JPH08217598A - Production of single crystal of vanadate of rare earth element - Google Patents

Production of single crystal of vanadate of rare earth element

Info

Publication number
JPH08217598A
JPH08217598A JP8776095A JP8776095A JPH08217598A JP H08217598 A JPH08217598 A JP H08217598A JP 8776095 A JP8776095 A JP 8776095A JP 8776095 A JP8776095 A JP 8776095A JP H08217598 A JPH08217598 A JP H08217598A
Authority
JP
Japan
Prior art keywords
rare earth
single crystal
crystal
vanadate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8776095A
Other languages
Japanese (ja)
Other versions
JP2647052B2 (en
Inventor
Yasuhiko Kuwano
泰彦 桑野
Seiichi Saito
誠一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8776095A priority Critical patent/JP2647052B2/en
Publication of JPH08217598A publication Critical patent/JPH08217598A/en
Application granted granted Critical
Publication of JP2647052B2 publication Critical patent/JP2647052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To prevent a deviation of a compsn. and to obtain a single crystal having satisfactory quality. CONSTITUTION: High purity powder of R2 O3 (R is a rare earth element) is mixed with high purity powder of V2 O5 in a molar ratio of 1:(1.1-1.3) and the resultant mixture is fired to form high purity single-crystalline powder of RVO4 by a solid phase reaction. Unnecessary matter is then dissolved and removed by acid or alkali washing, the resultant single-crystalline powder is melted and the objective single crystal having a large diameter is grown. When a single crystal of RVO4 contg. R' (R' is other rare earth element) as an active element is produced, R'VO4 is added and growth is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類バナデイト単結晶
の製造方法に関し、特に固体レーザ用などの光学用結晶
として用いられる希土類バナデイト単結晶の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth vanadate single crystal, and more particularly to a method for producing a rare earth vanadate single crystal used as an optical crystal for a solid-state laser or the like.

【0002】[0002]

【従来の技術】イットリウムバナデイト(YVO4 )単
結晶などの希土類バナデイト(RVO4 、R:希土類元
素)単結晶は、偏光子や固体レーザなどの光学デバイス
用結晶として有用なものである。その単結晶は、次のよ
うな育成方法により形成されていた。
2. Description of the Related Art Rare earth vanadate (RVO 4 , R: rare earth element) single crystal such as yttrium vanadate (YVO 4 ) single crystal is useful as a crystal for an optical device such as a polarizer or a solid-state laser. The single crystal was formed by the following growing method.

【0003】Y23 などの希土類酸化物R23 と五
酸化バナジウムV25 を原料として、これら粉末を結
晶組成である1:1のモル比になるように秤量して混合
し、焼成して結晶化粉末を得た後、これをイリジウムる
つぼに融解充填し、高周波誘導加熱方式のCZ法(チョ
クラルスキイ法:引き上げ育成法)などの手段によりR
VO4 単結晶を得る。
[0003] As the rare earth oxide R 2 O 3 as a raw material of vanadium pentoxide V 2 O 5, such as Y 2 O 3, 1 of these powders are crystalline composition: weighed and mixed so that a molar ratio After firing to obtain a crystallized powder, the powder is melt-filled into an iridium crucible, and R is formed by a high-frequency induction heating CZ method (Czochralski method: pulling growth method) or the like.
A VO 4 single crystal is obtained.

【0004】また、YVO4 などの希土類バナデイト
(RVO4 )を母体結晶とし、ネオジム(Nd)などの
他の希土類元素(R′)を活性体として添加した固体レ
ーザ用結晶(R′:RVO4 )は、希土類酸化物R2
3 およびR′23 と五酸化バナジウムV25 を原料
とし、これらの酸化物粉末を結晶組成に応じて秤量混合
し、焼成して結晶化粉末を得た後、イリジウムるつぼに
融解充填し、高周波誘導加熱方式のCZ法などの手段に
より製造されていた。
A solid-state laser crystal (R ′: RVO 4 ) in which a rare earth vanadate (RVO 4 ) such as YVO 4 is used as a base crystal and another rare earth element (R ′) such as neodymium (Nd) is added as an activator. ) Is a rare earth oxide R 2 O
3 and R ′ 2 O 3 and vanadium pentoxide V 2 O 5 were used as raw materials, and these oxide powders were weighed and mixed according to the crystal composition and baked to obtain a crystallized powder, which was then melt-filled into an iridium crucible. However, it was manufactured by means such as the high frequency induction heating CZ method.

