JPH0821733B2 - Method for manufacturing superconducting wire for thermal permanent current switch, and superconducting wire - Google Patents

Method for manufacturing superconducting wire for thermal permanent current switch, and superconducting wire

Info

Publication number
JPH0821733B2
JPH0821733B2 JP63283938A JP28393888A JPH0821733B2 JP H0821733 B2 JPH0821733 B2 JP H0821733B2 JP 63283938 A JP63283938 A JP 63283938A JP 28393888 A JP28393888 A JP 28393888A JP H0821733 B2 JPH0821733 B2 JP H0821733B2
Authority
JP
Japan
Prior art keywords
base material
tubular member
stabilizing base
superconducting
resistance stabilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63283938A
Other languages
Japanese (ja)
Other versions
JPH02130967A (en
Inventor
一夫 黒石
照広 滝沢
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63283938A priority Critical patent/JPH0821733B2/en
Publication of JPH02130967A publication Critical patent/JPH02130967A/en
Publication of JPH0821733B2 publication Critical patent/JPH0821733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱式永久電流スイッチ用超電導線及び、そ
の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a superconducting wire for a thermal permanent current switch and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第2図は超電導コイルの励磁回路の1例を示す回路図
である。
FIG. 2 is a circuit diagram showing an example of an exciting circuit for a superconducting coil.

永久電流スイッチ2は超電導コイル3と閉回路を形成
するように接続される。
The persistent current switch 2 is connected to the superconducting coil 3 so as to form a closed circuit.

永久電流スイッチ2がON状態(ヒータ22非通電)で
は、接続部7を介して上記の閉回路が形成されるので永
久電流モードとなる。
When the permanent current switch 2 is in the ON state (the heater 22 is not energized), the closed circuit is formed via the connecting portion 7, and hence the permanent current mode is set.

ただし、接続部7に僅少のロスを生じるので電流値は
次第に減少する。
However, since a slight loss occurs in the connecting portion 7, the current value gradually decreases.

第3図は上記永久電流スイッチ2の詳細を示す説明図
である。
FIG. 3 is an explanatory diagram showing the details of the permanent current switch 2.

超電導線1を巻回して構成した永久電流スイッチ本体
21とヒータ22とが近接して配置されている。
Persistent current switch body constructed by winding superconducting wire 1
The heater 21 and the heater 22 are arranged close to each other.

このスイッチ本体21は液体ヘリウムなどによって超低
温に保たれ、ヒータ22に通電しないときは永久電流スイ
ッチ用超電導線1が超電導状態となっている(この状態
はスイッチONの状態である)。
The switch body 21 is kept at an extremely low temperature by liquid helium or the like, and when the heater 22 is not energized, the persistent current switch superconducting wire 1 is in a superconducting state (this state is a switch ON state).

ヒータ22に通電し、永久電流スイッチ本体21の温度を
永久電流スイッチ用超電導線1の臨界温度(超電導状態
を保持できる最高温度)以上にすれば、本例21に巻回さ
れた超電導線1は常電導状態となり大きな抵抗を示す
(この状態はスイッチOFFの状態である)。
If the heater 22 is energized and the temperature of the main body 21 of the permanent current switch is set to be equal to or higher than the critical temperature of the superconducting wire 1 for permanent current switch (the maximum temperature at which the superconducting state can be maintained), the superconducting wire 1 wound in this Example 21 It becomes a normal conducting state and shows a large resistance (this state is the switch OFF state).

第2図に示した励磁電源6から超電導コイル3に通電
する場合、永久電流スイッチ2をOFF状態にして、コイ
ル励磁速度 に見合った電圧( ここでLは超電導コイル3のインダクタンス)を印加す
ることにより行なうが、この時永久電流スイッチ2に
も、IP=E/RPだけ電流が流れる。
When energizing the superconducting coil 3 from the excitation power supply 6 shown in FIG. 2, the permanent current switch 2 is turned off and the coil excitation speed is set. Corresponding to the voltage ( Here, L is performed by applying the inductance of the superconducting coil 3. At this time, a current flows through the permanent current switch 2 by I P = E / R P.

ここに IP:永久電流スイッチに流れる電流値、 RP:永久電流スイッチの抵抗値 である。Here, I P : current value flowing in the persistent current switch, R P : resistance value of the persistent current switch.

上記の電流IPにより、QP=IP 2・RPだけジュール熱が
発生し、冷媒(例えば液体ヘリウム)を無駄に蒸発させ
る。
Due to the current I P , Joule heat is generated by Q P = I P 2 · R P , and the refrigerant (for example, liquid helium) is wastefully evaporated.

このため、IPの値は出来るだけ低く押えることが望ま
しい。
Therefore, it is desirable to keep the I P value as low as possible.

特に、超電導コイル3を高速で励磁・消磁する場合、
前記の式 が大きいため端子電圧Eが大きくなり、永久電流スイッ
チ2に流れる電流IPも増大し、ジュール発熱QPが大きく
なる傾向になる。ここでジュール発熱QPを低下させるに
は、永久電流スイッチ2のOFF時抵抗値RPを大きくし
て、永久電流スイッチに流れる電流IPを小さくする対策
が必要であり、OFF時抵抗の大きな永久電流スイッチの
開発が進められている。更に、常温部の励磁電源から、
冷媒内の超電導コイル3へ電流を流すためのパワーリー
ドは、通電容量とパワーリードを通しての熱侵入量との
両方から断面積が決定されるが、超電導コイルの励・消
磁速度が大きく取れれば、パワーリード通電時間が短く
なり、その分パワーリードの断面積を小さくできるの
で、これも冷媒消費量の低減に有効である。
Especially when exciting / demagnetizing the superconducting coil 3 at high speed,
The above formula Is large, the terminal voltage E increases, the current I P flowing through the permanent current switch 2 also increases, and the Joule heat generation Q P tends to increase. Here, in order to reduce the Joule heat generation Q P , it is necessary to take measures to increase the OFF resistance value R P of the persistent current switch 2 and reduce the current I P flowing through the persistent current switch. Permanent current switches are being developed. Furthermore, from the excitation power supply at room temperature,
The cross-sectional area of the power lead for passing an electric current to the superconducting coil 3 in the refrigerant is determined from both the current carrying capacity and the amount of heat intrusion through the power lead, but if the excitation / demagnetization speed of the superconducting coil is large, Since the power lead energization time is shortened and the cross-sectional area of the power lead can be reduced accordingly, this is also effective in reducing the refrigerant consumption.

