body according to the second invention. In addition to the above effects, it is possible to further improve the productivity of the dynamic pressure bearing device.

【0047】さらに請求項6にかかる発明は、上記第2
発明の構成に加えて、高剛性樹脂及び潤滑性樹脂のベー
スとなる樹脂材を共通として密着性を一層高めるように
したものであるから、上記効果に加えて動圧軸受装置の
信頼性及び生産性を一層向上させることができる。
The invention according to claim 6 is the above-mentioned second aspect.
In addition to the configuration of the invention, the resin material that serves as the base of the high-rigidity resin and the lubricative resin is commonly used to further enhance the adhesion. Therefore, in addition to the above effects, the reliability and production of the dynamic pressure bearing device are improved. The property can be further improved.

【0048】さらに請求項7にかかる発明は、上記第1
発明又は第2発明の構成に加えて、潤滑性樹脂の動摩擦
係数を0.6以下に設定して焼き付きの発生を防止した
ものであるから、上記効果に加えて動圧軸受装置の信頼
性を一層向上させることができる。
Further, the invention according to claim 7 is the above first aspect.
In addition to the configuration of the invention or the second invention, since the dynamic friction coefficient of the lubricating resin is set to 0.6 or less to prevent the occurrence of seizure, in addition to the above effects, the reliability of the dynamic pressure bearing device is improved. It can be further improved.

【0049】さらにまた請求項8にかかる発明は、上記
第2発明の構成に加えて、高剛性樹脂の動摩擦係数を
0.6以下かつ曲げ弾性率を5GPa以上に設定して焼
き付き等を一層生じなくさせ、軸体と軸嵌挿体との相対
回転時における衝突による変形をなくすようにしたもの
であるから、上記効果に加えて動圧軸受装置の信頼性を
一層向上させることができる。
Further, in the invention according to claim 8, in addition to the structure of the above-mentioned second invention, seizure or the like is further generated by setting the dynamic friction coefficient of the high-rigidity resin to 0.6 or less and the bending elastic modulus to 5 GPa or more. In addition to the above effects, the reliability of the dynamic pressure bearing device can be further improved since the deformation is eliminated by the collision when the shaft body and the shaft fitting insert body are relatively rotated.

【0050】一方請求項9にかかる発明は、上記第2発
明の構成に加えて、高剛性樹脂の膜厚を3μm以上に設
定し、焼き付き等を確実に生じなくさせるようにしたも
のであるから、上記効果に加えて動圧軸受装置の信頼性
を一層向上させることができる。
On the other hand, in the invention according to claim 9, in addition to the structure of the above-mentioned second invention, the film thickness of the high-rigidity resin is set to 3 μm or more so as to surely prevent the seizure or the like. In addition to the above effects, the reliability of the dynamic pressure bearing device can be further improved.

【0051】また請求項10にかかる発明は、上記第1
発明又は第2発明の構成に加えて、動圧発生用溝を動圧
面の軸方向両端部に連通しない閉塞状態にて形成して、
起動・停止時等における溝パターン近傍の摩耗を低減し
安定した軸受性能を維持するようにしたものであるか
ら、上記効果に加えて動圧軸受装置の信頼性を一層向上
させることができる。
According to a tenth aspect of the invention, there is provided the first aspect of the invention.
In addition to the configuration of the invention or the second invention, the dynamic pressure generating groove is formed in a closed state that does not communicate with both axial end portions of the dynamic pressure surface,
Since the wear in the vicinity of the groove pattern is reduced at the time of starting / stopping and the stable bearing performance is maintained, the reliability of the dynamic pressure bearing device can be further improved in addition to the above effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した空気動圧軸受型のモータを表
した半横断面説明図である。
FIG. 1 is a half cross-sectional explanatory view showing an air dynamic bearing type motor to which the present invention is applied.

【図2】本発明の一実施例における要部を拡大して表し
た半縦断面説明図である。
FIG. 2 is a semi-longitudinal section explanatory view showing an enlarged main part in one embodiment of the present invention.

【図3】図2に表した動圧軸受のインサート成形手順を
表した断面説明である。
FIG. 3 is a cross-sectional view showing an insert molding procedure of the dynamic pressure bearing shown in FIG.