【0005】[0005]

【発明が解決しようとする課題】従来の希土バナデイト
結晶育成では、るつぼへの原料の充填中および結晶育成
中、とくに育成初期に原料融液が分解し、原料成分の一
部、具体的には酸化バナジウムVOx が飛散するため、
原料全体が組成ずれを起こし、良質な結晶が得られない
原因となっていた。さらに、分解の結果生じた高融点物
質が融液表面に浮遊して、種結晶に付着したり、育成固
液界面付近にただよって、正常な結晶成長を妨げたり、
これが結晶中に取り込まれて結晶品質や光学特性を阻害
する原因となっていた。
In the conventional rare earth vanadate crystal growth, during the filling of the crucible with the raw material and during the crystal growth, particularly at the initial stage of the growth, the raw material melt is decomposed, and part of the raw material components, specifically, Is because vanadium oxide VO x scatters,
The composition of the entire raw material was shifted, which was a cause of failing to obtain high quality crystals. Further, the high melting point substance generated as a result of the decomposition floats on the surface of the melt and adheres to the seed crystal, or interferes with normal crystal growth due to the vicinity of the growing solid-liquid interface,
This is taken into the crystal and has been a cause of impairing the crystal quality and optical characteristics.

【0006】また、レーザ用結晶では活性体となるNd
などの元素を添加しなければならないが、この添加量が
少量ならばさほど問題なく良質の結晶が得られるが、1
原子パーセントを超える量を添加する場合には、通常、
結晶中に活性元素が一様に分布せず、包含物として沈着
したり、局所的な機械歪みを生じさせたりして、光学的
特性に障害が発生したり結晶割れが発生するなどの不都
合が生じていた。
In a laser crystal, Nd which is an active substance is used.
And other elements must be added. If the amount is small, good quality crystals can be obtained without much problem.
When adding more than atomic percent, usually
The active elements are not uniformly distributed in the crystal, which causes problems such as deposition as inclusions and local mechanical strain, resulting in impaired optical properties and crystal cracking. Had occurred.

【0007】本発明はこのような状況に鑑みてなされた
ものであって、その目的は、第1に、原料融解から育成
終了に至るまでの過程での原料の分解を極力抑えて、異
物などの混入のない良質の単結晶体を育成しうるように
することであり、第2に、活性元素を母材中に高濃度に
かつ一様に分布させることのできる単結晶育成方法を提
供することである。
The present invention has been made in view of such a situation, and firstly, its object is to suppress the decomposition of the raw material in the process from the melting of the raw material to the end of the growth as much as possible to prevent foreign matter and the like. Secondly, the present invention provides a method for growing a single crystal capable of uniformly growing an active element in a base material at a high concentration and uniformly. That is.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、(1)希土類酸化物(R23
R:希土類元素)と五酸化バナジウム(V25 )の各
々の高純度粉末を、モル比で1:1よりもV25 が過
剰になるように秤取し混合する過程と、(2)焼成し
て、固相反応により高純度の希土類バナデイト(RVO
4 )単結晶粉末を形成する過程と、(3)酸またはアル
カリで洗浄して不要物を溶解・除去する過程と、(4)
得られた希土類バナデイト単結晶粉末を溶融し、大口径
の単結晶を育成する過程と、を含む希土類バナデイト単
結晶の製造方法、が提供される。
In order to achieve the above object, according to the present invention, (1) a rare earth oxide (R 2 O 3 ,
R: a rare earth element) and vanadium pentoxide (V 2 O 5 ), each of high-purity powders are weighed and mixed so that the molar ratio of V 2 O 5 is more than 1: 1 and mixed. 2) Firing and high purity rare earth vanadite (RVO) by solid phase reaction
4 ) Process of forming single crystal powder, (3) Process of washing with acid or alkali to dissolve and remove unnecessary substances, (4)
A method for producing a rare earth vanadate single crystal, comprising: melting the obtained rare earth vanadate single crystal powder to grow a large-diameter single crystal.

