JPH04206507A - Nuclear magnetic resonance image diagnostic device (mri), superconducting coil and manufacture thereof - Google Patents

Nuclear magnetic resonance image diagnostic device (mri), superconducting coil and manufacture thereof

Info

Publication number
JPH04206507A
JPH04206507A JP2328987A JP32898790A JPH04206507A JP H04206507 A JPH04206507 A JP H04206507A JP 2328987 A JP2328987 A JP 2328987A JP 32898790 A JP32898790 A JP 32898790A JP H04206507 A JPH04206507 A JP H04206507A
Authority
JP
Japan
Prior art keywords
superconducting
strands
stabilizing material
wire
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2328987A
Other languages
Japanese (ja)
Inventor
Takashi Fukumaki
服巻 孝
Mitsuo Nakamura
中村 満夫
Takao Funamoto
舟本 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2328987A priority Critical patent/JPH04206507A/en
Publication of JPH04206507A publication Critical patent/JPH04206507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To reduce current attenuation rate, and to make it possible to generate a magnetic field which is stable for a long period of time by a method wherein the connection parts of a conducting wire are concentrated at the center part of a stabilizing material for connection by conducting plastic work on metal superconducting strands. CONSTITUTION:Twenty-four metal superconducting strands 33 are buried in stabilization copper on a cross section of Nb-Ti superconducting wires 31 and 32. The above- mentioned strands are dipped into nitric acid for the purpose of exposing the strands 33 on the terminal to be joined, the stabilized copper is removed, and after the strands have been exposed, they are rinsed. An Nb-Ti junction auxiliary member 34, which is same as the strands, is prepared in advance, and junction strands are enveloped. The stabilization copper on the auxiliary member 34 is removed using nitric acid in advance, and the strands are exposed. Then, oxygen free copper is inserted in the center part of the strands as a core material, a junction auxiliary strand 34 formed in advance covers the circumference of the strand group 33, which is inserted into the hollow part of the stabilized copper, placed in a mold and molded by applying pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は電流減衰率の小さい超電導磁界発生装置に係り
、特に、改良された超電導線の接続部をもつコイルを備
えた超電導磁界発生装置(以下MRI)及びそれに用い
るのに適したコイル、超電導線並びにそのコイルの製造
方法と超電導線の接続方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a superconducting magnetic field generator with a small current attenuation rate, and particularly to a superconducting magnetic field generator ( The present invention relates to MRI (hereinafter referred to as MRI), a coil suitable for use therein, a superconducting wire, a method for manufacturing the coil, and a method for connecting the superconducting wire.

本発明のMRIは、核融合装置の種々の分野に利用でき
る。
The MRI of the present invention can be used in various fields of nuclear fusion devices.

[従来の技術] 接続用超電導線は多数の超電導素線を銅(Cu)やアル
ミニウム(AQ)のような安定化材料中に埋設し所望の
外径まで伸線加工を施したものを集積した超電導ファイ
ンマルチ線が使用されている。
[Conventional technology] Superconducting wires for connection are assembled by embedding a large number of superconducting wires in a stabilizing material such as copper (Cu) or aluminum (AQ) and drawing them to a desired outer diameter. Superconducting fine multi-wire is used.

従来から知られている接続にはんだ付性、ろう付性、圧
接法、溶接法等が試みられているが、いず”れも接続部
の電気抵抗が大きく、かつ通電時の発熱量が多くなるの
で、実用上問題があった。
Previously known connections such as soldering, brazing, pressure welding, and welding have been tried, but all of them have high electrical resistance at the connection and generate a lot of heat when energized. Therefore, there was a practical problem.

超電導ファインマルチ線の接続にはこれを改善するため
、特開昭59−16207号公報に記載のように、露出
された超電導素線が相互に重ねられて接続用チューブ内
に収納されると共に、接続用チューブを介して押圧する
ことにより電気的導通状態にする方法が採られている。
In order to improve the connection of superconducting fine multi-wires, as described in Japanese Patent Application Laid-Open No. 59-16207, exposed superconducting strands are stacked on top of each other and housed in a connection tube, and A method is adopted in which electrical continuity is established by pressing through a connecting tube.

この接続方法は、接続すべき超電導線の接続部分の安定
化材を除去して露出させた超電導体フィラメントを、相
互に重ねて接続用のパイプ内に収納すると共に、パイプ
を介して圧着し、収納された超電導体フィラメントを相
互に圧着・接合するものである。
This connection method involves removing the stabilizing material from the connecting portion of the superconducting wires to be connected, stacking the exposed superconducting filaments in a connecting pipe, and crimping them through the pipe. The superconductor filaments that have been stored are crimped and joined together.

しかし、この接続方法では、互いに接続しようとする超
電導体フィラメントは、その外面の重なり合う部分しか
接触せず、高い臨界電流値を確保するのが難しい。また
、押圧が一方向からであり、超電導体フィラメントの接
触も十分に行われない問題があった。
However, with this connection method, the superconducting filaments that are to be connected to each other contact only the overlapping portions of their outer surfaces, making it difficult to ensure a high critical current value. Further, there was a problem in that the pressing was from one direction, and the superconductor filaments did not come into sufficient contact.

更に、超電導体フィラメントの充填率を向上させるため
特開昭62−234880号公報の超電導線の接合方法
が提案されている。この方法は露出された芯線のそれぞ
れに連結用超電導線の露出された複芯を挾み合せ、挾み
合せ部を一体に金属リングにより覆い、この金属リング
を圧着して接合することを特徴とする。その例は連結用
超電導線のフィラメントの先端部を超電導線の各安定化
材の端部まで覆うように延材させ、この延材したフィラ
メントの先端に金属リングの端部が位置するようにして
圧着している。この例のように超電導素線(フィラメン
ト)が非常に少ない場合は、連結用超電導フィラメント
を適用することは充填率を向上させるために有効である
。しかし圧着の押圧が一方向からであり、超電導フィラ
メント同士の密着性はまだ十分とは言えなかった。また
、圧着した後の断面におけるフィラメントと安定化材の
肉厚比や安定化材の長さ等について検討されておらず、
接続抵抗値がばらつく問題があり、永久電流超電導線に
なっていない欠点があった。
Furthermore, in order to improve the filling rate of superconducting filaments, a method for joining superconducting wires has been proposed in Japanese Patent Laid-Open No. 62-234880. This method is characterized by sandwiching the exposed multi-core of the superconducting wire for connection between each of the exposed core wires, covering the sandwiched parts together with a metal ring, and crimping and joining the metal rings. do. An example of this is to extend the tip of the filament of the connecting superconducting wire to the end of each stabilizing material of the superconducting wire, and position the end of the metal ring at the tip of the stretched filament. It is crimped. When there are very few superconducting wires (filaments) as in this example, applying superconducting filaments for connection is effective in improving the filling rate. However, the pressure for crimping was from one direction, and the adhesion between the superconducting filaments was still not sufficient. In addition, the thickness ratio of the filament and the stabilizing material in the cross section after crimping, the length of the stabilizing material, etc. have not been studied.
There was a problem that the connection resistance value varied, and there was a drawback that it was not a persistent current superconducting wire.

〔発明が解決しようとする課題] 上記従来技術は超電導素線(フィラメント)を安定化材
で押圧する方法、並びに、接合部の断面の肉厚の比や長
さについて考慮されておらず、そのため、真の超電導素
線同士の接続が達成されず、それに伴う永久的な電気特
性にも問題があった。
[Problems to be Solved by the Invention] The above-mentioned prior art does not consider the method of pressing the superconducting wire (filament) with a stabilizing material, nor the thickness ratio and length of the cross section of the joint. However, true superconducting strands could not be connected to each other, and there were problems with permanent electrical properties.

つまり、超電導素線をからみ合せるのが大きな狙いであ
り、超電導素線同士の近接効果や分流損失等の防止を達
成する接続までに至っていない。
In other words, the main aim is to entangle superconducting strands, but a connection that prevents the proximity effect and shunt loss between superconducting strands has not yet been achieved.

本発明の目的は、電流減衰率が著しく小さく長期間安定
した磁界を発生できるMHIを提供することであり、さ
らにそのMRIに使用するのに適した超電導コイル及び
その製造方法などを提供することにある。
An object of the present invention is to provide an MHI that can generate a magnetic field that is stable for a long period of time with an extremely low current attenuation rate, and also to provide a superconducting coil suitable for use in MRI and a method for manufacturing the same. be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、安定化材中に複数
の超電導素線が埋設されている超電導線の端部を接続し
て構成された超電導線を巻回して構成されたコイルと、
前記コイルの両端に接続された超電導スイッチと、前記
コイルと超電導スイッチを冷却する手段とをもつものに
おいて、前記接続部分の超電導素線群は前記安定化材の
中央部分に密に集合して埋設され、かつ素線間が直接接
触し、素線群の集合体の中央部に前記安定化材が存在し
、それらの前記安定化材と前記素線とは密に接合されて
いるMRIを提供する。
In order to achieve the above object, the present invention provides a coil configured by winding a superconducting wire configured by connecting the ends of a superconducting wire in which a plurality of superconducting wires are embedded in a stabilizing material;
In the device having a superconducting switch connected to both ends of the coil, and means for cooling the coil and the superconducting switch, a group of superconducting wires in the connecting portion is densely gathered and buried in a central portion of the stabilizing material. and the strands are in direct contact with each other, the stabilizing material is present in the center of the aggregate of the strands, and the stabilizing material and the strands are tightly joined. do.

更に、本発明は、前記接続部分で超電導素線群と他の超
電導線材群とが安定化材の中央部分に密に集合して埋設
され、かつ素線間が直接接触し、素線群の集合体の中央
部に安定化材が存在し、それらの安定化材と前記素線と
は密に接合されているMRIを提供する。
Furthermore, in the present invention, the superconducting wire group and the other superconducting wire group are densely gathered and buried in the center part of the stabilizing material in the connection part, and the wires are in direct contact with each other, and the wire groups are Stabilizing materials are present in the center of the assembly, and the stabilizing materials and the wires are tightly joined to provide MRI.