以上の考察から、永久電流スイッチ2のOFF時抵抗
(超電導状態でない場合の電気抵抗)を大きく出来れ
ば、冷媒の蒸発量を抑制し得ることが解る。
From the above consideration, it can be understood that the evaporation amount of the refrigerant can be suppressed if the resistance of the permanent current switch 2 at the time of OFF (electrical resistance in the non-superconducting state) can be increased.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

そこで、永久電流スイッチのOFF時抵抗を大ならしめ
ることが要請される。
Therefore, it is required to increase the resistance when the permanent current switch is off.

上記OFF時抵抗を増加させる方法として考えられるこ
とは、 (イ) 永久電流スイッチ本体21の巻回線を長くする。
Possible methods for increasing the resistance at the time of OFF are (a) lengthening the winding line of the permanent current switch body 21.

(ロ) 永久電流スイッチ本体21の巻回線を細くする。(B) Make the winding wire of the permanent current switch body 21 thin.

(ハ) 永久電流スイッチ用の超電導線1の安定化基材
抵抗を大きくする。
(C) The stabilizing base material resistance of the superconducting wire 1 for the permanent current switch is increased.

である。Is.

上記(イ)の巻回線長は、永久電流スイッチ2の大き
さから制約を受ける。
The winding line length of (a) above is restricted by the size of the persistent current switch 2.

また、前記(ロ)の線径は、通電容量ICから制約を受
ける。
Further, the wire diameter of (b) is restricted by the current carrying capacity I C.

ここで検討の方向は前記(ハ)の、安定化基材比抵抗
の増加に指向される。
Here, the direction of the study is directed to the increase of the resistivity of the stabilized base material described in (c) above.

通常の超電導線は、安定性を確保するために超電導フ
ィラメント(直径数μm〜100μm程度の極細線,永久
電流スイッチ用としてはNbTi合金が一般的)を極低温で
比抵抗の小さな無酸素銅や,高純度アルミニウム等の安
定化基材に埋め込んだ構成となっている。ここで言う安
定性とは、超電導状態を安定に保てる度合いのことであ
り、安定化基材の役割は、 (a)超電導フィラメントを機械的に保持,補強するこ
と、及び、 (b)超電導フィラメントの一部に何らかの影響で常電
導が発生した場合、電流をバイパスさせ、擾乱が去るの
を待ち超電導状態に復帰させること、である。
Ordinary superconducting wires are made of superconducting filaments (ultra-fine wires with a diameter of several μm to 100 μm, NbTi alloy is generally used for permanent current switches) to ensure stability and oxygen-free copper with low specific resistance at low temperatures. The structure is embedded in a stabilizing base material such as high-purity aluminum. The term "stability" as used herein means the degree to which the superconducting state can be kept stable, and the role of the stabilizing base material is (a) mechanically holding and reinforcing the superconducting filament, and (b) the superconducting filament. If normal conduction occurs in some of the parts due to some influence, the current is bypassed, and it waits for the disturbance to disappear before returning to the superconducting state.

上記(b)項の機能について見れば、極低温での比抵
抗の小さいことが望ましい。
Regarding the function of the above item (b), it is desirable that the specific resistance at cryogenic temperature is small.

ところが、上記と両立しにくい問題として、永久電流
スイッチ用電導線の場合、OFF時抵抗つまり、超電導フ
ィラメントが常電導状態になった時の抵抗を大きくする
必要がある。
However, as a problem that is difficult to be compatible with the above, in the case of a conducting wire for a persistent current switch, it is necessary to increase the resistance at OFF, that is, the resistance when the superconducting filament is in the normal conducting state.

そこで安定化基材として比抵抗の大きいCuNi(液体ヘ
リウム温度で、Cuの約1000倍,NbTi超電導フィラメント
の常電導時の比抵抗とほぼ同一)が用いられている。こ
の場合、第2図の接続部7での接続抵抗も大きくなって
しまうという欠点がある。
Therefore, CuNi (about 1000 times Cu at liquid helium temperature, which is almost the same as the normal resistance of NbTi superconducting filament at liquid helium temperature) is used as a stabilizing base material. In this case, there is a drawback that the connection resistance at the connection portion 7 in FIG. 2 also becomes large.

この問題を第4図により説明する。本第4図は第2図
の接続部7を拡大、断面にした説明図である。ここで、
超電導コイル口出線31と永久電流スイッチ用の超電導線
1とは半田8を介して接続されている。超電導状態で
は、電流は、超電導コイル口出線31内の超電導フィラメ
ント32を流れて来てこの接続部7でまず低抵抗安定化基
材(Cu)33に分流し、半田8,高抵抗安定化基材(CuNi)
に、更に超電導フィラメント11にと順次流れて行く。低
抵抗安定化基材33及び半田8は抵抗が小さく問題ない
が、永久電流スイッチ用超電導線の高抵抗安定化基材12
は抵抗が大きく、超電導閉回路としての抵抗値,発熱,
発熱によるIC低下等の問題を生じる。この接続抵抗を小
さくするため接続ラップ長を多く取るといった対策も考
えられるが構造的制約,寸法的制約が有るので、これだ
けでは充分な効果を期待できない。
This problem will be described with reference to FIG. The present FIG. 4 is an explanatory view in which the connecting portion 7 of FIG. 2 is enlarged and shown in cross section. here,
The superconducting coil lead wire 31 and the superconducting wire 1 for a permanent current switch are connected via solder 8. In the superconducting state, the electric current flows through the superconducting filament 32 in the superconducting coil lead wire 31 and is first shunted to the low resistance stabilizing base material (Cu) 33 at this connection portion 7, and the solder 8 and the high resistance stabilizing are performed. Base material (CuNi)
And then to the superconducting filament 11. The low resistance stabilizing base material 33 and the solder 8 have a small resistance and there is no problem, but the high resistance stabilizing base material 12 of the superconducting wire for a persistent current switch 12
Has a large resistance, the resistance value as a superconducting closed circuit, heat generation,
This causes problems such as a decrease in I C due to heat generation. A measure to increase the connection wrap length may be considered in order to reduce the connection resistance, but there are structural restrictions and dimensional restrictions, so that this alone cannot be expected to have a sufficient effect.