【0009】また、本発明によれば、他の希土類元素
(R′)を活性元素として含有する希土類バナデイト
(R′:RVO4 )単結晶を得るために、前記第(4)
の過程において、他の希土類のバナデイト(R′VO
4 )を添加して結晶育成を行う希土類バナデイト単結晶
の製造方法、が提供される。
Further, according to the present invention, in order to obtain a rare earth vanadate (R ': RVO 4 ) single crystal containing another rare earth element (R') as an active element, the above-mentioned (4)
In the process of other rare earth vanadate (R'VO
4 ) A method for producing a rare-earth vanadate single crystal, in which crystal growth is performed by adding 4 ).

【0010】[0010]

【作用】本発明は、希土類バナデイト単結晶育成におけ
る、原料充填から育成終了までの、どの過程、どの時点
において原料分解が起きているのかを詳細に調べた結果
に基づいて創案されたものである。実験結果によれば、
従来の方式においては、原料のるつぼへ融解充填操作お
よびシーディング(種付け)操作までの原料分解率が最
も高く、育成中の分解も単に時間に比例するのではな
く、育成初期から徐々に分解率が低下してゆくことが分
かった。この結果から、初期の操作で分解飛散が防止で
きれば、良質の単結晶を得ることができるものと予測さ
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has been made based on the results of a detailed examination of which process and at what time the raw material decomposition takes place from the filling of the raw material to the end of the growth in the growth of the rare earth vanadate single crystal. . According to the experimental results,
In the conventional method, the decomposition rate of the raw material up to the melting and filling operation of the raw material into the crucible and the seeding (seed) operation is the highest, and the decomposition during growing is not simply proportional to the time, but the decomposition rate is gradually increased from the initial stage of growing. Was found to decrease. From this result, it is expected that a good quality single crystal can be obtained if decomposition and scattering can be prevented in the initial operation.

【0011】そこで、分解・飛散が育成初期の段階で優
勢となる理由についてさらに検討を重ねた。その結果、
従来法では、酸化物を混合し焼成して得た結晶育成の出
発材料が単結晶化が不十分で、それぞれの酸化物がその
まま含まれておりさらに単結晶化していないRVO4
多量に含むため、分解が起こりやすいことが明らかとな
った。同じRVO4 であっても結晶化が進んでいない材
料では溶融により簡単に分解する。さらに、従来例では
融点の異なる複数の材料が混合していることにより分解
が促進されやすくまた融点の高い酸化物が育成の妨げと
なったり異物として結晶中に取り込まれたりしやすい。
[0011] Therefore, the inventors further studied the reason why the decomposition / scattering becomes dominant in the early stage of the growth. as a result,
In the conventional method, the starting material for crystal growth obtained by mixing and firing oxides is insufficient in single crystallization, and each oxide is contained as it is, and further contains a large amount of non-single-crystallized RVO 4. Therefore, it became clear that decomposition is likely to occur. Even if RVO 4 is the same, if the material is not crystallized, it easily decomposes by melting. Furthermore, in the conventional example, a plurality of materials having different melting points are mixed, so that decomposition is easily promoted, and an oxide having a high melting point is liable to hinder growth or to be easily incorporated into the crystal as a foreign substance.

【0012】本発明者は、初期の過程では原料が過熱さ
れる可能性が大きいことに鑑み、原料の状態が分解しに
くい状況にあることが望ましいと考え、こうした条件を
満たすものとして高純度の希土バナデイトの結晶化粉末
を用いてよい結果を得た。この場合、単に組成がRVO
4 ならばよい訳ではなく、結晶体であることが必要であ
る。結晶体では、その物理的化学的結合力により分解し
にくい状態にある。こうしたものは融解時や融解してか
らも分解しにくいことが実験から明らかになった。本発
明においては、こうした良質の結晶粉末を固相反応によ
り作成し、分解の促進に寄与する不純物や未反応物を薬
品で洗い流す方法を採っている。これにより、高純度の
希土類バナデイト結晶体を育成出発材料として利用する
ことが可能になる。
The inventor of the present invention considers that the raw material is likely to be overheated in the initial stage, and considers that it is desirable that the state of the raw material is not easily decomposed. Good results have been obtained with rare earth vanadate crystallized powders. In this case, the composition is simply RVO
If it is 4 , it is not good and it needs to be crystalline. Crystals are in a state of being difficult to decompose due to their physical and chemical bonding forces. Experiments have shown that these materials are not easily decomposed during or after melting. In the present invention, a method is adopted in which such high-quality crystal powder is prepared by a solid-phase reaction, and impurities and unreacted substances that contribute to promotion of decomposition are washed away with a chemical. This makes it possible to use a high-purity rare earth vanadate crystal as a growth starting material.