更に、本発明によれば、前記接続部分は10−”Ω以下
の接続抵抗をもち、かつ前記超電導線の臨界電流値の8
0%以上の臨界電流値をもつMRIが提供できる。
Furthermore, according to the present invention, the connection portion has a connection resistance of 10-''Ω or less, and the critical current value of the superconducting wire is 8.
MRI with a critical current value of 0% or more can be provided.

本発明は、安定化材中に多数の超電導素線が埋設されて
いる超電導線を巻回して構成されたコイル単位のコイル
端において超電導素線同士を接続して所定のコイルター
ンを構成するものにおいて、前記接続部分の超電導素線
群は安定化材中に埋設−され、かつ、その安定化材の中
心部分に密に集合されて素線間が直接接触し、素線群の
集合体の中心部に低抵抗金属材料が存在し、前記安定化
材と前記金属材料及び前記素線は相互に密に接合されて
いることを特徴とする。
The present invention is a coil unit formed by winding a superconducting wire in which a large number of superconducting wires are embedded in a stabilizing material, and connecting the superconducting wires to each other at the coil end to form a predetermined coil turn. In this method, the superconducting strands of the connection part are embedded in a stabilizing material, and are densely gathered in the center of the stabilizing material so that the strands are in direct contact with each other, and the aggregate of the strands is A low-resistance metal material is present in the center, and the stabilizing material, the metal material, and the wire are closely bonded to each other.

このコイルは、前記接続部分の超電導素線群と接続用超
電導線群とが前記安定化材中に埋設され、かつ、その安
定化材の中心部分に密に集合されて素線間が直接接触し
、素線群の集合体の中心部に低抵抗金属材料が存在し、
前記安定化材と前記金属材料が前記素線と相互に密に接
合されている超電導コイルであってもよい。そして、こ
の超電導コイルは、前記接続部分は10−”Ω以下の接
続抵抗をもち、前記超電導線の臨界電流値の80%以上
の臨界電流値をもつ。
In this coil, a group of superconducting strands of the connection part and a group of superconducting wires for connection are embedded in the stabilizing material, and are densely gathered in the center of the stabilizing material so that the strands are in direct contact with each other. However, a low-resistance metal material exists in the center of the aggregate of strands,
The superconducting coil may be a superconducting coil in which the stabilizing material and the metal material are tightly joined to the wire. In this superconducting coil, the connecting portion has a connection resistance of 10-''Ω or less, and a critical current value of 80% or more of the critical current value of the superconducting wire.

本発明は、前記接続部分の超電導素線群は安定化材中に
埋設され、かつ、その安定化材の中央部分に密に集合さ
れて素線間が、直接、接触し、素線群の集合体の中央部
に低抵抗金属材料が存在し、前記安定化材と前記金属材
料及び前記素線は相互に密に接合され、前記接続部分は
10−″”Ω以下の接続抵抗を有し、前記超電導線の臨
界電流値の80%以上の臨界電流値を有する超電導線を
提供するものである。
In the present invention, the superconducting strands of the connection part are embedded in a stabilizing material, and are densely gathered in the center of the stabilizing material so that the strands are in direct contact with each other, and the strands of the strands are in direct contact with each other. A low-resistance metal material is present in the center of the aggregate, the stabilizing material, the metal material, and the wire are closely bonded to each other, and the connection portion has a connection resistance of 10-''''Ω or less. The present invention provides a superconducting wire having a critical current value that is 80% or more of the critical current value of the superconducting wire.

そして更に本発明は、超電導線を巻回して所望のターン
を構成すること、前記超電導線の端部の超電導素線群を
露出させること、前記素線群の中央部に安定化材の芯材
を配置すること、前記超電導素線群及び芯材とともに中
空部を有する安定化材の中空部内に挿入すること、中空
安定化材の外周から加圧することにより露出された前記
超電導素線を芯材方向に集合させることにより、中空安
定化材並びに芯材を前記超電導素線に密に接合すること
、超電導コイルの製造法を提供する。
The present invention further provides the steps of: winding a superconducting wire to form a desired turn; exposing a group of superconducting strands at an end of the superconducting wire; and placing a core of a stabilizing material in the center of the strands. , inserting the superconducting strands together with the superconducting strands and the core material into the hollow part of the stabilizing material having a hollow part, and applying pressure from the outer periphery of the hollow stabilizing material to insert the exposed superconducting strands into the core material. The present invention provides a method for manufacturing a superconducting coil, in which a hollow stabilizing material and a core material are tightly joined to the superconducting wire by assembling them in a direction.

この製造方法は、安定化材中に複数の金属超電導素線が
埋設されている超電導線を巻回してコイルを形成する工
程と、前記コイルの超電導線の接続端部に露出された金
属超電導素線を他の接続すべき露出された超電導素線並
びに接続補助材とを、中央部に安定化材からなる芯材を
存在させて、集合する工程と、集合した超電導素線群及
び超電導線端部を中空安定化材の中空部内に挿入する工
程と、前記中空安定化材の外方から圧力を加えて集合部
を塑性加工し、超電導素線を中空安定化材の中央部分に
集積するとともに、前記芯材及び中空安定化材を前記超
電導素線に密に接合し、かつ前記超電導素線同士を直接
接触させる工程とを含む超電導線のコイルの製造方法で
ある。
This manufacturing method includes a step of winding a superconducting wire in which a plurality of metal superconducting wires are embedded in a stabilizing material to form a coil, and a step of winding a superconducting wire in which a plurality of metal superconducting wires are embedded in a stabilizing material to form a coil, and A process of assembling the exposed superconducting strands to be connected to other wires and the connection auxiliary material with a core material made of a stabilizing material in the center, and the assembled superconducting strands and the ends of the superconducting wires. a process of inserting the superconducting wire into the hollow part of the hollow stabilizing material, applying pressure from the outside of the hollow stabilizing material to plastically process the collecting part, and collecting the superconducting wires in the central part of the hollow stabilizing material. , a method for manufacturing a coil of superconducting wire, including the steps of tightly joining the core material and the hollow stabilizing material to the superconducting wire, and bringing the superconducting wires into direct contact with each other.

また、安定化材中に複数の金属超電導素線が埋設されて
いる超電導線の接続端部に露出された金属超電導素線能
の超電導線の接続端部の露出素線とを安定化芯材の周り
に集合する工程と、集合した超電導素線群及び超電導線
端部を中空安定化材の中空部内に挿入する工程と、押入
された集合部を塑性加工し、超電導素線を中空安定化材
の中央部分に集積するとともに、前記芯材及び中空安定
化材を前記超電導素線に密に接合し、かつ前記超電導素
線同士を直接接触させる工程とを含む超電導線の接続方
法を提供する。
In addition, the stabilizing core material can be used to connect the exposed strands at the connecting end of the superconducting wire with the metal superconducting strands exposed at the connecting end of the superconducting wire in which a plurality of metal superconducting strands are embedded in the stabilizing material. a process of assembling the superconducting strands around the strands, a process of inserting the assembled superconducting strands and the ends of the superconducting strands into the hollow part of the hollow stabilizing material, and plastic working the pushed-in gathering part to stabilize the superconducting strands in the hollow. Provided is a method for connecting superconducting wires, which includes the steps of: integrating the core material and the hollow stabilizing material into the central part of the superconducting wire, closely joining the core material and the hollow stabilizing material to the superconducting wire, and bringing the superconducting wires into direct contact with each other. .

本発明に係る超電導線は、安定化材料中に複数の金属超
電導素線が埋設されている各単位超電導線の端部で露出
された金属超電導素線同士が接続されてなる超電導線に
おいて、前記接続部分の超電導素線は接続用円筒中空安
定化材の中央部分に集合され、接続用安定化材は超電導
線及び被接続超電導素線と例えば金属接合されているも
のである。
The superconducting wire according to the present invention is a superconducting wire in which a plurality of metal superconducting strands are embedded in a stabilizing material and metal superconducting strands exposed at the ends of each unit superconducting wire are connected to each other. The superconducting strands of the connecting portion are assembled in the center of the cylindrical hollow stabilizing material for connection, and the stabilizing material for connection is, for example, metal-bonded with the superconducting wire and the superconducting strand to be connected.

本発明者は超電導素線間の接続抵抗を著しく低下させる
ために、超電導素線をいかにして集合させるかを検討し
た。このため、超電導線に使用されている安定化材で接
続用のスリーブを作製し、その中に被接続用の超電導素
線を挿入し、安定化材スリーブを押圧するのである。と
ころが、この方法では超電導素線の集合体の充填率はそ
れほど向上しなかった。
The present inventor studied how to assemble superconducting strands in order to significantly reduce the connection resistance between the superconducting strands. For this reason, a connecting sleeve is made from a stabilizing material used in superconducting wires, a superconducting wire to be connected is inserted into the sleeve, and the stabilizing material sleeve is pressed. However, this method did not significantly improve the filling rate of the superconducting wire aggregate.

ここで充填率とは、接続部の断面(接続面の超電導素線
の長平方向に直角な面における断面)のうち安定化材の
面積を除いた面積(A)に対する、超電導素線の集合ま
たは超電導素線と接続補助材として用いた超電導素線の
集合の面積(B)の比であり、面積(B)は面積(A)
から空間またはボイドを除いたものである。この充填率
が80%以上であると、超電導素線間の接触抵抗が非常
に小さくなり、接続抵抗が小さくなる。とくに充填率が
90%以上であると接続抵抗が極めて小さくなる。
Here, the filling rate is the collection of superconducting strands or It is the ratio of the area (B) of the superconducting wire and the set of superconducting wires used as connection auxiliary material, and the area (B) is the area (A)
minus space or void. When this filling rate is 80% or more, the contact resistance between the superconducting strands becomes very small, and the connection resistance becomes small. In particular, when the filling rate is 90% or more, the connection resistance becomes extremely small.