前記の永久電流スイッチ用の超電導線の安定化基材
を、その長さ方向について大部分を例えばCuNiなどの高
抵抗安定化基材とし、その両端部のみを例えばCuのよう
な低抵抗安定化基材とすることが研究されている。この
ような超電導線を構成する技術として、特開昭59−1170
34が公知である。
The stabilizing base material of the superconducting wire for the permanent current switch is a high resistance stabilizing base material such as CuNi for the most part in the lengthwise direction, and only its both ends are low resistance stabilizing material such as Cu. It has been studied to use it as a base material. As a technique for forming such a superconducting wire, Japanese Patent Laid-Open No. 59-1170
34 is known.

上記の公知技術は、CuNi基材の超電導線を構成し、該
超電導線の両端の口出部のCuNi基材を硝酸をはじめとす
る溶剤で化学処理を行う等の手段で取り除き、露出した
超電導フィラメントに銅を溶射又はメッキして付着させ
るという方法で処理を行うものである。
The above-mentioned publicly known technology constitutes a superconducting wire of CuNi base material, and removes the CuNi base material at the mouths of both ends of the superconducting wire by means of chemical treatment with a solvent such as nitric acid, thereby exposing the superconducting wire. The treatment is performed by a method in which copper is sprayed or plated on the filament to be attached.

上記公知技術によれば、CuNi基材を化学処理して超電
導フィラメントを露出させた時点で、超電導線のIC(超
電導状態で流し得る最大臨界電流)が劣化したり、又、
超電導フィラメント(NbTi合金等)の表面に酸化物や窒
化物等の被膜が形成され、後に付着させる銅基材への分
流抵抗が増大する等の問題点があった。
According to the above-mentioned known technology, when the CuNi base material is chemically treated to expose the superconducting filament, I C of the superconducting wire (the maximum critical current that can flow in the superconducting state) is deteriorated, or
There is a problem that a coating film of oxide or nitride is formed on the surface of the superconducting filament (NbTi alloy or the like), which increases the shunt resistance to the copper substrate to be attached later.

本発明は上述の事情に鑑みて為されたもので、製造工
程の途中で口出部の超電導線の劣化を生ぜしめる虞れの
無い構造であり、かつ、超電導フィラメントの表面に酸
化物や窒化物の被膜を生ぜしめる虞れの無い構造の、永
久電流スイッチ用の超電導線の製造方法を提供するもの
であり、他の目的は、上記方法を的確に実施し得る永久
電流スイッチ用超電導線を提供することにある。
The present invention has been made in view of the above circumstances, and has a structure that does not cause deterioration of the superconducting wire at the outlet in the course of the manufacturing process, and the surface of the superconducting filament is oxide or nitrided. It is intended to provide a method for manufacturing a superconducting wire for a persistent current switch, which has a structure that does not cause a film of an object, and another object is to provide a superconducting wire for a persistent current switch, which can perform the above method accurately. To provide.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するために創作した本発明の超電導
線は、前記公知技術におけるが如く化学薬品によって高
抵抗安定化基材(例えばCuNi)を除去した処へ低抵抗安
定化基材(例えばCu)を付着させた構造とせず、高抵抗
安定化基材を若干短か目に構成して、その両端に低抵抗
安定化基材を溶接した構造とする。
The superconducting wire of the present invention created in order to achieve the above-mentioned object is a low resistance stabilizing base material (for example, CuNi) where a high resistance stabilizing base material (for example, CuNi) is removed by a chemical agent as in the above-mentioned known technique. ) Is not attached to the structure, but the high resistance stabilizing base material is configured to be slightly shorter, and the low resistance stabilizing base material is welded to both ends thereof.

従来技術においては、一旦構成した超電導線に化学処
理と溶射(又はメッキ)とを施したので、溶接を適用で
きなかったが、本発明の超電導線は後述する製造方法の
発明を裏付として、溶接構造を創作したものである。
In the prior art, since the superconducting wire once constructed was subjected to chemical treatment and thermal spraying (or plating), welding could not be applied, but the superconducting wire of the present invention is backed by the invention of the manufacturing method described later, It is a creation of a welded structure.

また、上記の構成よりなる超電導線を構成するために
創作した本発明の製造方法は超電導線を構成すべき素
材、即ち、高抵抗安定化基材(例えばCuNi)と、低抵抗
安定化基材(例えばCu)と超電導フィラメント材料(例
えばNbTi)とを、伸線前の素材の状態すなわち太くて短
い状態において組み合わせ、所要の溶接を施し、その後
に伸線して超電導線とする。
Further, the manufacturing method of the present invention created to form a superconducting wire having the above-mentioned structure is a material for forming the superconducting wire, that is, a high resistance stabilizing base material (eg CuNi) and a low resistance stabilizing base material. (For example, Cu) and a superconducting filament material (for example, NbTi) are combined in a raw material state before drawing, that is, in a thick and short state, subjected to required welding, and then drawn to obtain a superconducting wire.

一度伸線した中間製品を切り揃え、束ねて、もう一度
上記と同様にして伸線を繰り返すと、多芯の超電導線が
得られる。
Multi-core superconducting wires are obtained by cutting and drawing the once drawn intermediate products, bundling them and repeating drawing again in the same manner as above.

上述の原理を実用技術に適応させるための具体的構成
として、本発明に係る超電導線の製造方法は、 高抵抗安定化材料製の筒状部材を構成し、 上記筒状部材の両端にそれぞれ、低抵抗安定化材料製
の短筒を溶接し、 上記筒状部材の中に、該筒状部材よりも長く、短筒か
ら突出しない長さの超電導フィラメント材インゴットを
嵌合し、 上記短筒のそれぞれにプラグを冠着して溶接し、 このようにして構成した組立部材を、例えば静水圧押
出法によって伸線し、単芯の超電導線を得る。これが本
発明方法の基本操作であり、同様の伸線操作を繰り返す
と多芯の超電導線が得られる。即ち上記の伸線された材
料(単芯)を、再度前記筒状部材よりも長く、短筒から
突出しない長さに切断し、これを束にして上記筒状部材
の中に収納し、 前記短筒のそれぞれにプラグを冠着して溶接し、上記
の構成よりなる組立部材を再度伸線して多芯の超電導線
を得る。
As a specific configuration for applying the above-mentioned principle to a practical technique, a method for manufacturing a superconducting wire according to the present invention comprises a tubular member made of a high resistance stabilizing material, and at both ends of the tubular member, Welding a short tube made of a low resistance stabilizing material, and fitting a superconducting filament material ingot longer than the tubular member and not protruding from the short tube into the tubular member, A plug is capped and welded to each, and the assembly member thus configured is drawn by, for example, the hydrostatic extrusion method to obtain a single-core superconducting wire. This is the basic operation of the method of the present invention, and a multifilamentary superconducting wire can be obtained by repeating the same wire drawing operation. That is, the drawn material (single core) is cut again into a length that is longer than the tubular member and does not protrude from the short tube, and this is bundled and stored in the tubular member, A plug is capped and welded to each of the short cylinders, and the assembly member having the above configuration is drawn again to obtain a multicore superconducting wire.