【0013】活性元素の添加が高濃度添加になるほど困
難になる理由は、基本的には母体結晶内の希土類イオン
Rの大きさと、その位置を置換して添加される他の希土
類イオンR′の大きさの違いに起因している。すなわち
その差が大きいほど結晶品質が阻害されやすく、YVO
4 にNdを添加する場合は困難な部類に属する。こうし
た場合は特に母体結晶原料融液に溶解しやすい形の添加
剤を選ぶ必要があり、種々の希土類化合物を用いて結晶
育成実験を行った結果希土類バナデイトを添加剤とした
ときに最も良質の結果が得られた。これは、R′VOX
の形で母材であるRVO4 に添加いた場合には、添加剤
の母材への溶解性がよくなり、結晶中への均一化が達成
できるためと考えられる。
The reason why the addition of the active element becomes more difficult as the concentration of the active element becomes higher, is basically due to the size of the rare earth ion R in the host crystal and the size of the other rare earth ion R ′ added by substituting the position. This is due to the difference in size. That is, the larger the difference, the more easily the crystal quality is hindered.
When Nd is added to 4 , it belongs to a difficult class. In such a case, it is necessary to select an additive that is easily soluble in the base crystal raw material melt.As a result of conducting a crystal growth experiment using various rare earth compounds, the best quality results were obtained when rare earth vanadite was used as an additive. was gotten. This is R'VO X
It is considered that when added to the base material RVO 4 in the form of (1), the solubility of the additive in the base material is improved, and uniformization in the crystal can be achieved.

【0014】[0014]

【実施例】次に、良好な結果の得られる本発明の実施例
について説明する。 [第1の実施例]純度99.99%のV25 粉末47
3gと純度99.999%のY23 粉末452gを秤
取し、V型混合機で毎分50回転で5時間混合した後、
これをロータリーキルンに移し、毎分10回転で、10
00℃、30時間空気中で焼成し、電力を切断して、常
温まで自然冷却した。これを2000mlの0.5規定
硝酸HNO3 中で洗浄し不要物を溶解した後、水洗し
た。粉末を濾過し、温風乾燥し結晶育成原料とした。図
1は、この粉末のX線回折パターンである。このパター
ンは、得られた粉末が結晶性がよく、かつYVO4 単一
物であることを示している。
EXAMPLES Next, examples of the present invention which can obtain good results will be described. [First Embodiment] V 2 O 5 powder 47 having a purity of 99.99%
3 g and 452 g of Y 2 O 3 powder having a purity of 99.999% were weighed and mixed with a V-type mixer at 50 revolutions per minute for 5 hours.
This was transferred to a rotary kiln and 10 revolutions per minute
The mixture was fired in air at 00 ° C. for 30 hours, the power was cut off, and the mixture was naturally cooled to room temperature. This was washed in 2000 ml of 0.5 N nitric acid HNO 3 to dissolve unnecessary substances, and then washed with water. The powder was filtered and dried with warm air to obtain a crystal growth raw material. FIG. 1 is an X-ray diffraction pattern of this powder. This pattern shows that the obtained powder has good crystallinity and is a single YVO 4 substance.

【0015】この粉末を原料とし、高周波誘導加熱方式
の酸化物単結晶引き上げ装置を用いて、YVO4 の単結
晶育成を行った。るつぼは直径50mm、深さ50mm
のイリジウム製とし、育成速度は1mm/h、育成雰囲
気は酸素0.1%を含む窒素中、種結晶方位はc軸とし
た。育成された結晶は直径約15mm、長さ35mmで
従来の結晶にしばしば見られた、割れ、双晶、包含物、
等は全くみられなかった。さらに、従来の結晶は茶色に
着色していたが、この結晶は淡黄色で光学的にも改善さ
れていることが分かった。
Using this powder as a raw material, a single crystal of YVO 4 was grown using a high frequency induction heating type oxide single crystal pulling apparatus. Crucible 50mm in diameter, 50mm in depth
The growth rate was 1 mm / h, the growth atmosphere was nitrogen containing 0.1% oxygen, and the seed crystal orientation was the c-axis. The grown crystal is about 15 mm in diameter and 35 mm in length, often seen in conventional crystals, cracks, twins, inclusions,
Etc. were not seen at all. Further, although the conventional crystal was colored brown, it was found that this crystal was pale yellow and improved optically.