単に安定化材のスリーブに加工を施して超電導素線を中
央部に集合させようとしても充填率が向上しない場合は
、安定化材は、一般に、銅やアルミニウムなどの軟金属
で出来ているため、塑性加工の圧力が超電導素線群を集
合させるように加わらないためと考えられる。そこで本
発明者は、超電導素線群の中央部に低抵抗金属材料、特
に、安定化材からなる芯材を配置し、超電導素線群に塑
性加工の力が十分前わるようにしたところ、超電導素線
群の充填率は著しく高まり、超電導素線間の接触が極め
て良くなり、しかも超電導素線群と安定化材とが密に接
合していることがわかった。
If the filling rate does not improve even if you simply process the stabilizing material sleeve to gather the superconducting wires in the center, it may be because the stabilizing material is generally made of soft metal such as copper or aluminum. This is thought to be because the pressure of plastic working is not applied to aggregate the superconducting strands. Therefore, the present inventor placed a core material made of a low-resistance metal material, particularly a stabilizing material, in the center of the superconducting wire group so that the plastic working force sufficiently preceded the superconducting wire group. It was found that the filling factor of the superconducting strands was significantly increased, the contact between the superconducting strands was extremely good, and the superconducting strands and the stabilizing material were closely bonded.

そしてこのようにして得た接合部をもつ超電導線を用い
て作成したコイルの特性を測定したところ、接続部の接
続抵抗はおよそ10−’”Ω以下であり、はとんどの場
合to−”Ω以下であって、この接続部をもつ超電導線
の臨界電流値は、接続部以外の臨界電流値の約80%以
上である。特筆すべきことは、本発明の接続方法による
接続部は、接続抵抗の変動が著しく小さいことであり、
従来方法による場合、接続抵抗が一定しなかったが、こ
れを完全に解決出来た。
When we measured the characteristics of a coil made using the superconducting wire with the joint obtained in this way, we found that the connection resistance of the connection was approximately 10-'''Ω or less, and in most cases to-'' Ω or less, and the critical current value of a superconducting wire having this connection portion is approximately 80% or more of the critical current value other than the connection portion. What is noteworthy is that the connection made by the connection method of the present invention has a significantly small variation in connection resistance;
When using the conventional method, the connection resistance was not constant, but this problem was completely resolved.

塑性加工方法について種々検討した結果、等方圧押圧法
、あるいは、複数の押圧面を持つ金型を用いた成形法で
超電導素線を集合させるのが非常に優れていることが判
明した。この成形法によれば、押圧すればする程超電導
素線が安定化材スリーブの中心に向かって集合するので
、その充填率は向上し、また押圧の加圧力を制御するこ
とによって超電導素線の充填率をコントロールすること
もできる。金型を用いて成形する際に超音波などによる
振動を付加してやれば、更に充填率を上げるのに効果が
ある。
As a result of various studies on plastic working methods, it was found that isostatic pressing or a forming method using a mold with multiple pressing surfaces to assemble superconducting strands is extremely effective. According to this forming method, the more the superconducting wires are pressed, the more the superconducting wires gather toward the center of the stabilizer sleeve, improving the filling rate. It is also possible to control the filling rate. Adding vibrations such as ultrasonic waves when molding using a mold is effective in further increasing the filling rate.

また露出した超電導素線同士を接続するだけでは、接続
抵抗を小さくし、安定した接続部を作製することはでき
ない。すなわち、超電導素線はその周囲の安定化材によ
って保護され、永久電流回路を作成していることに着目
し、接続部も安定化材との関係を明らかにする必要があ
った。その一つに被接続超電導素線の集合部分とその周
りの安走化部分との比を求める必要がある。種々検討し
た結果、超電導素線または超電導素線と接続補助材であ
る他の超電導素線の断面における肉厚を1とした場合、
安定化材の断面における肉厚は7以上、特に9以上にす
るのが好ましい。
Moreover, it is not possible to reduce the connection resistance and create a stable connection simply by connecting exposed superconducting strands. In other words, we focused on the fact that superconducting wires are protected by the surrounding stabilizing material to create a persistent current circuit, and it was necessary to clarify the relationship between the connecting parts and the stabilizing material. One of these is the need to find the ratio between the aggregated part of the superconducting strands to be connected and the safe running part around it. As a result of various studies, when the thickness in the cross section of the superconducting strand or the superconducting strand and other superconducting strands that are connection auxiliary materials is 1,
The cross-sectional thickness of the stabilizing material is preferably 7 or more, particularly 9 or more.

また、接続部分の長さについて検討した。その結果、こ
れは超電導線の接続の良否に関係するが、等方圧押圧法
によれば10mm以上、特に15mm以上の長さの安定
化材で包み込めば良いことが分った。すなわち、本発明
の典型的な例では、等方圧で塑性加工するか、又は、複
数加圧面をもつ装置で塑性加工し、超電導素線群を押圧
し、その周りの安定化材の断面を被接続接合補助材を含
んだ超電導素線の断面における肉厚lに対して7以上に
し、かつ接合長さを15nvn以上になるように接続を
行うものである。加工は常温、大気中雰囲気で実施出来
、この方法により冷間金属接合が行えるものである。塑
性加工を行なった後、更に加圧またはプレスして超電導
素線間の接触を強くするのが良い。
We also considered the length of the connection part. As a result, it was found that it is sufficient to wrap the superconducting wire with a stabilizing material having a length of 10 mm or more, particularly 15 mm or more, using the isotropic pressing method, although this is related to the quality of the connection of the superconducting wire. That is, in a typical example of the present invention, the superconducting strands are pressed by plastic working using isostatic pressure or by a device having multiple pressing surfaces, and the cross section of the stabilizing material around them is The connection is made so that the wall thickness l in the cross section of the superconducting wire including the auxiliary material to be connected is 7 or more, and the joining length is 15 nvn or more. Processing can be carried out at room temperature in the atmosphere, and cold metal joining can be performed by this method. After plastic working, it is preferable to further apply pressure or press to strengthen the contact between the superconducting strands.

ここで、単位超電導線はコイル部分をもつものであって
もよいし、単に線状のものであってもよい。線状のもの
を接合すれば長尺な電線となる。
Here, the unit superconducting wire may have a coil portion or may be simply linear. If wires are joined together, they become long electric wires.

塑性加工で超電導素線同士を安定化材の中心へ集合する
ものであるが、充填率が少なくとも80%以上になって
いることと、塑性加工による接続後における超電導素線
と周囲の安定化材との断面積における肉厚比がlニア以
上にする。また芯材の占める断面積は、超電導素線また
は超電導素線と接合補助材である他の超電導素線(以下
、後者の場合も単に超電導素線と称する)との断面積を
1とすると、超電導素線、芯材及び安定化材の断面肉厚
比をそれぞれ1 : 0.3−5 : 7 以上となる
ように成形する。そして超電導素線(この場合−は接合
補助材である他の超電導素線を含まない)の断面積が合
せて1mm″以下、特に、0 、5 in”以下の場合
は、超電導素線の充填率を向上させるために接続補助材
を添加しても良い。
The superconducting wires are gathered together at the center of the stabilizing material by plastic working, and the filling rate must be at least 80% or more, and the superconducting wires and surrounding stabilizing material must be separated after they are connected by plastic working. The wall thickness ratio in cross-sectional area should be lnea or more. Further, the cross-sectional area occupied by the core material is 1, assuming that the cross-sectional area of the superconducting strand or the superconducting strand and another superconducting strand that is a bonding auxiliary material (hereinafter, the latter is also simply referred to as a superconducting strand) is 1. The superconducting wire, the core material, and the stabilizing material are formed so that the cross-sectional thickness ratio is 1:0.3-5:7 or more, respectively. If the total cross-sectional area of the superconducting strands (in this case - does not include other superconducting strands that are bonding auxiliary materials) is 1 mm" or less, especially 0.5 in" or less, the filling of superconducting strands is necessary. Connection aids may be added to improve efficiency.

接続補助材の材質は被接続超電導線と同じ素線の材質、
すなわち、N b −T i系、Nb、Sn 系等、ま
たは、Cu、AQ、Ag等の安定化材及びPb、Sn、
Bi、In等の結合材から選ばれたものを用いると充填
率が向上する。形状は線、粉末、あるいは、めっき、溶
射、イオン注入及び蒸着から選んで適用する。
The material of the connection auxiliary material is the same wire material as the superconducting wire to be connected.
That is, Nb-Ti system, Nb, Sn system, etc., or stabilizing materials such as Cu, AQ, Ag, and Pb, Sn,
The use of a binder selected from Bi, In, etc. improves the filling rate. The shape can be selected from wire, powder, plating, thermal spraying, ion implantation, and vapor deposition.

また、接続用安定化材はCu、AQ、Au及びAgから
選ばれる。芯材については(:、u、AQ。
Further, the stabilizing material for connection is selected from Cu, AQ, Au and Ag. Regarding the core material (:, u, AQ.

Au、Agから選ばれた単一金属、もしくはそれらの複
合金属、またはPb、Sn、Bi、Inから選ばれた単
一金属もしくはそれらの合金を用いる。
A single metal selected from Au and Ag, a composite metal thereof, a single metal selected from Pb, Sn, Bi, and In, or an alloy thereof is used.

塑性加工法としてはCIP (冷間等方圧機)、ロール
及び圧縮機等から選ばれた装置により接続する。その装
置は超電導素線の充填率を8o%以上の所定の形状にす
るための制御機構を装備するものを用いる。
As the plastic working method, connection is made using equipment selected from CIP (cold isostatic press), rolls, compressors, and the like. The device used is one equipped with a control mechanism for shaping the superconducting strands into a predetermined shape with a filling rate of 80% or more.

本発明に係るMRIの応用例としては、核融合装置や核
磁気共鳴分析装置(NMR)等がある。
Application examples of MRI according to the present invention include nuclear fusion devices, nuclear magnetic resonance spectrometers (NMR), and the like.

NMRやM R’ Iは、シールドと、シールドを取り
囲んセ設けられた液体ヘリウム槽と、この液体ヘリウム
槽内に配設された超電導磁石とを備え、超電導磁石のコ
イルは前記接続部をもつ超電導線よりなる。
NMR and M R' I are equipped with a shield, a liquid helium tank provided surrounding the shield, and a superconducting magnet disposed within the liquid helium tank, and the coil of the superconducting magnet is a superconducting magnet having the above-mentioned connection part. Consists of lines.