【図4】焼き付き確率を表した線図である。FIG. 4 is a diagram showing a burn-in probability.

【図5】2色成形型の一例を表した横断面図である。FIG. 5 is a cross-sectional view showing an example of a two-color molding die.

【図6】性能評価を示した一覧表である。FIG. 6 is a list showing performance evaluations.

【図7】評価の寸法条件を表した横断面説明図である。FIG. 7 is a cross-sectional explanatory view showing dimensional conditions for evaluation.

【図8】熱膨張の影響を示した一覧表である。FIG. 8 is a list showing the effects of thermal expansion.

【符号の説明】[Explanation of symbols]

31 軸体 32 軸嵌挿体 34 潤滑性樹脂 31 Shaft 32 Shaft Fitting 34 Lubricating Resin

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 軸体と軸嵌挿体とを動圧により相対的に
回転自在に支承するものであって、 上記軸体の外周面及び軸嵌挿体の内周面からなる動圧面
の少なくとも一方側に動圧発生用の溝を有する動圧軸受
装置において、 上記軸体がアルミニウム又はアルミニウム合金からなる
とともに、当該軸体の外周面に潤滑性樹脂が被着されて
いることを特徴とする動圧軸受装置。
1. A bearing for rotatably supporting a shaft body and a shaft fitting insert body by a dynamic pressure, wherein a dynamic pressure surface comprising an outer peripheral surface of the shaft body and an inner peripheral surface of the shaft fitting insert body. In a dynamic pressure bearing device having a groove for generating dynamic pressure on at least one side, the shaft body is made of aluminum or an aluminum alloy, and a lubricating resin is adhered to the outer peripheral surface of the shaft body. Dynamic pressure bearing device.
【請求項2】 請求項1記載の潤滑性樹脂は、インサー
ト成形されていることを特徴とする動圧軸受装置。
2. A dynamic pressure bearing device, wherein the lubricating resin according to claim 1 is insert-molded.
【請求項3】 請求項1記載の動圧軸受装置において、 軸体が固定部材を構成するように形成されているととも
に、軸嵌挿体が回転部材を構成するように形成されてい
ることを特徴とする動圧軸受装置。
3. The dynamic pressure bearing device according to claim 1, wherein the shaft body is formed so as to form a fixed member, and the shaft fitting body is formed so as to form a rotating member. Characteristic hydrodynamic bearing device.
【請求項4】 軸体と軸嵌挿体とを動圧により相対的に
回転自在に支承するものであって、 上記軸体の外周面及び軸嵌挿体の内周面からなる動圧面
の少なくとも一方側に動圧発生用の溝が形成された動圧
軸受装置において、 上記軸体が高剛性樹脂からなるとともに、当該軸体の外
周面に潤滑性樹脂が被着されていることを特徴とする動
圧軸受装置。
4. A bearing for rotatably supporting a shaft body and a shaft fitting insert body by a dynamic pressure, wherein a dynamic pressure surface composed of an outer peripheral surface of the shaft body and an inner peripheral surface of the shaft fitting insert body. In a dynamic pressure bearing device in which a groove for generating dynamic pressure is formed on at least one side, the shaft body is made of high-rigidity resin, and a lubricating resin is adhered to the outer peripheral surface of the shaft body. Dynamic bearing device.
【請求項5】 請求項4記載の潤滑性樹脂は、2色形成
により高剛性樹脂と一体形成されていることを特徴とす
る動圧軸受装置。
5. The hydrodynamic bearing device according to claim 4, wherein the lubricative resin is integrally formed with the high-rigidity resin by two-color formation.
【請求項6】 請求項4記載の潤滑性樹脂と高剛性樹脂
には、共通のベース材が含有されていることを特徴とす
る動圧軸受装置。
6. A hydrodynamic bearing device, wherein the lubricating resin and the high-rigidity resin according to claim 4 contain a common base material.
【請求項7】 請求項1又は4記載の潤滑性樹脂は、動
摩擦係数が0.6以下の樹脂材から形成されていること
を特徴とする動圧軸受装置。
7. A dynamic bearing device, wherein the lubricating resin according to claim 1 or 4 is formed of a resin material having a dynamic friction coefficient of 0.6 or less.
【請求項8】 請求項4記載の高剛性樹脂は、動摩擦係
数が0.6以下、かつ曲げ弾性率が5GPa以上の樹脂
材から形成されていることを特徴とする動圧軸受装置。
8. The dynamic bearing device according to claim 4, wherein the high-rigidity resin is formed of a resin material having a dynamic friction coefficient of 0.6 or less and a bending elastic modulus of 5 GPa or more.
【請求項9】 請求項4記載の潤滑性樹脂は、膜厚が3
μm以上に形成されていることを特徴とする動圧軸受装
置。
9. The lubricating resin according to claim 4 has a film thickness of 3
A hydrodynamic bearing device characterized by being formed to a thickness of at least μm.
【請求項10】 請求項1又は4記載の動圧軸受装置に
おいて、 動圧発生用の溝は、当該動圧溝が形成された動圧面の軸
方向両端部に連通しない閉塞状態にて形成されているこ
とを特徴とする動圧軸受装置。
10. The dynamic pressure bearing device according to claim 1, wherein the dynamic pressure generating groove is formed in a closed state in which it does not communicate with both axial end portions of the dynamic pressure surface on which the dynamic pressure groove is formed. The hydrodynamic bearing device is characterized in that
JP4650595A 1995-02-10 1995-02-10 Dynamic pressure bearing device Pending JPH08219146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4650595A JPH08219146A (en) 1995-02-10 1995-02-10 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4650595A JPH08219146A (en) 1995-02-10 1995-02-10 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JPH08219146A true JPH08219146A (en) 1996-08-27

Family

ID=12749116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4650595A Pending JPH08219146A (en) 1995-02-10 1995-02-10 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JPH08219146A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143891A (en) * 1996-11-01 1998-05-29 Sankyo Seiki Mfg Co Ltd Objective lens driving device
JP2008133965A (en) * 2008-02-22 2008-06-12 Seiko Instruments Inc Fluid dynamic pressure bearing and spindle motor
JP2013164624A (en) * 2013-05-15 2013-08-22 Konica Minolta Inc Light deflector
JP2016024361A (en) * 2014-07-22 2016-02-08 コニカミノルタ株式会社 Optical deflection device, manufacturing method for the same, and image forming device having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143891A (en) * 1996-11-01 1998-05-29 Sankyo Seiki Mfg Co Ltd Objective lens driving device
JP2008133965A (en) * 2008-02-22 2008-06-12 Seiko Instruments Inc Fluid dynamic pressure bearing and spindle motor
JP2013164624A (en) * 2013-05-15 2013-08-22 Konica Minolta Inc Light deflector
JP2016024361A (en) * 2014-07-22 2016-02-08 コニカミノルタ株式会社 Optical deflection device, manufacturing method for the same, and image forming device having the same

Similar Documents

Publication Publication Date Title
US7556433B2 (en) Fluid dynamic bearing device and motor equipped with the same
US7798721B2 (en) Fluid dynamic bearing device
CN102878214B (en) Bearing member, motor and method for manufacturing bearing member
US20120073138A1 (en) Fluid bearing device
JP4987248B2 (en) Bearing device and motor having the bearing device
US8052328B2 (en) Bearing device with sliding bearing
JPH08219146A (en) Dynamic pressure bearing device
JPH07332353A (en) Dynamic pressurizing bearing
WO2005017380A1 (en) Fluid bearing device and method of producing the same
JP2007192325A (en) Bearing device
US5763967A (en) Dynamic-pressure fluid bearing
JP2006322500A (en) Bearing device
JP4794964B2 (en) Bearing device and motor equipped with the same
JP3630810B2 (en) Hydrodynamic air bearing and polygon scanner using the same
JP2004052999A (en) Fluid bearing device
JP2007192317A (en) Sliding bearing unit
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP2005265119A (en) Fluid bearing device and its manufacturing method
JP4156478B2 (en) Mold for housing for hydrodynamic bearing device
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP4633591B2 (en) Plain bearing
JP4937618B2 (en) Hydrodynamic bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010606