【0016】[第2の実施例]Ndを添加した固定レー
ザ用YVO4 結晶の場合について説明する。第1の実施
例により得られた、結晶育成用YVO4 粉末にモル濃度
で3.5%のNdVO4 粉末を加え、V型混合機で混合
後、これを原料として結晶育成を行った。育成条件は、
育成速度を0.8mm/hとしたほかは、第1の実施例
の場合と同一とした。得られた結晶は、直径約12m
m、長さ30mmで、結晶上部のNd濃度は2.0原子
%であった。
[Second Embodiment] A case of a fixed laser YVO 4 crystal doped with Nd will be described. NdVO 4 powder having a molar concentration of 3.5% was added to the YVO 4 powder for crystal growth obtained in the first example, and the mixture was mixed with a V-type mixer. The raising conditions are
Except that the growth rate was 0.8 mm / h, it was the same as that of the first example. The obtained crystal has a diameter of about 12 m.
m, the length was 30 mm, and the Nd concentration in the upper part of the crystal was 2.0 atomic%.

【0017】従来の方法、すなわち、Nd23 を添加
剤とした結晶では、Nd2原子%の場合には、ほとんど
の結晶に割れ、包含物の存在がみられたが、本発明によ
る結晶では、こうした欠陥はみられず、従来の方法での
Nd1原子%以下の場合に匹敵する、良好な結晶学的、
光学的性質を有する単結晶が得られた。
In the conventional method, that is, in the crystal using Nd 2 O 3 as an additive, most of the crystals were found to have cracks and inclusions in the case of Nd 2 atomic%. , Such defects are not observed, and good crystallographic properties comparable to the case of Nd of 1 atomic% or less by the conventional method,
A single crystal having optical properties was obtained.

【0018】[第3の実施例]第2の実施例の場合と同
じく、Erを添加した固体レーザ用結晶の場合について
説明する。第1の実施例により得られた、結晶育成用Y
VO4 粉末にモル濃度で15.5%のErVO4 粉末を
加え、V型混合機で混合した後、これを原料として結晶
育成を行った。育成条件は、第1の実施例の場合と同一
とした。得られた結晶は、直径約17mm、長さ35m
mで、結晶上部のNd濃度は15.0原子%であった。
[Third Embodiment] As in the case of the second embodiment, the case of a solid-state laser crystal doped with Er will be described. Y for growing a crystal obtained by the first embodiment
ErVO 4 powder having a molar concentration of 15.5% was added to the VO 4 powder, mixed with a V-type mixer, and then used as a raw material for crystal growth. The growth conditions were the same as in the first embodiment. The obtained crystal has a diameter of about 17 mm and a length of 35 m.
m, the Nd concentration at the top of the crystal was 15.0 atomic%.

【0019】従来の方法、すなわち、Er23 を添加
剤とした結晶では、Nd15原子%の場合には、ほとん
どの結晶に、光散乱体となる微小包含物の存在がみられ
たが、本発明による結晶では、こうした欠陥はみられな
かった。
In the conventional method, that is, in the case of a crystal in which Er 2 O 3 is used as an additive, in the case of 15 atomic% of Nd, the presence of fine inclusions serving as a light scatterer was found in almost all crystals. No such defects were found in the crystals according to the invention.

【0020】[実施例の変更]以上好ましい実施例につ
いて説明したが、本発明はこれらの実施例に限定される
ものではなく、特許請求の範囲に記載された範囲内にお
いて各種の変更が可能である。例えば、実施例では、希
土類バナデイト母体結晶の例として、YVO4を、活性
元素添加剤の例としてNdVO4 とErVO4 を示した
が、これらに代え、他の希土類バナデイト母体結晶や、
異なる希土類活性体添加剤を用いてもよい。また、実施
例ではCZ法による単結晶育成について説明したが、F
Z法(浮遊帯溶融育成法)やブリジマン法など他の育成
方法を採用しても同様の効果が得られる。また、結晶化
粉末を得た後の不要物の除去は、硝酸以外の他の酸を用
いてもあるいはアルカリを用いて行ってもよい。さら
に、酸およびアルカリを用いて処理を行うこともでき
る。
[Modifications of Embodiments] The preferred embodiments have been described above, but the present invention is not limited to these embodiments, and various modifications can be made within the scope of the claims. is there. For example, in the embodiment, as an example of the rare earth Banadeito host crystal, a YVO 4, showed NdVO 4 and ErVO 4 Examples of active elements additives, instead of them, and other rare earth Banadeito host crystal,
Different rare earth activator additives may be used. In the embodiment, the single crystal growth by the CZ method has been described.
The same effect can be obtained by adopting another growing method such as the Z method (floating zone melting growing method) or the Brijman method. In addition, the removal of unnecessary substances after obtaining the crystallized powder may be performed using an acid other than nitric acid or an alkali. Further, the treatment can be performed using an acid and an alkali.