〔作用] 本発明に係る超電導線の接続部分は、金属超電導素線同
士が塑性加工により接続用安定化材の中心部に集まり、
素線の充填率が向上して密に接続されているため、超電
導素線の近接効果が十分に得られる。露出された素線群
の中心部に低電気抵抗金属からなる芯材を差込み、芯材
の上に素線群または素線群と接続助材である超電導素線
とを配置し、その後円筒中空安定化材の中に挿入して外
周から等方圧かしめを行うことにより、素線群の充填率
は勿論、素線群の周囲の安定化材との比が調和され、近
接効果も十分得られ、かつ接続抵抗損失の非常に小さい
接合状態を容易に達成できる。
[Function] In the connection portion of the superconducting wire according to the present invention, the metal superconducting strands gather at the center of the connection stabilizing material by plastic working,
Since the filling rate of the wires is improved and they are closely connected, the proximity effect of the superconducting wires can be sufficiently obtained. A core material made of a low electrical resistance metal is inserted into the center of the exposed wire group, a wire group or a superconducting wire serving as a connection aid is placed on top of the core material, and then a cylindrical hollow is placed. By inserting the wire into the stabilizing material and applying isostatic pressure from the outer periphery, not only the filling rate of the wire group but also the ratio of the wire group to the surrounding stabilizing material is harmonized, and the proximity effect is also sufficiently obtained. A junction state with very low connection resistance loss can be easily achieved.

近接効果を十分に達成させるためには素線同士の密着性
を密にする必要がある。安定化材の中空部に素線を挿入
して、二つ割りの金型等を用いて左右から加圧し、その
圧力と充填率の関係を調査した。そして得られた継手の
四端子法による接続抵抗を測定したところ、素線の充填
率が80%以上になっていれば臨界電流値の高い値が得
られることが分った。より安定した臨界電流値を得たい
場合は充填率を90%以上とするのが良い。
In order to sufficiently achieve the proximity effect, it is necessary to have tight adhesion between the wires. A strand of wire was inserted into the hollow part of the stabilizing material, and pressure was applied from the left and right sides using a split mold, etc., and the relationship between the pressure and the filling rate was investigated. When the connection resistance of the resulting joint was measured using the four-terminal method, it was found that a high critical current value could be obtained if the filling rate of the strands was 80% or more. If it is desired to obtain a more stable critical current value, it is preferable to set the filling rate to 90% or more.

また接続抵抗損失の少ない継手を得る場合は、素線の充
填率だけでは解決できない。充填率プラス安定化材との
比が重要となる。その理由は接続前の超電導線は素線と
その周囲の安定化材との比を重要視している。本発明で
も接続前の超電導線に近づけるために、接続した素線と
周囲の安定化材との断面肉厚比を検討した結果、素線を
1とした場合安定化材を7以上にすれば、臨界電流値の
低下は見られなかった。良好な範囲は9〜15であった
。また芯材の断面積比は、素線群の断面積1に対し、0
.3〜5、特に0.5〜1が好ましい。
Furthermore, in order to obtain a joint with low connection resistance loss, it is not possible to solve the problem by simply relying on the filling rate of the strands. The ratio of filling rate plus stabilizing material is important. The reason for this is that the ratio of the superconducting wire to the surrounding stabilizing material is important before connection. In the present invention, in order to approximate the superconducting wire before connection, we investigated the cross-sectional thickness ratio between the connected wire and the surrounding stabilizing material, and found that if the wire is 1, the stabilizing material should be 7 or more. , no decrease in critical current value was observed. The good range was 9-15. In addition, the cross-sectional area ratio of the core material is 0 to the cross-sectional area of the group of strands of 1.
.. 3-5, especially 0.5-1 is preferred.

また継手部の長さについても安定した臨界電流を維持で
きる範囲があり、継手長さと臨界電流値との関係を調査
した結果、素線の充填率と関係するが、充填率が80%
以上であれば継手長さは10mmで良好である。更に良
好な範囲は20〜25mである。
In addition, there is a range in which a stable critical current can be maintained with respect to the length of the joint, and as a result of investigating the relationship between the joint length and the critical current value, it is related to the filling rate of the strands, but the filling rate is 80%.
If it is above, a joint length of 10 mm is good. An even better range is 20-25 m.

また、臨界電流値の小さい超電導線は超電導素線の数が
少ない。素線の数が少ないと素線同士の充填率が向上し
ない。充填率が80%以上を確保できるには接続素線の
全ての断面積が0.3mm’以上、特に0.5mm”以
上であることが望ましい。それ以下のときは、接合補助
材例えば露出した超電導素線を加えて素線群の充填率を
向上させるとよい。
Further, a superconducting wire with a small critical current value has a small number of superconducting strands. If the number of strands is small, the filling rate between the strands will not improve. In order to ensure a filling rate of 80% or more, it is desirable that the cross-sectional area of all the connecting wires be 0.3 mm or more, especially 0.5 mm or more. It is preferable to add superconducting strands to improve the filling rate of the strands.

充填率を向上させるための接合補助材や芯材の材料につ
いては前述した通りで、できるだけ高純度の金属が良く
、4にで超電導特性が得られれば更に良いことになる。
As for the materials for the bonding auxiliary material and the core material to improve the filling rate, as described above, metals with as high purity as possible are preferable, and it is even better if superconducting properties can be obtained in accordance with item 4.

超電導とはならないCu。Cu does not become superconducting.

’AQ、Au、Ag等は少なくとも99.9%以上の高
純度である必要がある。他のPb、Sn等の金属につい
ても99.9%以上の金属が適用される。
'AQ, Au, Ag, etc. must have a high purity of at least 99.9%. 99.9% or more of other metals such as Pb and Sn are also applied.

接合するための装置として冷間等方圧機あるいは二重上
の加圧面をもつ加圧装置を用いるのが望ましい。それは
素線群の中心方向への加圧により素線群の集合と素線と
安定化剤との接合が同時にできるからである。その他に
は凹部のロールに挾んで所定の形状に形成させる。また
凹部の金属を用いて、圧縮機により円筒型に形成させる
のもよい。
It is desirable to use a cold isostatic pressure machine or a pressure device with double pressure surfaces as a device for joining. This is because the strands can be assembled and the strands and the stabilizer can be bonded together at the same time by applying pressure toward the center of the strands. Otherwise, it is formed into a predetermined shape by being sandwiched between rolls in the recess. It is also good to form the recessed metal into a cylindrical shape using a compressor.

〔実施例〕〔Example〕

以下、本発明のMRI、コイル、及びその製造方法につ
いて図面を用いて詳細に説明する。
MRI, coil, and manufacturing method thereof according to the present invention will be described in detail below with reference to the drawings.

本発明を適用するMRIの基本的な構造及びその回路構
成をそれぞれ第1図及び第2図に示す。
The basic structure of an MRI to which the present invention is applied and its circuit configuration are shown in FIGS. 1 and 2, respectively.

第1図において、複数の超電導コイル単位1は隣接する
コイルと接続部2で接続され所定のコイルターンを形成
する。
In FIG. 1, a plurality of superconducting coil units 1 are connected to adjacent coils at connecting portions 2 to form predetermined coil turns.

コイルはヘリウムタンク3中に封入され、4Kに冷却さ
れる。ヘリウムタンク3は断熱真空容器4により取り囲
まれ、断熱真空容器4には真空排気口6が取付けられて
いる。ヘリウムタンク2に液体ヘリウムを供給する注入
管10、装置の保守点検を行うためのサービスポート1
1、電源に接続するパワーリード9が設けられている。
The coil is enclosed in a helium tank 3 and cooled to 4K. The helium tank 3 is surrounded by a heat insulating vacuum container 4, and a vacuum exhaust port 6 is attached to the heat insulating vacuum container 4. Injection pipe 10 for supplying liquid helium to helium tank 2, service port 1 for performing maintenance and inspection of the device
1. A power lead 9 is provided to connect to a power source.

第1図は円筒型超電導磁界発生装置の中心軸に沿った断
面の1/2を示す。
FIG. 1 shows 1/2 of a cross section along the central axis of a cylindrical superconducting magnetic field generator.

第2図は超電導コイルの電気回路を示し、超電導コイル
はコイル単位CIR,C2R,C3R。
Figure 2 shows the electric circuit of a superconducting coil, and the superconducting coil has coil units CIR, C2R, and C3R.

OIL、C2L、C3Lと隣接するコイル端部を接続す
る接続部■〜Oと超電導スイッチPC8とから構成され
る。
It is composed of connecting portions ① to O that connect the adjacent coil ends of OIL, C2L, and C3L, and a superconducting switch PC8.

これらの接続部の構造は、第3図及び第4図に断面斜視
図で示されている。第3図において、超電導@22,2
2’ の端部を60%HNO,に浸漬し、その部分の安
定化材2oを除去し超電導素線I6を露出した。第3図
に示す例は、露出した超電導素線16と、別に準備した
接続補助材として超電導素線14,16の中央部には芯
材として挿入した安定化材18がある。
The structure of these connections is shown in cross-sectional perspective views in FIGS. 3 and 4. In Figure 3, superconductivity @22,2
The end portion of the wire 2' was immersed in 60% HNO, and the stabilizing material 2o at that portion was removed to expose the superconducting wire I6. In the example shown in FIG. 3, there is an exposed superconducting wire 16 and a stabilizing material 18 inserted as a core material in the center of the superconducting wires 14 and 16 as a separately prepared connection auxiliary material.

第4図に示す例は、超電導素線16のみで、線接続用安
定化材を組合せていない。即ち、超電導素線群の断面積
が0.3mm″以上、特に0.5m”以上ある場合には
、超電導素線のみで接続を行える。
The example shown in FIG. 4 includes only the superconducting wire 16 and is not combined with a stabilizing material for wire connection. That is, when the cross-sectional area of the superconducting strand group is 0.3 mm'' or more, particularly 0.5 m'' or more, connection can be made using only the superconducting strands.