従って、本発明の超電導線は、高抵抗安定化基材製の
筒状部材と、該筒状部材の両端に軸方向に沿ってそれぞ
れ溶接され、筒状部材と同一外径を有する短筒と、筒状
部材及び短筒の中に挿入され、筒状部材よりも長くかつ
短筒から突出しない長さの超電導フィラメント材インゴ
ットと、短筒の外端それぞれに溶接により冠着されたプ
ラグとを有し、これら筒状部材,短筒,超電導フィラメ
ント材インゴット,プラグからなる組立部材を伸線して
単芯を構成している。
Therefore, the superconducting wire of the present invention is a tubular member made of a high-resistance stabilizing base material, and a short tube that is welded to both ends of the tubular member along the axial direction and has the same outer diameter as the tubular member. A superconducting filament material ingot that is inserted into the tubular member and the short tube and has a length longer than the tubular member and does not protrude from the short tube, and a plug capped by welding on each outer end of the short tube. A single core is formed by drawing an assembly member including the tubular member, the short tube, the superconducting filament material ingot, and the plug.

〔作用〕[Action]

上記の発明方法によれば、伸線前の状態で高抵抗安定
化基材と低抵抗安定化基材とを溶接し、その後に伸線す
るので酸洗いなどの化学的処理を必要とせず、超電導フ
ィラメント材料を劣化させる虞れが無い。
According to the above-mentioned method of the invention, the high resistance stabilizing base material and the low resistance stabilizing base material are welded in a state before wire drawing, and thus the wire drawing is not necessary, so that chemical treatment such as pickling is not required, There is no risk of degrading the superconducting filament material.

また、超電導フィラメント材料を安定化材料の筒の中
に封入するので、酸化被膜などを生じる虞れが無く、伸
線時の高圧によって超電導フィラメント材料と安定化基
材とが圧着される。
In addition, since the superconducting filament material is enclosed in the stabilizing material tube, there is no risk of producing an oxide film or the like, and the superconducting filament material and the stabilizing base material are pressed against each other by the high pressure during wire drawing.

また、本発明に係る超電導線は、上記の発明方法によ
って初めて現実に産業上の利用価値(実用性)を生じた
ものであり、高抵抗安定化基材と低抵抗安定化基材とが
溶接で接合されているので、製造工程の途中で超電導フ
ィラメント材料の劣化を生じる虞れなく、しかも安定化
基材との間の電気抵抗を阻害する酸化膜,窒化膜等の介
在がない。
Further, the superconducting wire according to the present invention has actually produced industrial utility value (practicality) for the first time by the above-mentioned invented method, and the high resistance stabilized base material and the low resistance stabilized base material are welded together. Since there is no possibility of deterioration of the superconducting filament material during the manufacturing process, there is no intervening oxide film, nitride film or the like that interferes with the electrical resistance with the stabilizing base material.

即ち、本発明の超電導線は、高抵抗安定化基材製の筒
状部材と、該筒状部材の両端に軸方向に沿ってそれぞれ
溶接され、筒状部材と同一外径を有する短筒と、筒状部
材及び短筒の中に挿入され、筒状部材よりも長くかつ短
筒から突出しない長さの超電導フィラメント材インゴッ
トと、短筒の外端それぞれに溶接により冠着されたプラ
グとを有し、これら筒状部材,短筒,超電導フィラメン
ト材インゴット,プラグからなる組立部材を伸線して単
芯を構成したので、上記方法を的確に実施し得る。
That is, the superconducting wire of the present invention is a tubular member made of a high resistance stabilizing base material, and a short tube that is welded to both ends of the tubular member along the axial direction, and has the same outer diameter as the tubular member. A superconducting filament material ingot that is inserted into the tubular member and the short tube and has a length longer than the tubular member and does not protrude from the short tube, and a plug capped by welding on each outer end of the short tube. Since the assembly member composed of the tubular member, the short tube, the superconducting filament material ingot, and the plug is drawn to form a single core, the above method can be properly performed.

〔実施例〕〔Example〕

第1図は、本発明に係る製造方法における目的製品で
ある超電導線、即ち、本発明に係る超電導線1の端部を
示す斜視図である。
FIG. 1 is a perspective view showing a superconducting wire which is a target product in the manufacturing method according to the present invention, that is, an end portion of the superconducting wire 1 according to the present invention.

この超電導線1は、長尺の安定化基材80の全長に亙っ
て複数本の超電導フィラメント11が埋設されている。
In this superconducting wire 1, a plurality of superconducting filaments 11 are embedded over the entire length of a long stabilizing base material 80.

そして、上記安定化基材80は、その長さ方向について
殆ど全部が高抵抗安定化基材12で構成され、両端部にの
み低抵抗安定化基材13が溶接接合されている。14は溶接
による接合面である。
The stabilizing base material 80 is composed almost entirely of the high resistance stabilizing base material 12 in the length direction, and the low resistance stabilizing base material 13 is welded and bonded only to both ends. 14 is a joint surface by welding.

従来技術においては、埋設されている超電導フィラメ
ント11に損傷を与えずに高抵抗安定化基材と低抵抗安定
化基材とを溶接接合することが出来なかったが、本発明
は次記のようにして溶接を可能ならしめた。
In the prior art, it was not possible to weld and join the high resistance stabilizing base material and the low resistance stabilizing base material without damaging the embedded superconducting filament 11, but the present invention is as follows. I made it possible to weld.

第5図は本発明に係る製造方法の第1段階の説明図で
ある。
FIG. 5 is an explanatory view of the first stage of the manufacturing method according to the present invention.

高抵抗安定化基材用材料であるCuNi製の、長さL1の筒
42を構成し、 長さ寸法L1+2L2の、超電導フィラメント用材料であ
るNbTiインゴット41を上記の筒41内に挿入し、両端をL2
ずつ突出させる。
A tube with a length of L 1 made of CuNi, which is a material for high resistance stabilizing base material.
NbTi ingot 41, which is a material for superconducting filaments and which has a length dimension of L 1 + 2L 2 , constitutes 42 and both ends are L 2
Project each one.

ここにL1>>L2である。Where L 1 >> L 2 .

前記CuNi筒42と同径で、長さ寸法がL2よりも長い(約
2倍)の銅製短筒43を2個構成し、NbTiインゴット41の
両端突出部に外嵌する。
Two copper short cylinders 43 having the same diameter as the CuNi cylinder 42 and a length dimension longer than L 2 (about twice) are formed, and are fitted onto both end protrusions of the NbTi ingot 41.

この銅製短筒43は、NbTiインゴット41をCuNi製筒42に
挿入する前に、予め該CuNi製筒42の両端に摩擦溶接46し
ておく。
Before inserting the NbTi ingot 41 into the CuNi tube 42, the copper short tube 43 is friction welded 46 to both ends of the CuNi tube 42 in advance.

更に、上記銅製短筒43の開口端を覆って銅プラグ44,4
4′を電子ビーム溶接45で接続する。
Further, covering the open end of the copper short tube 43, the copper plugs 44, 4
4'is connected by electron beam welding 45.

このようにして構成した組立部品をシングルビレット
40と呼ぶ。
The assembled parts constructed in this way are
Call it 40.

前記の電子ビーム溶接45は、シングルビレット40の構
成部材を真空チャンバに入れて行うので、溶接の後、Nb
Tiインゴット41の外周は真空に保持されている。このた
め、該インゴット41の表面に酸化被膜や窒化被膜が生成
される虞れが無い。
Since the electron beam welding 45 is performed by placing the constituent members of the single billet 40 in the vacuum chamber, after welding, Nb
The outer circumference of the Ti ingot 41 is held in vacuum. Therefore, there is no possibility that an oxide film or a nitride film is formed on the surface of the ingot 41.

上記のシングルビレット40を、第6図に示す静水圧押
出装置70によって押出し伸線加工する。
The single billet 40 is extruded and drawn by the hydrostatic extrusion device 70 shown in FIG.

この静水圧押出装置70は公知の機器であってコンテナ
63内に形成されているシリンダ63a内にビレット60を入
れ、空隙を圧媒62で満たし、ステム64を圧入し、前記ビ
レット60をダイス61から押し出す。今の場合、前記のビ
レット60として、第5図に示したシングルビレット40を
用いる。
This hydrostatic extrusion device 70 is a known device and is a container.
A billet 60 is put in a cylinder 63a formed in 63, the gap is filled with a pressure medium 62, a stem 64 is press-fitted, and the billet 60 is pushed out from a die 61. In the present case, the single billet 40 shown in FIG. 5 is used as the billet 60.

上記の伸線作用によって高圧を受けるので、NbTiイン
ゴット41とCuNi製筒42とが表面拡散で接合される。ま
た、NbTiインゴット41と銅製短筒43とも表面拡散で接合
される。
The NbTi ingot 41 and the CuNi cylinder 42 are joined by surface diffusion because they are subjected to a high pressure by the wire drawing action. Further, the NbTi ingot 41 and the copper short tube 43 are also joined by surface diffusion.

前述の如くNbTiインゴットの外周が真空に保たれてい
て酸化被膜や窒化被膜を生じない清浄な状態であるた
め、前記の表面拡散による接合は挟雑物を介在させず完
全に行われ、接合部の電気抵抗が低い。
As mentioned above, the outer circumference of the NbTi ingot is kept in a vacuum and is in a clean state where no oxide film or nitride film is formed.Therefore, the above-mentioned surface diffusion bonding is completely performed without intervening contaminants, Has low electrical resistance.

また、第5図から容易に理解できるように、電子ビー
ム溶接45を施す際、該電子ビームはNbTiインゴット41に
は当たらない。従ってNbTiインゴットが超電導特性を劣
化せしめられる虞れが無い。
Further, as can be easily understood from FIG. 5, when the electron beam welding 45 is performed, the electron beam does not hit the NbTi ingot 41. Therefore, there is no possibility that the NbTi ingot deteriorates the superconducting property.

従って、実施例の超電導線は、CuNi製筒42と、そのCu
Ni製筒42の両端に軸方向に沿ってそれぞれ溶接され、Cu
Ni製筒42と同一外径を有する銅製短筒43と、該銅製短筒
43及びCuNi製筒42の中に挿入されたNbTiインゴット41
と、銅製短筒43の外端のそれぞれに溶接により冠着され
た銅プラグ44,44′とを有し、これらCuNi製筒42,銅製短
筒43,NbTiインゴット41,銅プラグ44・44′からなる組立
部材を伸線することにより単芯を構成している。
Therefore, the superconducting wire of the embodiment has a CuNi tube 42 and its Cu
Both ends of the Ni tube 42 are welded along the axial direction, and Cu
Copper short cylinder 43 having the same outer diameter as the Ni cylinder 42, and the copper short cylinder
43 and NbTi ingot 41 inserted in CuNi tube 42
And a copper plug 44, 44 'which is capped by welding on each of the outer ends of the copper short pipe 43, and these CuNi pipe 42, copper short pipe 43, NbTi ingot 41, copper plugs 44, 44'. A single core is constructed by drawing an assembly member consisting of.

そして、上記伸線作業の後、第5図に示した中央部C
に相当する部分を残して、両端のD,D′に相当する部分
を切り捨てる。
After the wire drawing work, the central portion C shown in FIG.
The portions corresponding to D and D ′ at both ends are cut off, leaving the portion corresponding to.

このようにして伸線された単芯の部材を、長さ寸法L1
+2L2に切り揃えて束にし、第7図に示したシングル線
の束49を構成する。
Such a single-core member that is drawn in the length dimension L 1
Align + 2L 2 into a bundle to form the bundle 49 of single wires shown in FIG. 7.

そして、第5図に示したシングルビレット40のNbTiイ
ンゴット41をシングル線の束49で代替した構造のマルチ
ビレット50を構成し、再び第6図に示した静水圧押出装
置70によって押出し伸線し、両端のD,D′に相当する部
分を切り捨てると、第1図に示した多芯形の超電導線1
が得られる。
Then, a multi-billet 50 having a structure in which the NbTi ingot 41 of the single billet 40 shown in FIG. 5 is replaced by a bundle 49 of single wires is constructed, and again extruded and drawn by the hydrostatic extrusion device 70 shown in FIG. , The ends corresponding to D and D'are cut off, the multi-conductor superconducting wire 1 shown in Fig. 1
Is obtained.

本発明の製造方法によって本発明に係る超電導線1を
構成した本実施例において、次記の効果が確認された。
In the present example in which the superconducting wire 1 according to the present invention was constructed by the manufacturing method of the present invention, the following effects were confirmed.

I.超電導線製造段階で、超電導フィラメントが、大気に
露出することが無いので、本来の超電導特性を失わない
良好な特性を持つ両端部銅基材のCuNi基材超電導線が得
られる。
I. Superconducting wire At the manufacturing stage, the superconducting filament is not exposed to the atmosphere, so that a CuNi-based superconducting wire having copper-based materials on both ends can be obtained, which has good characteristics without losing the original superconducting characteristics.

II.銅プラグを電子ビーム溶接するので、ビレット内の
真空が容易に得られ、酸化物,窒化物の介在を生じな
い。
II. Since the copper plug is electron beam welded, a vacuum in the billet can be easily obtained and no oxide or nitride intervenes.

III.電子ビームが直接NbTiに当たらない構造なので、Nb
Ti端部の特性を劣化させることが無い。
III. Since the structure where the electron beam does not directly hit NbTi, Nb
It does not deteriorate the characteristics of the Ti edge.

〔発明の効果〕 以上述べたように、本発明の製造方法によれば、高抵
抗安定化基材製の筒状部材を構成し、上記筒状部材の両
端にそれぞれ、低抵抗安定化基材製の端筒を溶接し、上
記筒状部材の中に、該筒状部材よりも長く、短筒から突
出しない長さの超電導フィラメント材インゴットを嵌合
し、上記短筒のそれぞれにプラグを冠着して溶接し、上
記の構成によりなる組立部材を伸線する。従って、伸線
前の状態で高抵抗安定化基材と低抵抗安定化基材とを溶
接した後で伸線するように構成したので、酸洗いなどの
化学的処理を必要とせず、超電導フィラメント材料を劣
化させる虞がなく、また超電導フィラメント材インゴッ
トを高抵抗及び低抵抗の安定化基材製の筒の中に入れ、
低抵抗安定化基材製の短筒のそれぞれにプラグを溶接に
より冠着するので、超電導フィラメント材に酸化被膜な
どを生じる虞がない結果、OFF時に高抵抗で、接続部の
接続抵抗が小さく、しかも全長に亙って均一な超電導特
性を得ることのできる超電導線を容易に製造することが
できる効果がある。
[Effects of the Invention] As described above, according to the manufacturing method of the present invention, a tubular member made of a high-resistance stabilizing base material is formed, and a low-resistance stabilizing base material is provided at both ends of the tubular member. Welded end tubes made of steel, fit in the tubular member a superconducting filament material ingot that is longer than the tubular member and does not protrude from the short tube, and plugs into each of the short tubes. It is attached and welded, and the assembly member having the above configuration is drawn. Therefore, since the high resistance stabilizing base material and the low resistance stabilizing base material are welded in the state before wire drawing and then the wire drawing is performed, no chemical treatment such as pickling is required, and the superconducting filament is not necessary. There is no danger of degrading the material, and the superconducting filament material ingot is placed in a tube made of a stable base material of high resistance and low resistance,
Since the plugs are attached to each of the short cylinders made of low resistance stabilizing base material by welding, there is no risk of oxide film being formed on the superconducting filament material.As a result, the resistance is high at the time of OFF, the connection resistance of the connection part is small, Moreover, there is an effect that a superconducting wire that can obtain uniform superconducting properties over the entire length can be easily manufactured.

また、本発明の超電導線によれば、高抵抗安定化基材
製の筒状部材と、該筒状部材の両端に軸方向に沿ってそ
れぞれ溶接され、筒状部材と同一外径を有する短筒と、
筒状部材及び短筒の中に挿入され、筒状部材よりも長く
かつ短筒から突出しない長さの超電導フィラメント材イ
ンゴットと、短筒の外端それぞれに溶接により冠着され
たプラグとを有し、これら筒状部材,短筒,超電導フィ
ラメント材インゴット,プラグからなる組立部材を伸線
して単芯を構成したので、上記方法を的確に実施し得る
効果がある。
Further, according to the superconducting wire of the present invention, a tubular member made of a high resistance stabilizing base material and a short member having the same outer diameter as the tubular member are welded to both ends of the tubular member along the axial direction. A cylinder,
A superconducting filament material ingot that is inserted into the tubular member and the short tube and has a length that is longer than the tubular member and does not project from the short tube, and a plug that is capped by welding on each outer end of the short tube. However, since the single core is formed by drawing the assembly member including the tubular member, the short tube, the superconducting filament material ingot, and the plug, there is an effect that the above method can be appropriately performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る超電導線の模式的な斜視図であ
る。 第2図は超電導コイルの励磁回路の1例を示す回路図で
ある。第3図は永久電流スイッチの説明図である。 第4図は、超電導線接続部を説明するための断面図であ
る。 第5図は本発明方法の一実施例におけるシングルビレッ
トの断面図、第6図は同じく静水圧押出装置の断面図、
第7図は同じくマルチビレットの断面図である。 1……永久電流スイッチ用超電導線、2……永久電流ス
イッチ、3……超電導コイル、4……保護抵抗、5……
励磁電流遮断器、6……励磁電源、7……接続部、8…
…半田、11……永久電流スイッチ用超電導線の超電導フ
ィラメント、12……永久電流スイッチ用超電導線高抵抗
安定化基材、13……永久電流スイッチ用超電導線低抵抗
安定化基材、14……安定化基材接合面、21……永久電流
スイッチ本体、22……永久電流スイッチヒータ、23……
ヒータスイッチ、24……ヒータ電源、31……超電導コイ
ル口出線、32……超電導コイル線材の超電導フィラメン
ト、33……超電導コイル線材安定化基材、40……シング
ルビレット、41……NbTiインゴット、42……CuNi製筒、
43……銅製短筒、44,44′……銅プラグ、45……電子ビ
ーム溶接、46……摩擦溶接、49……シングル線、50……
マルチビレット、60……ビレット、61……ダイス、62…
…圧媒、63……コンテナ、64……ステム。
FIG. 1 is a schematic perspective view of a superconducting wire according to the present invention. FIG. 2 is a circuit diagram showing an example of an exciting circuit for a superconducting coil. FIG. 3 is an explanatory diagram of the permanent current switch. FIG. 4 is a cross-sectional view for explaining the superconducting wire connecting portion. FIG. 5 is a sectional view of a single billet in one embodiment of the method of the present invention, and FIG. 6 is a sectional view of the same hydrostatic extrusion device.
FIG. 7 is a sectional view of the same multi-billet. 1 ... Superconducting wire for permanent current switch, 2 ... Permanent current switch, 3 ... Superconducting coil, 4 ... Protective resistance, 5 ...
Excitation current circuit breaker, 6 ... Excitation power supply, 7 ... Connection, 8 ...
… Solder, 11 …… Superconducting filament of superconducting wire for permanent current switch, 12 …… Superconducting wire high resistance stabilizing base material for permanent current switch, 13 …… Superconducting wire low resistance stabilizing base material for permanent current switch, 14… … Stabilized substrate joint surface, 21 …… Permanent current switch body, 22 …… Permanent current switch heater, 23 ……
Heater switch, 24 ... Heater power supply, 31 ... Superconducting coil lead wire, 32 ... Superconducting filament of superconducting coil wire, 33 ... Superconducting coil wire stabilizing material, 40 ... Single billet, 41 ... NbTi ingot , 42 …… CuNi tube,
43 …… Copper short tube, 44,44 ′ …… Copper plug, 45 …… Electron beam welding, 46 …… Friction welding, 49 …… Single wire, 50 ……
Multi billet, 60 …… billet, 61 …… dice, 62…
… Pressure medium, 63 …… Container, 64 …… Stem.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 進 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (56)参考文献 特開 昭61−224218(JP,A) 実開 昭60−60102(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Sato 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (56) References JP-A-61-224218 (JP, A) Actually open 60-60102 (JP, U)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高抵抗安定化基材の両端に低抵抗安定化基
材を電気的に接続し、かつ、上記の低抵抗安定化基材及
び高抵抗安定化基材を貫通せしめて超電導フィラメント
を埋設してなる超電導線を製造する方法において、 高抵抗安定化基材製の筒状部材を構成し、 上記筒状部材の両端にそれぞれ、低抵抗安定化基材製の
短筒を溶接し、 上記筒状部材の中に、該筒状部材よりも長く、短筒から
突出しない長さの超電導フィラメント材インゴットを嵌
合し、 上記短筒のそれぞれにプラグを冠着して溶接し、 上記の構成によりなる組立部材を伸線することを特徴と
する、熱式永久電流スイッチ用超電導線の製造方法。
1. A superconducting filament in which a low resistance stabilizing base material is electrically connected to both ends of a high resistance stabilizing base material, and the low resistance stabilizing base material and the high resistance stabilizing base material are penetrated. In the method of manufacturing a superconducting wire in which the above is embedded, a tubular member made of a high resistance stabilizing base material is configured, and a short tube made of a low resistance stabilizing base material is welded to both ends of the tubular member. In the tubular member, a superconducting filament material ingot longer than the tubular member and having a length that does not protrude from the short tube is fitted, and a plug is capped and welded to each of the short tube, A method of manufacturing a superconducting wire for a thermal permanent current switch, which comprises drawing an assembly member having the above structure.
【請求項2】高抵抗安定化基材の両端に低抵抗安定化基
材を電気的に接続し、かつ、上記の低抵抗安定化基材及
び高抵抗安定化基材を貫通せしめて超電導フィラメント
を埋設してなる超電導線を製造する方法において、 高抵抗安定化基材製の筒状部材を構成し、 上記筒状部材の両端にそれぞれ、低抵抗安定化基材製の
短筒を溶接し、 上記筒状部材の中に、該筒状部材よりも長く、短筒から
突出しない長さの超電導フィラメント材インゴットを嵌
合し、 上記短筒のそれぞれにプラグを冠着して溶接し、 上記の構成よりなる組立部材を伸線し、 高抵抗安定化基材製の筒状部材を構成し、 上記筒状部材の両端にそれぞれ、低抵抗安定化基材製の
短筒を溶接し、 前記の伸線された材料を、上記筒状部材よりも長く、短
筒から突出しない長さに切断し、これを束にして上記筒
状部材の中に収納し、 前記短筒のそれぞれにプラグを冠着して溶接し、 上記の構成よりなる組立部材を伸線することを特徴とす
る、熱式永久電流スイッチ用超電導線の製造方法。
2. A superconducting filament in which a low resistance stabilizing base material is electrically connected to both ends of a high resistance stabilizing base material, and the low resistance stabilizing base material and the high resistance stabilizing base material are penetrated. In the method of manufacturing a superconducting wire in which the above is embedded, a tubular member made of a high resistance stabilizing base material is configured, and a short tube made of a low resistance stabilizing base material is welded to both ends of the tubular member. In the tubular member, a superconducting filament material ingot longer than the tubular member and having a length that does not protrude from the short tube is fitted, and a plug is capped and welded to each of the short tube, The assembly member consisting of the configuration is drawn to form a tubular member made of a high resistance stabilizing base material, and a short tube made of a low resistance stabilizing base material is welded to both ends of the tubular member, respectively, Cut the drawn material into a length that is longer than the tubular member and does not protrude from the short tube. Then, this is bundled and housed in the tubular member, and a plug is capped and welded to each of the short tubes, and the assembly member having the above configuration is drawn. Method of manufacturing superconducting wire for permanent current switch.
【請求項3】高抵抗安定化基材の両端に低抵抗安定化基
材を電気的に接続し、かつ、上記の低抵抗安定化基材及
び高抵抗安定化基材を貫通せしめて超電導フィラメント
を埋設してなる超電導線において、 高抵抗安定化基材製の筒状部材と、該筒状部材の両端に
軸方向に沿ってそれぞれ溶接され、筒状部材と同一外径
を有する短筒と、筒状部材及び短筒の中に挿入され、筒
状部材よりも長くかつ短筒から突出しない長さの超電導
フィラメント材インゴットと、短筒の外端それぞれに溶
接により冠着されたプラグとを有し、これら筒状部材,
短筒,超電導フィラメント材インゴット,プラグからな
る組立部材を伸線して単芯を構成することを特徴とす
る、熱式永久電流スイッチ用超電導線。
3. A superconducting filament in which a low resistance stabilizing base material is electrically connected to both ends of a high resistance stabilizing base material, and the low resistance stabilizing base material and the high resistance stabilizing base material are penetrated. In a superconducting wire formed by embedding, a tubular member made of a high resistance stabilizing base material, and a short tube having the same outer diameter as the tubular member, which are welded to both ends of the tubular member along the axial direction. A superconducting filament material ingot that is inserted into the tubular member and the short tube and has a length longer than the tubular member and does not protrude from the short tube, and a plug capped by welding on each outer end of the short tube. Have these tubular members,
A superconducting wire for a thermal permanent current switch, characterized in that an assembly member consisting of a short cylinder, a superconducting filament material ingot and a plug is drawn to form a single core.
【請求項4】高抵抗安定化基材の両端に低抵抗安定化基
材を電気的に接続し、かつ、上記の低抵抗安定化基材及
び高抵抗安定化基材を貫通せしめて超電導フィラメント
を埋設してなる超電導線において、 高抵抗安定化基材製の第一の筒状部材と、該筒状部材の
両端に軸方向に沿ってそれぞれ溶接され、第一筒状部材
と同一外径を有する第一短筒と、第一筒状部材及び第一
短筒の中に挿入され、第一筒状部材よりも長くかつ第一
短筒から突出しない長さをもつ複数本の単芯の束と、第
一短筒の外端それぞれに溶接により冠着された第一プラ
グとを有し、これら第一筒状部材,第一短筒,単芯の
束,第一プラグからなる組立部材を伸線して多芯に構成
し、 かつ上記単芯の束のそれぞれは、高抵抗安定化基材製の
第二筒状部材と、該第二筒状部材の両端に軸方向に沿っ
てそれぞれ溶接され、第二筒状部材と同一外径を有する
第二短筒と、第二筒状部材及び第二短筒の中に挿入さ
れ、第二筒状部材よりも長くかつ第二短筒から突出しな
い長さの超電導フィラメント材インゴットと、第二短筒
の外端それぞれに溶接により冠着された第二プラグとを
有し、これら第二筒状部材,第二短筒,超電導フィラメ
ント材インゴット,第二プラグからなる組立部材を伸線
して単芯に構成することを特徴とする、熱式永久電流ス
イッチ用超電導線。
4. A superconducting filament in which a low resistance stabilizing base material is electrically connected to both ends of a high resistance stabilizing base material, and the low resistance stabilizing base material and the high resistance stabilizing base material are penetrated. In a superconducting wire formed by embedding, a first cylindrical member made of a high-resistance stabilizing base material, and welded to both ends of the cylindrical member along the axial direction, and having the same outer diameter as the first cylindrical member. And a first tubular member having a plurality of single cores inserted into the first tubular member and the first tubular member and having a length longer than the first tubular member and not protruding from the first tubular member. An assembly member that includes a bundle and a first plug that is welded to the outer ends of the first short cylinder, and that includes the first tubular member, the first short cylinder, the single core bundle, and the first plug. To form a multi-core bundle, and each of the single-core bundles includes a second tubular member made of a high-resistance stabilizing base material and a second tubular member. A second short cylinder having the same outer diameter as the second cylindrical member, which is welded to both ends along the axial direction, and is inserted into the second cylindrical member and the second short cylinder. Also has a superconducting filament material ingot of a length that is also long and does not protrude from the second short cylinder, and a second plug that is capped by welding to each of the outer ends of the second short cylinder. A superconducting wire for a thermal permanent current switch, characterized in that an assembly member consisting of two short cylinders, a superconducting filament material ingot, and a second plug is drawn to form a single core.
JP63283938A 1988-11-11 1988-11-11 Method for manufacturing superconducting wire for thermal permanent current switch, and superconducting wire Expired - Lifetime JPH0821733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63283938A JPH0821733B2 (en) 1988-11-11 1988-11-11 Method for manufacturing superconducting wire for thermal permanent current switch, and superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283938A JPH0821733B2 (en) 1988-11-11 1988-11-11 Method for manufacturing superconducting wire for thermal permanent current switch, and superconducting wire

Publications (2)

Publication Number Publication Date
JPH02130967A JPH02130967A (en) 1990-05-18
JPH0821733B2 true JPH0821733B2 (en) 1996-03-04

Family

ID=17672162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283938A Expired - Lifetime JPH0821733B2 (en) 1988-11-11 1988-11-11 Method for manufacturing superconducting wire for thermal permanent current switch, and superconducting wire

Country Status (1)

Country Link
JP (1) JPH0821733B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487110B (en) * 2023-06-21 2023-09-01 西安聚能超导线材科技有限公司 NbTi superconducting switch wire with high nickel content and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060102U (en) * 1983-09-30 1985-04-26 昭和電線電纜株式会社 Superconducting composite billet for hydrostatic extrusion
JPS61224218A (en) * 1985-03-28 1986-10-04 住友電気工業株式会社 Manufacture of very fine multicore superconducting wire

Also Published As

Publication number Publication date
JPH02130967A (en) 1990-05-18

Similar Documents

Publication Publication Date Title
JP4744248B2 (en) RE oxide superconducting wire joining method
US4894906A (en) Superconductive joint for multifilament superconducting and method of forming
JP2003022719A (en) Superconductive connecting structure
JP5118990B2 (en) Superconducting tape wire and defect repair method
JPH06325629A (en) Oxide superconductor, manufacture thereof, and oxide superconducting power cable having the superconductor
JP5115778B2 (en) Superconducting cable
GB2498961A (en) Methods of joining superconducting wires
JP3521612B2 (en) Connection structure of superconducting conductor
JPS6121387B2 (en)
US5231366A (en) Superconducting magnetic field generating apparatus and method of producing the same
JP3796850B2 (en) Terminal structure of superconducting cable conductor and connection method thereof
JPH0821733B2 (en) Method for manufacturing superconducting wire for thermal permanent current switch, and superconducting wire
JPH10106647A (en) Wire connection structure and method for permanent current switch
JP2550188B2 (en) Oxide-based high temperature superconductor, joining method and brazing material
JP3783518B2 (en) Superconducting wire connection structure
JP2998398B2 (en) Superconducting wire joining method
Phillip et al. Two methods of fabricating reliable superconducting joints with multifilamentary Nb-Ti superconducting wire
JPH08321416A (en) Current lead for superconducting device
JPH1021976A (en) Superconductor and connection method thereof
JPH03156809A (en) Application of oxide superconductive conductor
JPH05335145A (en) Superconducting current lead
JPH065345A (en) Different kind superconducting wire connecting method
JPH03194866A (en) Connection method for complex superconductive wire and connection structure therefor
JPH04188706A (en) Superconducting coil
JPH04206507A (en) Nuclear magnetic resonance image diagnostic device (mri), superconducting coil and manufacture thereof