【0021】[0021]

【発明の効果】以上説明したように、本発明による希土
類バナデイト単結晶の育成方法は、V25 過剰の状態
でのR23 とV25 との固相反応により、高純度の
希土類バナデイト単結晶粉末を得、これを出発材料とし
て希土類バナデイト単結晶を製造するものであるので、
融液作製当初に発生しやすい酸化バナジウムの飛散を抑
制することができ、原料の組成ずれを防止することがで
きる。飛散により不純物が発生することがなくなり、そ
して、出発材料が不純物、希土類酸化物を含んでいない
ので、融液にこれらが混入して、育成単結晶中に取り込
まれることがなくなる。したがって、本発明によれば、
育成単結晶の結晶性が格段によくなり、従来の方法によ
る結晶にみられた、割れ、双晶などの巨視的欠陥が少な
く、かつ着色の少ない希土類バナデイト結晶の作成が可
能になる。さらに、本発明による活性元素添加方法によ
れば、母材融液への活性元素材料の溶解性がよくなり、
従来より高濃度にまで均一に結晶内に活性元素を添加す
ることが可能になり、これによって、高性能な固体レー
ザ素子の作成が可能になる。
As described above, according to the present invention, method for growing a rare earth Banadeito single crystal according to the present invention, the solid phase reaction with R 2 O 3 and V 2 O 5 in a state of V 2 O 5 over a high purity The rare earth vanadate single crystal powder is obtained, and the rare earth vanadate single crystal is produced using this as a starting material.
Scattering of vanadium oxide, which is likely to occur at the beginning of the preparation of the melt, can be suppressed, and a composition deviation of the raw material can be prevented. Impurities are not generated by scattering, and since the starting material does not contain impurities and rare earth oxides, these are not mixed in the melt and taken into the grown single crystal. Therefore, according to the present invention,
The crystallinity of the grown single crystal is remarkably improved, and rare-earth vanadate crystals with few macroscopic defects such as cracks and twins, which are observed in crystals by conventional methods, and with less coloring can be formed. Furthermore, according to the active element addition method according to the present invention, the solubility of the active element material in the base material melt is improved,
It becomes possible to uniformly add an active element into the crystal to a higher concentration than before, thereby making it possible to produce a high-performance solid-state laser device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において形成されたイットリウ
ムバナデイト単結晶の粉末X線回折パターンを示す図。
FIG. 1 is a view showing a powder X-ray diffraction pattern of a yttrium vanadate single crystal formed in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/16 H01S 3/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area H01S 3/16 H01S 3/16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (1)希土類酸化物(R23 、R:希
土類元素)と五酸化バナジウム(V25 )の各々の高
純度粉末を、モル比で1:1よりもV25が過剰にな
るように秤取し混合する過程と、 (2)焼成して、固相反応により高純度の希土類バナデ
イト(RVO4 )単結晶粉末を形成する過程と、 (3)酸またはアルカリで洗浄して不要物を溶解・除去
する過程と、 (4)得られた希土類バナデイト単結晶粉末を溶融し、
大口径の単結晶を育成する過程と、を含むことを特徴と
する希土類バナデイト単結晶の製造方法。
(1) A high-purity powder of a rare earth oxide (R 2 O 3 , R: rare earth element) and vanadium pentoxide (V 2 O 5 ) are mixed with each other in a molar ratio of V 2 higher than 1: 1. a process in which O 5 is mixed were weighed so that the excess (2) firing to the steps of forming a high purity rare earth Banadeito (RVO 4) single-crystal powder by solid-phase reaction, (3) an acid or A process of dissolving and removing unnecessary substances by washing with an alkali; and (4) melting the obtained rare earth vanadate single crystal powder,
Growing a large diameter single crystal. A method for producing a rare earth vanadate single crystal, comprising:
【請求項2】 前記第(1)の過程において、R23
とV25 とを、モル比で1:1.1乃至1.3の比率
で混合することを特徴とする請求項1記載の希土類バナ
デイト単結晶の製造方法。
2. The method according to claim 1, wherein R 2 O 3
1 and the V 2 O 5, in a molar ratio: 1.1 to claim 1 a method of producing a rare-earth Banadeito single crystal, wherein the mixing in a ratio of 1.3.
【請求項3】 他の希土類元素(R′)を活性元素とし
て含有する希土類バナデイト(R′:RVO4 )単結晶
を得るために、前記第(4)の過程において、他の希土
類のバナデイト(R′VO4 )を添加して結晶育成を行
うことを特徴とする請求項1記載の希土類バナデイト単
結晶の製造方法。
3. In order to obtain a rare earth vanadate (R ′: RVO 4 ) single crystal containing another rare earth element (R ′) as an active element, vanadate of another rare earth element (R ′: RVO 4 ) is obtained in the step (4). 2. The method for producing a rare earth vanadate single crystal according to claim 1, wherein R′VO 4 ) is added to grow the crystal.
【請求項4】 希土類元素(R)がイットリウム(Y)
であることを特徴とする請求項1、2または3記載の希
土類バナデイト単結晶の製造方法。
4. The method according to claim 1, wherein the rare earth element (R) is yttrium (Y).
The method for producing a rare earth vanadate single crystal according to claim 1, 2 or 3.
【請求項5】 他の希土類元素(R′)が、ネオジム
(Nd)またはエルビウム(Er)であることを特徴と
する請求項3記載の希土類バナデイト単結晶の製造方
法。
5. The method for producing a rare earth vanadate single crystal according to claim 3, wherein the other rare earth element (R ′) is neodymium (Nd) or erbium (Er).
JP8776095A 1995-02-16 1995-02-16 Method for producing rare earth vanadate single crystal Expired - Fee Related JP2647052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8776095A JP2647052B2 (en) 1995-02-16 1995-02-16 Method for producing rare earth vanadate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8776095A JP2647052B2 (en) 1995-02-16 1995-02-16 Method for producing rare earth vanadate single crystal