第5図に示す例は第3図の接続構造の断面表示を定量化
したもので、l)が芯材で肉厚比を1とし基準とする。
The example shown in FIG. 5 is a quantification of the cross-sectional representation of the connection structure shown in FIG. 3, where l) is the core material and the wall thickness ratio is set to 1 as a reference.

ii)が素線で0.5〜1.5.111)が安定化材で
その肉厚比が3〜30であることを示す。また■)は接
続部の長さを示しているもので101m1〜30mmに
すれば低抵抗の接続が得られる。
ii) is a wire and 0.5 to 1.5.11) is a stabilizing material whose thickness ratio is 3 to 30. Also, ■) indicates the length of the connection part, and if it is set to 101 m1 to 30 mm, a connection with low resistance can be obtained.

第6図は本発明の接続方法を示すフローチャートである
FIG. 6 is a flowchart showing the connection method of the present invention.

(a)において、Nb−Ti系の金属超電導線などの超
電導線31.32の接合端部を前述のように処理して超
電導素線(フィラメント)33を露出し、その集合の中
心部に純銅の板(例えば0.2I厚さ1.5mmX25
mm長さ)を挿入し、また別途準備しておいた、連結線
(超電導線)35で結合された接続補助材としての超電
導素線34を前記集合部を取り囲むようにかぶせる。こ
れにより(C)に示すアッセンブリが構成される。この
アッセンブリに銅スリーブを被せ、(d)に示すアッセ
ンブリを組み立てる。次に銅スリーブの外周から、金型
等を用いて加圧し塑性加工を施し、超電導素線33,3
4を芯材である銅板の方向に集合させ、かつ(e)に示
すように、銅スリーブ。
In (a), the joint ends of superconducting wires 31 and 32 such as Nb-Ti metal superconducting wires are treated as described above to expose superconducting strands (filaments) 33, and pure copper is placed in the center of the assembly. plate (for example, 0.2I thickness 1.5mm x 25
mm length), and a separately prepared superconducting element wire 34 as a connection auxiliary material connected with a connecting wire (superconducting wire) 35 is placed over the gathering portion so as to surround it. As a result, the assembly shown in (C) is constructed. This assembly is covered with a copper sleeve and the assembly shown in (d) is assembled. Next, from the outer periphery of the copper sleeve, pressure is applied using a mold or the like to plastically process the superconducting strands 33, 3.
4 are assembled in the direction of the copper plate which is the core material, and as shown in (e), a copper sleeve is formed.

超電導素線、接合補助用超電導素線及び芯材銅板をそれ
ぞれ密着させる。特に超電導素線同士を直接密に接触さ
せかつ充填率を80%以上にすることにより、接続抵抗
を著しく小さくできる。
The superconducting wire, the superconducting wire for bonding assistance, and the core copper plate are brought into close contact with each other. In particular, the connection resistance can be significantly reduced by bringing the superconducting wires into direct and close contact with each other and by setting the filling rate to 80% or more.

さらに接合状態を良好にするために、例えば得られた接
続部に上下二方向からプレスして(f)に示すように塑
性加工すれば、素線の充填率、安定化材と素線との密着
性を一層向上することが出来る。なお、接合作業が終わ
ったら、必要に応じ連結線を切り落す。
Furthermore, in order to improve the bonding state, for example, if the obtained connection part is pressed from both the upper and lower directions and subjected to plastic working as shown in (f), the filling rate of the strands, the stabilizing material and the strands can be Adhesion can be further improved. After completing the joining work, cut off the connecting wire as necessary.

以上のようにして接合した後の中央部の断面を観察する
と、超電導素線と接合用超電導素線が芯材の外周上に交
互に密着して充填率を増している。
Observing the cross section of the central portion after bonding as described above, it can be seen that the superconducting strands and the superconducting strands for bonding alternately adhere to the outer periphery of the core material, increasing the filling rate.

塑性加工は等方圧かしめにより行なってもよいし、複数
の加圧面を持つ金型で行なってもよい。
The plastic working may be performed by isostatic pressure caulking or may be performed using a mold having a plurality of pressurizing surfaces.

接合処理を常温で行うと接合前の素線の清浄度と含まっ
て素線同士が金属接合され、それに伴って互いに近接効
果を有する。
When the bonding process is performed at room temperature, the strands are metallically bonded to each other, including the cleanliness of the strands before bonding, and as a result, there is a proximity effect to each other.

第7図及び第8図は他の実施例を示す断面図で、第7図
(a)は超電導線を同軸に接続する場合の、長手方向の
断面図、(b)は軸に直角の面における断面図である。
Figures 7 and 8 are cross-sectional views showing other embodiments, where Figure 7 (a) is a longitudinal cross-sectional view when superconducting wires are connected coaxially, and (b) is a plane perpendicular to the axis. FIG.

この接合部の製造法は前述の製造法と基本的に同じであ
る。
The manufacturing method for this joint is basically the same as the manufacturing method described above.

第8図(a)は芯材として中空の銅パイプを挿入した場
合の、長手方向の断面図、(b)は軸に直角の面におけ
る断面図である。この場合は、銅パイプにステンレス棒
を挿入しておくか、銅棒を用いて前述の方法で接合した
後、銅棒に中心にドリルで穴をあける。このようにして
液体ヘリウムで接合部を良く冷却できたので、臨界電流
値の大きい接続部が得られる。
FIG. 8(a) is a sectional view in the longitudinal direction when a hollow copper pipe is inserted as a core material, and FIG. 8(b) is a sectional view in a plane perpendicular to the axis. In this case, either insert a stainless steel rod into the copper pipe, or use a copper rod to join them using the method described above, and then drill a hole in the center of the copper rod. In this way, the joint can be well cooled with liquid helium, so a joint with a large critical current value can be obtained.

〈実施例1〉 以下の実施例を第6図を用いて説明する。<Example 1> The following embodiment will be explained using FIG.

Nb−Ti系超電導線31.32に直径1.Olmのも
のを選んだ。その1本の断面には24本の金属超電導素
線33(直径75μm)が安定化鋼中に埋込まれている
。接合すべき端部の金属超電導素線を露出させるために
硝酸中に約30聰浸漬し、安定化銅を除去し金属超電導
素線を露出したあと水洗した。
Nb-Ti superconducting wire 31.32 has a diameter of 1. I chose Olm's. In one cross section, 24 metal superconducting strands 33 (75 μm in diameter) are embedded in the stabilizing steel. In order to expose the metal superconducting strands at the ends to be joined, they were immersed in nitric acid for about 30 minutes to remove the stabilizing copper and expose the metal superconducting strands, which were then washed with water.

一方、超電導素線の接合断面積の合計が0 、2 mm
 ”と小さいため、超電導素線と同じNb−Ti系の接
合補助材34を予め準備し、接合素線を包み込むように
した。接合補助材34も予め硝酸で安定化銅を除去し、
素線を露出させたもので、直径35μmの1060本(
断面積約1.0圓1)を用いた。
On the other hand, the total bonding cross-sectional area of the superconducting wires is 0.2 mm.
”, so a bonding auxiliary material 34 made of the same Nb-Ti system as the superconducting strand was prepared in advance and wrapped around the bonding strand. The stabilizing copper of the bonding auxiliary material 34 was also removed in advance with nitric acid,
1060 exposed wires with a diameter of 35 μm (
A cross-sectional area of approximately 1.0 degrees 1) was used.

第6図(e)に示すよう厚さ0.2mm、幅1.5mm
As shown in Figure 6(e), the thickness is 0.2 mm and the width is 1.5 mm.
.

長さ25mmの純銅(無酸素鋼)を芯材として素線の中
央部に挿入した。更に予め作っておいた接合補助用素!
34を素線群33の周りに被せた。次いで第6図(g)
に示すように、直径9.0mm、内径2.2an、長さ
25mの安定化銅の中空部に挿入し、金型に設置し、圧
縮機により加圧して成型した。更に安定化銅スリーブの
上下から塑性加工を施し7.2〜6.8naの仕上り寸
法を持つ接続部を得た。得られた接続部の素線の充填率
は約90%であった。
Pure copper (oxygen-free steel) with a length of 25 mm was inserted into the center of the wire as a core material. Also, pre-made joining aids!
34 was placed around the wire group 33. Then Fig. 6(g)
As shown in Figure 2, it was inserted into a hollow part of stabilized copper with a diameter of 9.0 mm, an inner diameter of 2.2 ann, and a length of 25 m, placed in a mold, and molded by pressurizing with a compressor. Furthermore, plastic working was performed from the top and bottom of the stabilized copper sleeve to obtain a connection portion having a finished dimension of 7.2 to 6.8 na. The filling rate of the wires in the resulting connection was about 90%.

また接合後の中央部の素線と芯材と安定化材の断面肉厚
比はほぼ1:0.8:10 である。接合後の中央部の
断面図を第6図(1)に示す。
Further, the cross-sectional wall thickness ratio of the wire, core material, and stabilizing material in the central portion after joining is approximately 1:0.8:10. A cross-sectional view of the central portion after bonding is shown in FIG. 6(1).

〈実施例2〉 Nb−Ti系の超電導線31及び32、素線の数等は実
施例1と同じ材料を用い、金属超電導素線の露出法も同
様に処理した。実施例1と同様に、素線群の中心に無酸
素銅棒、直径1.0+a+n、長さ30mを入れ、接合
補助材は芯棒11を入れるため実施例1の半分:直径3
5μmの530本(断面積約0.5m’)を用いて芯棒
の周りに配置した素線を包み込んだ。そして円筒中空安
定化材・無酸素鋼、外径9.0+a、内径2.2flI
!11の中空部に第6図(g)に示すように挿入した。
<Example 2> The Nb-Ti based superconducting wires 31 and 32, the number of strands, etc. were made of the same materials as in Example 1, and the metal superconducting strands were exposed in the same manner. As in Example 1, an oxygen-free copper rod, diameter 1.0 + a + n, length 30 m is placed in the center of the wire group, and the joining auxiliary material is half of Example 1 because the core rod 11 is placed: diameter 3
The 530 wires (cross-sectional area: approximately 0.5 m') each having a diameter of 5 μm were used to wrap the strands arranged around the core rod. And cylindrical hollow stabilizing material/oxygen-free steel, outer diameter 9.0+a, inner diameter 2.2flI
! It was inserted into the hollow part of No. 11 as shown in FIG. 6(g).

その後実施例1と同様金型で接合部の中心方向に加圧、
成型し、更に上下2方向に加圧して第6図(i)の接続
部を得た。仕上り寸法は外径7.3〜7.Ommであっ
た。この実施例では接合すべき超電導線の素線の断面積
が0.5.m’であり、接合補助材を使わなくともよい
と考えられたので、素線のみを用いた。
Then, as in Example 1, pressure was applied in the direction of the center of the joint using a mold.
It was molded and further pressed in two directions, up and down, to obtain the connection part shown in FIG. 6(i). Finished dimensions are outer diameter 7.3~7. It was Omm. In this example, the cross-sectional area of the superconducting wires to be joined is 0.5. m', and it was thought that there was no need to use a joining auxiliary material, so only strands of wire were used.

得られた接続部の素線の充填率は約90%で十分実用に
餠えるものであった。
The filling rate of the wires in the resulting connection was approximately 90%, which was sufficient for practical use.

また接合後の素線と芯材と安定化材の断面肉厚の比は約
1:0.5:12である。
Further, the ratio of the cross-sectional thicknesses of the wire, core material, and stabilizing material after bonding is approximately 1:0.5:12.

〈実施例3〉 Nb−Ti系超電導#!31及び32に直径1.7mの
ものを選んだ。1本の断面には金属超電導素線3.直径
35μm、 1060本安定化銅4中に埋込まれている
。接合部分の金属超電導素線を露出するために硝酸で約
30twn安定化銅を除去し、水洗した。この素線の合
計断面積は1.0+am”であるので接合補助材は使用
しなかった。臨界電流値を更に良くするために、実施例
2と同様直径1.0mm。
<Example 3> Nb-Ti superconductor #! 31 and 32 with a diameter of 1.7 m were selected. One cross section includes metal superconducting strands3. 1060 pieces with a diameter of 35 μm are embedded in the stabilized copper 4. In order to expose the metal superconducting strands at the joint portion, about 30 twn of the stabilized copper was removed with nitric acid and washed with water. Since the total cross-sectional area of this wire was 1.0+am'', no bonding aid was used. In order to further improve the critical current value, the diameter was 1.0 mm as in Example 2.

長さ30mmの無酸素鋼棒を入れた。それを円筒中空安
定化材の無酸素鋼、外径9.0+no+、内径2.2鵬
の中空部に挿入した。その後冷間塑性加工を金型を用い
て行った。仕上り外径寸法は7.0〜8.5唾であった
。このようにして接合した素線と芯材と安定化材の断面
の肉厚比は約1:1:12であった。
An oxygen-free steel rod with a length of 30 mm was inserted. It was inserted into the hollow part of the cylindrical hollow stabilizer made of oxygen-free steel and having an outer diameter of 9.0+NO+ and an inner diameter of 2.2mm. Thereafter, cold plastic working was performed using a mold. The finished outer diameter was 7.0 to 8.5 mm. The cross-sectional wall thickness ratio of the wire, core material, and stabilizing material thus joined was approximately 1:1:12.

〈比較例1〉 実施例1と同じ超電導線31及び32を接合部分の安定
化材を除去して素線を25mmjl出させた。
<Comparative Example 1> The same superconducting wires 31 and 32 as in Example 1 were made by removing the stabilizing material at the joint portion to allow 25 mmjl of strands to protrude.

この方法は第6図(b)に示すように露出された超電導
素線33が互いに重ねられて接続用銅スリーブ内に収納
すると共に、接続用鋼スリーブを介して一方向から押圧
することにより、収納された超電導素線33が相互に圧
着されて接合されるものである。得られた接続部の超電
導素線の充填率は約60%であった。
In this method, as shown in FIG. 6(b), the exposed superconducting strands 33 are stacked on top of each other and housed in a connecting copper sleeve, and are pressed from one direction through the connecting steel sleeve. The stored superconducting strands 33 are crimped and joined to each other. The filling rate of superconducting strands in the resulting connection was approximately 60%.

〈比較例2〉 実施例1と同じNb−Ti系超電導線31゜32に直径
1.0mmのものを選び、他の条件も実施例1と同様で
ある。実施例1と異なる点は押圧の方法と芯材が入って
いないものであり、一方向から圧縮機により圧着した。
<Comparative Example 2> The same Nb-Ti based superconducting wires 31° 32 as in Example 1 with a diameter of 1.0 mm were selected, and other conditions were the same as in Example 1. The difference from Example 1 is the pressing method and the fact that a core material was not included, and crimping was performed from one direction using a compressor.

すなわち接合後の中央部の断面図は一方向加圧のため得
られた接合部の断面は長方形で、素線の充填率は約70
%であった。
In other words, the cross-sectional view of the central part after bonding shows that the cross section of the bonded part obtained due to unidirectional pressure is rectangular, and the filling rate of the wires is about 70.
%Met.

以上の実施例及び比較例で接合、接続した接合体につい
て液体He中で無磁界(OT)及び磁界中(1,OT)
  のときの臨界電流値を測定した。
Regarding the joined bodies joined and connected in the above examples and comparative examples, in liquid He without a magnetic field (OT) and in a magnetic field (1, OT)
The critical current value was measured when

その結果を第8図に示す。測定はホルダーをU型とし、
電圧端子間距離を15mmで測定した。第9図かられか
るように本発明の実施例において臨界電流値は夫々異な
るが、それは製造法や超電導素線の違いからくるもので
ある。また同じ実施例、の中でもばらつきが若干見られ
るが、これは接続用安定化銅の仕上り外径の寸法を種々
変えて測定したことによる。いずれにしても比較例と比
べていずれも臨界電流は高く、またばらつきの程度も小
さい。これらの結果から本発明の超電導線が著しく優れ
ていることが分る。
The results are shown in FIG. For measurements, use a U-shaped holder.
The distance between the voltage terminals was measured at 15 mm. As can be seen from FIG. 9, the critical current values in the embodiments of the present invention are different, but this is due to differences in manufacturing methods and superconducting strands. There are also some variations within the same example, but this is due to measurements being made with various dimensions of the finished outer diameter of the stabilizing copper for connection. In any case, the critical current is higher than that of the comparative example, and the degree of variation is also small. These results show that the superconducting wire of the present invention is extremely superior.

また、継手の永久電流スイッチを設置した永久電流回路
を作成し、接続部の減衰試験を行った。
We also created a persistent current circuit with a persistent current switch installed in the joint, and conducted an attenuation test on the connection.

結果を第10図に示す。第10図から実施例の中でも電
流の減衰がほとんどみられないのは実施例1.2及び3
である。実施例1〜3は永久電流モードを示しているこ
とから、本発明の目標を達成している。
The results are shown in FIG. As can be seen from Figure 10, examples 1, 2 and 3 show almost no current attenuation among the examples.
It is. Examples 1 to 3 demonstrate persistent current mode and therefore achieve the goal of the present invention.

永久電流回路の一定時間後のループ電流■(し)は次の
式で求められる。
The loop current ■ (shi) after a certain period of time in the persistent current circuit is determined by the following formula.

ユ I(t)=I。e ′ ここで1.は初期ループ電流値(A)、τは回路の減衰
時定数、しは時間である。τは次の式で求められる。
YuI(t)=I. e ′ where 1. is the initial loop current value (A), τ is the decay time constant of the circuit, and is the time. τ is determined by the following formula.

(ここでRは回路抵抗、Lはインダクタンスである。) 永久電流回路の減衰時定数を実験で測定した。(Here, R is the circuit resistance and L is the inductance.) The decay time constant of persistent current circuit was measured experimentally.

実験に用いられた回路は、よく知られた回路で、超電導
コイルと、それに電流を供給する電源と、その電源に対
し並列でコイルに直列に接続された永久電流スイッチと
、電源と超電導コイルとをオン・オフする電源スィッチ
からなる。初めに、電源から4Kに冷却された超電導コ
イルに電流を流し、超電導状態が形成されたら永久電流
スイッチをオンし、電源スィッチを切る。この段階で1
゜を測り、減衰時定数を測定する。L=0.5μH2τ
=5X10′秒の場合は、Rは10−1Ωであった。又
、L=108. τ=101秒の場合は、Rは10−“
Ωであって、非常に小さい値であった。
The circuit used in the experiment is a well-known circuit consisting of a superconducting coil, a power source that supplies current to it, a persistent current switch connected in parallel to the power source and in series with the coil, and a power source and superconducting coil. It consists of a power switch that turns on and off. First, a current is passed from the power supply to the superconducting coil cooled to 4K, and when a superconducting state is formed, the persistent current switch is turned on and the power switch is turned off. At this stage 1
゜ and measure the decay time constant. L=0.5μH2τ
= 5 x 10' seconds, then R was 10-1 Ω. Also, L=108. If τ=101 seconds, R is 10−“
Ω, which was a very small value.

それに対し比較例1は減衰が大きく、接続が良くない状
態であることがわかる。比較例2は初期の電流は可成り
良いが、時間の経過とともに電流値はわずかながら低下
していく。これは接続部にわずかに抵抗があることを表
わしている。この継手の減衰試験においても本発明の超
電導線が優れていることが明らかである。また接合部の
断面部を観察したところ、本発明のものはほぼ楕円形で
あり、接続用円筒中空安定化材を介して超電導線と超電
導素線が近接されて良好に金属接合されていた。
On the other hand, it can be seen that in Comparative Example 1, the attenuation was large and the connection was not good. In Comparative Example 2, the initial current was quite good, but the current value decreased slightly over time. This indicates that there is a slight resistance at the connection. It is clear that the superconducting wire of the present invention is also excellent in this joint damping test. Further, when the cross section of the joint was observed, it was found that the joint according to the present invention had a substantially elliptical shape, and the superconducting wire and the superconducting wire were brought close to each other through the cylindrical hollow stabilizing material for connection, and the metal bonding was good.

以上種々の接合例を上げたが、いずれも接続用円筒中空
安定化材を介して、超電導線、超電導素線あるいは芯材
と金属接合しており、接続抵抗の著しく小さい超電導線
が得られる。実施例では0.5T用の超電導材を用いた
例について記述したが、更に高磁場の超電導線材におい
ても、本発明を適用でき、接続抵抗の著しく小さい超電
導線が得られる。
Various joining examples have been given above, and in all of them, the superconducting wire, the superconducting element wire, or the core material is metallurgically joined via the cylindrical hollow stabilizing material for connection, and a superconducting wire with extremely low connection resistance can be obtained. In the embodiment, an example using a 0.5T superconducting material has been described, but the present invention can also be applied to a superconducting wire with a high magnetic field, and a superconducting wire with extremely low connection resistance can be obtained.

その他の接続用円筒中空安定化材としてはアルミにラム
、金及び銀等も適用可能であり、また8棒としてはアル
ミニウム、金、銀、またはそれらの合金系、Pb−3n
系、In、Bi系等も適用できる。また装置としてロー
ル機、冷間等方圧機等の接続用円筒中空安定化材の外周
から等友釣又は他方向から中心に向って加圧できるもの
であれば本発明は達成できる。
As other cylindrical hollow stabilizing materials for connection, aluminum, ram, gold, silver, etc. can be used, and as the 8 rod, aluminum, gold, silver, or alloys thereof, Pb-3n
In, Bi, etc. can also be applied. Further, the present invention can be achieved as long as the device is a roll machine, a cold isostatic pressure machine, or the like that can apply pressure from the outer periphery of the cylindrical hollow stabilizing member for connection or from the other direction toward the center.

〔発明の効果〕〔Effect of the invention〕

本発明に係る超電導磁界発生装置によれば、超電導線の
接続部の接続抵抗が非常に小さく、臨界電流値も大きい
ので長時間安定して磁界を発生することができる。
According to the superconducting magnetic field generating device according to the present invention, since the connection resistance of the connecting portion of the superconducting wire is very small and the critical current value is also large, it is possible to generate a magnetic field stably for a long time.

本発明は各種電磁石、NMRlあるいは核融合用マグネ
ットなどに適用することが出来る。
The present invention can be applied to various electromagnets, NMRl, nuclear fusion magnets, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るMRIの構成を示す部分断面図、
第2図は超電導コイルの構成を示す回路図、第3図及び
第4図は本発明による超電導線の接続部の構造を示す斜
視図、第5図は超電導線接続部の肉厚比を示す斜視図、
第6図は本発明の超電導線の接続方法を示す工程図、第
7図及び第8図は本発明の異なる実施例を示す要部の断
面図、第9図は本発明による接続部及び比較例による接
続部の臨界電流特性を示すグラフ、第10図は本発明に
よる接続部及び比較例による接続部のループ電流の減衰
特性を示すグラフである。 22.22’ 、31.32・・・超電導線、16゜3
3・・・金属超電導素線、20・・・安定化材、18・
・・$7  の 算 8 図 U (b) l乙 (b) 櫨崎−”?A S 云−°〉l−イE
FIG. 1 is a partial cross-sectional view showing the configuration of MRI according to the present invention;
Fig. 2 is a circuit diagram showing the structure of a superconducting coil, Figs. 3 and 4 are perspective views showing the structure of a superconducting wire connection part according to the present invention, and Fig. 5 shows a wall thickness ratio of a superconducting wire connection part. Perspective view,
FIG. 6 is a process diagram showing a method for connecting superconducting wires according to the present invention, FIGS. 7 and 8 are cross-sectional views of main parts showing different embodiments of the present invention, and FIG. 9 is a connection section according to the present invention and a comparison. FIG. 10 is a graph showing the critical current characteristics of the connection according to the present invention and the loop current attenuation characteristic of the connection according to the comparative example. 22.22', 31.32...Superconducting wire, 16°3
3... Metal superconducting wire, 20... Stabilizing material, 18.
・・Calculation of $7 8 Figure U (b) l Otsu (b) Kashizaki-”?A S Yun-°〉l-iE

Claims (13)

【特許請求の範囲】[Claims] 1.安定化材中に複数の超電導素線が埋設されている超
電導線の端部を接続して構成された超電導線を巻回して
構成されたコイルと、前記コイルの両端に接続された超
電導スイッチと、前記コイルと超電導スイッチを冷却す
る手段をもつ、核磁気共鳴画像診断装置において、 前記接続部分の超電導素線群は該安定化材の中央部分に
密に集合して埋設され、かつ素線間が直接接触し、素線
群の集合体の中央部に安定化材が存在し、それらの安定
化材と前記素線とは密に接合されていることを特徴とす
る核磁気共鳴画像診断装置。
1. A coil configured by winding a superconducting wire formed by connecting the ends of a superconducting wire in which a plurality of superconducting wires are embedded in a stabilizing material, and a superconducting switch connected to both ends of the coil. , a nuclear magnetic resonance imaging apparatus having means for cooling the coil and the superconducting switch, wherein the group of superconducting wires of the connecting portion is buried in a dense group in the center of the stabilizing material, and there is no space between the wires. are in direct contact with each other, a stabilizing material is present in the center of an assembly of strands, and the stabilizing material and the strands are tightly joined. .
2.安定化材中に複数の超電導素線が埋設されている超
電導線の端部を接続して構成された超電導線を巻回して
構成されたコイルと前記コイルの両端に接続された超電
導スイッチと、前記コイルと超電導線スイッチを冷却す
る手段をもつ核磁気共鳴画像診断装置において、前記接
続部分で超電導素線群と他の超電導線材群とが前記安定
化材の中央部分に密に集合して埋設され、かつ素線間が
直接接触し、素線群の集合体の中央部に安定化材が存在
し、それらの安定化材と素線とは密に接合されているこ
とを特徴とする核、磁気共鳴画像診断装置。
2. A coil formed by winding a superconducting wire formed by connecting the ends of a superconducting wire in which a plurality of superconducting wires are embedded in a stabilizing material, and a superconducting switch connected to both ends of the coil, In the nuclear magnetic resonance imaging apparatus having a means for cooling the coil and the superconducting wire switch, a group of superconducting wires and another group of superconducting wires are densely gathered and buried in a central portion of the stabilizing material at the connecting portion. The core is characterized in that the strands are in direct contact with each other, a stabilizing material is present in the center of the aggregate of the strands, and the stabilizing material and the strands are tightly joined. , magnetic resonance imaging equipment.
3.安定化材中に複数の超電導素線が埋設されている超
電導線の端部を接続して構成された超電導線を巻回して
構成されたコイルと、前記コイルの両端に接続された超
電導スイッチと、前記コイルと超電導線スイッチを冷却
する手段とをもつ核磁気共鳴画像診断装置において、前
記接続部分は10^−^1^3Ω以下の接続抵抗を有し
、前記超電導線の臨界電流の80%以上の臨界電流値を
もつことを特徴とする核磁気共鳴画像診断装置。
3. A coil configured by winding a superconducting wire formed by connecting the ends of a superconducting wire in which a plurality of superconducting wires are embedded in a stabilizing material, and a superconducting switch connected to both ends of the coil. , in a nuclear magnetic resonance imaging apparatus having a means for cooling the coil and a superconducting wire switch, the connecting portion has a connection resistance of 10^-^1^3 Ω or less, and 80% of the critical current of the superconducting wire. A nuclear magnetic resonance imaging diagnostic apparatus characterized by having a critical current value of or above.
4.安定化材中に多数の超電導素線が埋設されている超
電導線を巻回して構成されたコイル単位のコイル端にお
いて超電導素線同士を接続して所定のコイルターンを構
成する核磁気共鳴画像診断装置において、前記接続部の
超電導素線群は安定化材中に埋設され、かつその安定化
材の中央部分に密に集合されて素線間が直接接触し、素
線群の集合体の中央部に低抵抗金属材料が存在し、それ
らは相互に近接し断面表示で肉厚比が、中央部の低抵抗
金属材料を1とするとその素線が0.5〜1.5、そし
て安定化材が3〜10となるようにして前記安定化材と
前記金属材料及び前記素線を密に接合されていることを
特徴とする超電導コイル。
4. Nuclear magnetic resonance imaging diagnosis in which superconducting wires are connected to each other at the coil end of a coil unit formed by winding a superconducting wire in which a large number of superconducting wires are embedded in a stabilizing material to form a predetermined coil turn. In the device, the superconducting strands of the connection part are buried in a stabilizing material, and are densely gathered in the center of the stabilizing material so that the strands are in direct contact with each other, and the strands are in direct contact with each other in the center of the assembly of strands. There is a low resistance metal material in the central part, and they are close to each other and the thickness ratio in the cross section is 0.5 to 1.5 if the low resistance metal material in the center is 1. A superconducting coil characterized in that the stabilizing material, the metal material, and the wire are closely joined so that the number of the materials is 3 to 10.
5.安定化材中に複数の超電導素線が埋設されている超
電導線を巻回して構成されたコイル単位のコイル端にお
いて超電導素線同士を接続して所定のコイルターンを構
成する核磁気共鳴画像診断装置において、前記接続部分
の超電導素線群と接続用超電導線群とが前記安定化材中
に埋設され、かつその安定化材の中央部分に密に集合さ
れて素線間が直接接触し、素線群の集合体の中央部に低
抵抗金属材料が存在し、それらは相互に近接し断面表示
で肉厚比が、中央部の低抵抗金属材料を1とするとその
素線が0.5〜1.5、そして安定化材が3〜10とな
るようにして前記安定化材と前記金属材料及び前記素線
を密に接合されていることを特徴とする超電導コイル。
5. Nuclear magnetic resonance imaging diagnosis in which superconducting wires are connected to each other at the coil end of a coil unit formed by winding a superconducting wire in which multiple superconducting wires are embedded in a stabilizing material to form a predetermined coil turn. In the device, a group of superconducting strands of the connection portion and a group of superconducting wires for connection are embedded in the stabilizing material, and are densely gathered in the center of the stabilizing material so that the strands are in direct contact with each other, A low-resistance metal material exists in the center of a collection of strands, and they are close to each other, and the thickness ratio in cross-section is 0.5 when the low-resistance metal material in the center is 1. ˜1.5, and the stabilizing material, the metal material, and the strands are tightly bonded so that the stabilizing material has a weight of 3 to 10.
6.安定化材中に多数の超電導素線が埋設されている超
電導線の端部を他の超電導線の端部とを接続して構成さ
れた超電導線を巻回して形成された核磁気共鳴画像診断
装置において、前記接続部分は10^−^1^3Ω以下
の接続抵抗をもち、かつ、前記超電導線の臨界電流値の
80%以上の臨界電流値をもつことを特徴とする超電導
コイル。
6. Nuclear magnetic resonance imaging diagnosis formed by winding a superconducting wire constructed by connecting the end of a superconducting wire in which many superconducting wires are embedded in a stabilizing material to the end of another superconducting wire. In the device, the superconducting coil is characterized in that the connecting portion has a connection resistance of 10^-^1^3 Ω or less and a critical current value of 80% or more of the critical current value of the superconducting wire.
7.安定化材中に複数の超電導素線が埋設され、その端
部の超電導素線が他の超電導線端部の素線と接続された
核磁気共鳴画像診断装置において、前記接続部分の超電
導素線群は安定化材中に埋設され、かつ、その前記安定
化材の中央部分に密に集合されて素線間が、直接、接触
し、素線群の集合体の中央部に低抵抗金属材料が存在し
、前記安定化材と前記金属材料及び前記素線は相互に密
に接合され、前記接続部分は10^−^1^3Ω以下の
接続抵抗をもち、かつ前記超電導線の臨界電流値の80
%以上の臨界電流値をもつことを特徴とする超電導線。
7. In a nuclear magnetic resonance imaging diagnostic apparatus in which a plurality of superconducting strands are embedded in a stabilizing material, and the superconducting strands at the ends of the superconducting strands are connected to the strands at the ends of other superconducting wires, the superconducting strands at the connection part The groups are embedded in a stabilizing material, and are densely gathered in the central part of the stabilizing material so that the strands are in direct contact with each other, and a low-resistance metal material is placed in the center of the aggregate of the strands. exists, the stabilizing material, the metal material, and the wire are closely bonded to each other, the connection portion has a connection resistance of 10^-^1^3Ω or less, and the critical current value of the superconducting wire is 80 of
A superconducting wire characterized by having a critical current value of % or more.
8.超電導線を巻回して所望のターンを構成すること、
前記超電導線の端部の超電導素線群を露出させること、
前記素線群の中央部に安定化材の芯材を配置すること、
前記超電導素線群及び芯材とともに中空部をもつ安定化
材の中空部内に挿入すること、中空安定化材の外周から
加圧することにより露出された前記超電導素線を芯材方
向に集合させることにより、前記中空安定化材並びに芯
材を前記超電導素線に密に接合するとともに素線同士を
密に接触させることを特徴とする超電導コイルの製造法
8. Winding the superconducting wire to form a desired turn;
exposing a group of superconducting strands at an end of the superconducting wire;
arranging a core material of a stabilizing material in the center of the group of wires;
Inserting the superconducting wire group and the core material into a hollow part of a stabilizing material having a hollow part, and gathering the exposed superconducting wires in the direction of the core material by applying pressure from the outer periphery of the hollow stabilizing material. A method for manufacturing a superconducting coil, characterized in that the hollow stabilizing material and the core material are closely joined to the superconducting strands, and the strands are brought into close contact with each other.
9.安定化材中に複数の金属超電導素線が埋設されてい
る超電導線を巻回してコイルを形成する工程と、前記コ
イルの超電導線の接続端部に露出された前記金属超電導
素線を他の接続すべき露出された超電導素線群並びに接
続補助材とを、中央部に安定化材からなる芯材を存在さ
せて、集合する工程と、集合一した超電導素線群及び超
電導線端部を中空安定化材の中空部内に挿入する工程と
、前記中空安定化材の外方から圧力を加えて集合部を塑
性加工し、超電導素線を中空安定化材の中央部分に集積
するとともに、前記芯材及び前記中空安定化材を前記超
電導素線に密に接合し、かつ前記超電導素線同士を直接
接触させる工程と、を含む超電導線のコイルの製造方法
9. A step of winding a superconducting wire in which a plurality of metal superconducting wires are embedded in a stabilizing material to form a coil, and winding the metal superconducting wire exposed at the connection end of the superconducting wire of the coil into another A step of assembling the exposed superconducting strands to be connected and the connection auxiliary material by placing a core material made of a stabilizing material in the center; A step of inserting the hollow stabilizing material into the hollow part, applying pressure from the outside of the hollow stabilizing material to plastically process the collecting part, and collecting the superconducting wires in the central part of the hollow stabilizing material. A method for manufacturing a coil of superconducting wire, comprising the steps of tightly joining a core material and the hollow stabilizing material to the superconducting wire, and bringing the superconducting wires into direct contact with each other.
10.安定化材中に複数の金属超電導素線が埋設されて
いる超電導線の接続端部に露出された金属超電導素線他
の超電導線の接続端部の露出素線とを安定化芯材の周り
に集合する工程と、集合した超電導素線群及び超電導線
端部を中空安定化材の中空部内に挿入する工程と、挿入
された集合部を塑性加工し、超電導素線を中空安定化材
の中央部分に集積するとともに、前記芯材及び中空安定
化材を前記超電導素線に密に接合し、前記超電導素線同
士を、直接、接触させる工程により断面表示で肉厚比が
、中央部の低抵抗金属材料を1とするとその素線群が0
.5〜1.5、そして安定化材が3〜10となるように
したことを含む超電導線の接続方法。
10. A plurality of metal superconducting strands are embedded in a stabilizing material.The metal superconducting strands exposed at the connecting end of a superconducting wire are connected to the exposed strands at the connecting ends of other superconducting wires around the stabilizing core material. a step of inserting the assembled superconducting strands and the ends of the superconducting wires into the hollow part of the hollow stabilizing material, plastic working the inserted gathering part, and inserting the superconducting strands into the hollow stabilizing material. At the same time, the core material and the hollow stabilizing material are tightly joined to the superconducting strands, and the superconducting strands are brought into direct contact with each other. If the low resistance metal material is 1, its strand group is 0.
.. 5 to 1.5, and a stabilizing material of 3 to 10.
11.請求項10において、前記接続補助材は前記素線
と同じ材質の超電導素線材または安定化材及び結合材か
ら選ばれたものである超電導線の接続方法。
11. 11. The method for connecting superconducting wires according to claim 10, wherein the connection auxiliary material is selected from a superconducting wire made of the same material as the wire, a stabilizing material, and a binding material.
12.請求項10において、前記接続補助材が線材また
は粉末である超電導線の接続方法。
12. 11. The method for connecting superconducting wires according to claim 10, wherein the connection auxiliary material is a wire rod or powder.
13.請求項10において、前記芯材がCu,Al,A
u,Ag,それらの合金金属のいずれかである超電導線
の接続方法。
13. In claim 10, the core material is Cu, Al, A.
A method for connecting superconducting wires made of u, Ag, or their alloy metals.
JP2328987A 1990-11-30 1990-11-30 Nuclear magnetic resonance image diagnostic device (mri), superconducting coil and manufacture thereof Pending JPH04206507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2328987A JPH04206507A (en) 1990-11-30 1990-11-30 Nuclear magnetic resonance image diagnostic device (mri), superconducting coil and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328987A JPH04206507A (en) 1990-11-30 1990-11-30 Nuclear magnetic resonance image diagnostic device (mri), superconducting coil and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04206507A true JPH04206507A (en) 1992-07-28

Family

ID=18216339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328987A Pending JPH04206507A (en) 1990-11-30 1990-11-30 Nuclear magnetic resonance image diagnostic device (mri), superconducting coil and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04206507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518425A (en) * 1999-12-27 2003-06-10 ゼネラル・エレクトリック・カンパニイ Superconducting magnet joint with shield

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518425A (en) * 1999-12-27 2003-06-10 ゼネラル・エレクトリック・カンパニイ Superconducting magnet joint with shield
JP4767468B2 (en) * 1999-12-27 2011-09-07 ゼネラル・エレクトリック・カンパニイ Shielded superconducting magnet joint

Similar Documents

Publication Publication Date Title
EP1276171B1 (en) Superconductor connection structure
JP4791309B2 (en) Nb3Sn superconducting wire and precursor therefor
JPS60177589A (en) Superconductive connector of superconductive wire and coil and method of producing same
JP3521612B2 (en) Connection structure of superconducting conductor
JPH03253007A (en) Manufacture of superconductive magnetic field generator and superconductive coil
JP3796850B2 (en) Terminal structure of superconducting cable conductor and connection method thereof
JPS6035478A (en) Device for connecting superconductor
JPH04206507A (en) Nuclear magnetic resonance image diagnostic device (mri), superconducting coil and manufacture thereof
JP5100533B2 (en) Superconducting conductor connection method, connection structure, connection member
JP2680516B2 (en) How to connect superconducting conductors
JP2001283660A (en) Connection structure for superconducting wire
CN111243819B (en) NbTi and Nb3Superconducting joint of Sn superconducting wire and preparation method thereof
JPS58169712A (en) Method of producing composite superconductive wire
JPH0462767A (en) Connection of nb3sn superconductive wire
JP4275262B2 (en) Superconducting coil
JP3672982B2 (en) Superconducting conductor connection method
JPS6313286B2 (en)
JPH08181014A (en) Superconductive magnet device and its manufacture
KR101353474B1 (en) Connecting method of superconductive conductor
JPH04272670A (en) Connecting device for superconducting wire
JPS5840287B2 (en) Manufacturing method of hollow superconducting wire
JP2013062210A (en) CONNECTION METHOD OF NbTi SUPERCONDUCTING WIRE AND CONNECTION STRUCTURE OF THE SAME
JPH03254078A (en) Joint structure for superconductive wire
JPH0821733B2 (en) Method for manufacturing superconducting wire for thermal permanent current switch, and superconducting wire
JPS62222591A (en) Jointing method of superconductor bundle