Publications (2)

Publication Number Publication Date
JPH08217598A true JPH08217598A (en) 1996-08-27
JP2647052B2 JP2647052B2 (en) 1997-08-27

Family

ID=13923912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8776095A Expired - Fee Related JP2647052B2 (en) 1995-02-16 1995-02-16 Method for producing rare earth vanadate single crystal

Country Status (1)

Country Link
JP (1) JP2647052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035871A (en) * 2002-12-26 2005-02-10 Nec Tokin Corp Ornamental material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035871A (en) * 2002-12-26 2005-02-10 Nec Tokin Corp Ornamental material

Also Published As

Publication number Publication date
JP2647052B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
RU2670865C2 (en) Method for regulating the content of gallium in scintillators based on gadolinium-gallium garnets
JPS6410479B2 (en)
SU1609462A3 (en) Laser substance
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP2647052B2 (en) Method for producing rare earth vanadate single crystal
JP2011190138A (en) Method for producing multiferroic single crystal
US4634492A (en) Chrysoberyl single crystal and method of producing the same
JP2507910B2 (en) Method for producing oxide single crystal
JP2787995B2 (en) Method for producing lithium tetraborate single crystal
JP3485120B2 (en) Method for producing ZnSe single crystal
JP2702545B2 (en) Method for producing bismuth germanate single crystal
JP2622165B2 (en) Method for producing bismuth germanate single crystal
JP2672597B2 (en) Method for producing barium titanate single crystal
JPH06321693A (en) Production of oxide superconducting material
JP3095504B2 (en) Method for producing compound sintered body
JPH07108837B2 (en) Beta barium borate single crystal growth method
JPH0458438B2 (en)
JP4930165B2 (en) Method for producing aluminum oxide single crystal
JP2003137691A (en) Method of producing single crystal
JPS61236680A (en) Preparation of single crystal ferrite
JP3037829B2 (en) Single crystal growing method and single crystal
JP2008201618A (en) Method for production of rare earth vanadate single crystal
KR970007336B1 (en) Process for the preparation of single crystal for radioelectronics and piezotechnology
JPS60118696A (en) Method for growing indium phosphide single crystal
CN114752992A (en) Preparation method of PZN-based ternary high-performance single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees