JP4744248B2 - RE oxide superconducting wire joining method - Google Patents

RE oxide superconducting wire joining method Download PDF

Info

Publication number
JP4744248B2
JP4744248B2 JP2005259800A JP2005259800A JP4744248B2 JP 4744248 B2 JP4744248 B2 JP 4744248B2 JP 2005259800 A JP2005259800 A JP 2005259800A JP 2005259800 A JP2005259800 A JP 2005259800A JP 4744248 B2 JP4744248 B2 JP 4744248B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
based oxide
superconducting wire
joining
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005259800A
Other languages
Japanese (ja)
Other versions
JP2007012582A (en
Inventor
順子 加藤
直道 坂井
公一 中尾
知子 筑本
節子 田島
輝郎 和泉
融 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Original Assignee
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center filed Critical International Superconductivity Technology Center
Priority to JP2005259800A priority Critical patent/JP4744248B2/en
Publication of JP2007012582A publication Critical patent/JP2007012582A/en
Application granted granted Critical
Publication of JP4744248B2 publication Critical patent/JP4744248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、優れた超電導特性を劣化させることなく、金属で被覆された積層構造のRE系酸化物超電導線材同士を接合する接合方法、及び、金属で被覆された積層構造のRE系酸化物超電導線材と金属材料又は金属材料で被覆された部材を接合する接合方法に関する。 The present invention relates to a joining method of joining RE-based oxide superconducting wires having a laminated structure coated with metal without degrading excellent superconducting characteristics, and RE-based oxide superconducting having a laminated structure coated with metal. The present invention relates to a joining method for joining a wire and a metal material or a member coated with a metal material.

超電導線材の応用として、コイルや電流リード、送電線等があり、金属間化合物超電導線材、Bi系酸化物超電導線材などを用いて、既に実用化されているものも少なくない。   Applications of superconducting wires include coils, current leads, power transmission lines, etc., and many of them have already been put into practical use using intermetallic compound superconducting wires, Bi-based oxide superconducting wires, and the like.

しかし、金属間化合物超電導線材は臨界温度が低く、一方、Bi系酸化物超電導線材は、超電導臨界温度は高いものの、液体窒素温度で磁場中における臨界電流密度の急激な低下が深刻な問題であるなどの理由により、前者は、液体ヘリウム温度での実用化であり、後者は、液体ヘリウム温度から20K程度の温度域に限っての実用化である。   However, the intermetallic compound superconducting wire has a low critical temperature, while the Bi-based oxide superconducting wire has a high superconducting critical temperature, but the critical current density in a magnetic field at a liquid nitrogen temperature is a serious problem. For the above reasons, the former is a practical application at the liquid helium temperature, and the latter is a practical application only in the temperature range from the liquid helium temperature to about 20K.

また、電流リードに関しては、Bi系酸化物超電導材料を用いて、液体窒素温度での実用化がなされているが、磁場中(特に、垂直磁場中)における臨界電流密度の急激な低下は深刻な問題であり、装置中におけるレイアウトが制限されることや、また、超電導現象が容易にクエンチするなどの課題が残されている。   As for current leads, Bi-based oxide superconducting materials have been put into practical use at liquid nitrogen temperature, but the critical current density suddenly decreases in a magnetic field (particularly in a vertical magnetic field). There are still problems such as a limited layout in the apparatus and a quenching of the superconducting phenomenon easily.

しかし、RE系酸化物超電導線材を用いれば、液体窒素温度での幅広い応用が可能であり、金属間化合物超電導線材やBi系酸化物超電導線材の応用と比較して、冷却に必要なランニングコストを大幅に削減することが可能である。   However, if RE-based oxide superconducting wires are used, a wide range of applications at liquid nitrogen temperature is possible, and the running cost required for cooling is reduced compared to applications of intermetallic compound superconducting wires and Bi-based oxide superconducting wires. It can be significantly reduced.

さらに、RE系酸化物超電導線材は、磁場中における臨界電流密度の低下が小さいので、電流リードへの応用におけるレイアウト制限が、Bi系酸化物超電導線材を用いる場合に比べ、大幅に緩和されるばかりか、応用全般において、金属間化合物超電導線材やBi系酸化物超電導線材に比べ優れた輸送特性を期待することができる。   Furthermore, since the RE-based oxide superconducting wire has a small decrease in critical current density in a magnetic field, the layout limitation in application to current leads is greatly relaxed compared to the case of using a Bi-based oxide superconducting wire. In general, excellent transport properties can be expected compared to intermetallic compound superconducting wires and Bi-based oxide superconducting wires in general applications.

このようなRE系酸化物超電導線材を実用化するに際しては、長尺化が必要で、特に、連続して作製できるRE系酸化物超電導線材の長さがその応用に十分な長さではない場合、線材同士の接合が不可欠である。また、RE系酸化物超電導線材の応用では必然的に、RE系酸化物超電導線材と常電導部材を接続することが必要となるので、例えば、RE系酸化物超電導線材と金属部材との接合も不可欠である。   When putting such RE-based oxide superconducting wires into practical use, it is necessary to lengthen them. In particular, the length of RE-based oxide superconducting wires that can be continuously manufactured is not long enough for the application. It is essential to join the wires. In addition, in the application of the RE-based oxide superconducting wire, it is inevitably necessary to connect the RE-based oxide superconducting wire and the normal conducting member. For example, the joining of the RE-based oxide superconducting wire and the metal member is also performed. It is essential.

このような理由で、RE系酸化物超電導線材同士や、また、RE系酸化物超電導線材と金属部材を接合しなければならないが、RE系酸化物超電導線材の輸送特性、臨界温度及び不可逆磁場などの優れた超電導特性を損なわないように、低抵抗の接合部を形成しなければならない。   For this reason, RE-based oxide superconducting wires or RE-based oxide superconducting wires and metal members must be joined. The transport characteristics, critical temperature, irreversible magnetic field, etc. of RE-based oxide superconducting wires In order not to impair the excellent superconducting properties, a low resistance junction must be formed.

超電導線材を実用化するに際し用いる接合技術においては、RE系酸化物超電導線材同士の接合では、接合部での超電導特性を損なわない超電導接合が好ましいが、現状では、その技術は十分開発されておらず、はんだ等の低抵抗材料を用いて低抵抗の接合部を形成することが主流である(例えば、特許文献1、参照)。   In the joining technique used for putting superconducting wire into practical use, superconducting joining that does not impair the superconducting properties at the joint is preferable for joining RE-based oxide superconducting wires, but at present, the technology has not been sufficiently developed. First, it is a mainstream to form a low-resistance joint using a low-resistance material such as solder (for example, see Patent Document 1).

はんだ付けは簡便な接合方法であるが、接合面積を増大しなければ、接合部において低い抵抗を確保できないので、接合部の長さは必然的に長くなる。それ故、はんだ付けは、接合により長尺の超電導線材を製造する場合において、必ずしも最適な接合方法ではない。   Soldering is a simple joining method. However, if the joining area is not increased, a low resistance cannot be ensured in the joining part, so the length of the joining part inevitably increases. Therefore, soldering is not necessarily an optimal joining method when a long superconducting wire is manufactured by joining.

また、低抵抗の接合部を形成する技術として、はんだを使用しない接合方法も提案されている(例えば、特許文献2、参照)が、この接合は、真空・高温中で行われるため、RE系酸化物超電導線材の接合法として用いると、高温で、RE系酸化物超電導線材のRE系酸化物層から酸素が解離し、RE系酸化物超電導線材の超電導特性が損なわれるという課題を抱えている。   In addition, as a technique for forming a low-resistance joint, a joining method that does not use solder has been proposed (see, for example, Patent Document 2). However, since this joining is performed in a vacuum / high temperature, the RE system is used. When used as a joining method for oxide superconducting wires, oxygen is dissociated from the RE oxide layer of the RE oxide superconducting wire at high temperatures, and the superconducting properties of the RE oxide superconducting wire are impaired. .

結局、はんだを使用しない接合方法も、接合により長尺のRE系酸化物超電導線材を製造する場合において、必ずしも適切な接合方法ではない。   After all, a joining method that does not use solder is not necessarily an appropriate joining method when a long RE-based oxide superconducting wire is manufactured by joining.

特開2000−133067号公報JP 2000-133067 A 特開平11−16618号公報Japanese Patent Laid-Open No. 11-16618

液体窒素温度などの高温や、高磁場中で、超電導特性が優れているRE系酸化物超電導線材が、実用線材として、金属間化合物超電導線材やBi系酸化物超電導線材に替わることのメリットは、省資源・省エネルギーの点からも極めて大きい。   The merit of replacing RE-based oxide superconducting wires with excellent superconducting properties at high temperatures such as liquid nitrogen temperature and high magnetic fields in place of intermetallic compound superconducting wires and Bi-based oxide superconducting wires as practical wires is: It is extremely large from the viewpoint of resource saving and energy saving.

そこで、本発明は、前記メリットを踏まえ、(i)液体窒素温度において、低損失で高い輸送特性を安定して備えるという積層構造のRE系酸化物超電導線材の優れた特性を損なうことなく、かつ、(ii)接合後の酸素アニールなどの処理を不要とし、簡便に、しかも、再現性よく低抵抗の接合部を形成することができる接合方法を提供することを課題とする。 Accordingly, the present invention is based on the above merits, and (i) without sacrificing the excellent characteristics of the RE-based oxide superconducting wire having a laminated structure that stably has low loss and high transport characteristics at liquid nitrogen temperature, and (Ii) It is an object of the present invention to provide a bonding method that can form a low-resistance bonding portion easily and with good reproducibility without requiring treatment such as oxygen annealing after bonding.

代表的なRE系酸化物超電導材料であるRE1+xBa2-xCu3y(RE系酸化物)は、高い臨界電流密度(Jc)を得るために、ピニングセンターとするための非超電導材料を含有していたり、Caなどの添加物が添加されている場合もあるが、いずれも、RE1+xBa2-xCu3yにおける酸素量yは、酸素分圧−温度条件により、6+(1/2)x〜7+(1/2)xの範囲で可逆的に変化する。 RE 1 + x Ba 2-x Cu 3 O y (RE oxide), which is a typical RE oxide superconducting material, is used for pinning centers in order to obtain a high critical current density (J c ). or contain non-superconductive material, although it may of additives such as Ca is added, both the oxygen amount y in RE 1 + x Ba 2-x Cu 3 O y is the oxygen partial pressure - temperature Depending on conditions, it changes reversibly in the range of 6+ (1/2) x to 7+ (1/2) x.

しかし、RE系酸化物は、yが6.8未満であると、臨界温度(Tc)、臨界電流密度(Jc)、臨界磁場(Hc)などについて、本来、RE系酸化物超電導材料が有する優れた超電導特性を呈さず、線材化しても、実用化に十分な輸送特性は得られない。 However, if the RE oxide is less than 6.8, the RE oxide superconducting material is inherently in critical temperature (T c ), critical current density (J c ), critical magnetic field (H c ), etc. Does not exhibit the superior superconducting properties of the material, and even if it is made into a wire, sufficient transport properties for practical use cannot be obtained.

したがって、積層構造のRE系酸化物超電導線材を接合する場合、接合時の熱処理で、RE系酸化物超電導層から酸素が解離し、yが6.8未満となれば、接合後に、接合部に対し酸素を導入する酸素アニールなどの熱処理を施す必要がある。 Therefore, when joining a RE-based oxide superconducting wire having a laminated structure, if the oxygen is dissociated from the RE-based oxide superconducting layer by heat treatment at the time of joining and y becomes less than 6.8, after joining, On the other hand, it is necessary to perform heat treatment such as oxygen annealing for introducing oxygen.

本発明者は、積層構造のRE系酸化物超電導線材の優れた超電導特性を維持したまま、低抵抗の接合部を形成することができれば、接合後の酸素アニールなどの処理が不要となり、簡便に、かつ、効率よく、積層構造のRE系酸化物超電導線材を接合できるとの発想に至り、積層構造のRE系酸化物超電導線材の優れた超電導特性を維持したまま、低抵抗の接合部を形成する方法について鋭意研究した。 If the present inventor can form a low-resistance junction while maintaining the excellent superconducting properties of the RE-based oxide superconducting wire having a laminated structure, a treatment such as oxygen annealing after the joining becomes unnecessary, and thus the present invention is simple. and efficiently leads to the idea of the possible joining the RE-based oxide superconducting wire of the laminated structure, while maintaining excellent superconducting properties of the RE-based oxide superconducting wire of the laminated structure, forming a junction of low resistance I studied earnestly about how to do.

積層構造のRE系酸化物超電導線材の優れた超電導特性を維持しつつ、低抵抗の接合部を形成するためには、低抵抗と所要の接合強度を確保する接合と、優れた超電導特性を維持するための酸素導入を同時に行うことができる酸素分圧と温度の関係を考慮しなければならない。 In order to form a low-resistance junction while maintaining the excellent superconducting properties of the RE-based oxide superconducting wire with a laminated structure, it maintains the superconducting properties while maintaining low resistance and the required bonding strength. Therefore, the relationship between the oxygen partial pressure and the temperature at which oxygen can be introduced simultaneously must be considered.

本発明者は、上記関係を考慮し鋭意研究を続け、その結果、金属材料で被覆されている積層構造のRE系酸化物超電導線材と金属材料又は金属材料で被覆されている部材(積層構造のRE系酸化物超電導線材を含む)を接合するに際し、(i)酸素分圧及び接合面の温度を、接合処理中、上記RE系酸化物超電導線材の超電導層を構成するRE系酸化物中に、RE系酸化物が超電導特性を呈するのに必要な酸素量を確保できる酸素分圧−温度域に維持した酸化性雰囲気中において、接合面を直接重ね(はんだ等を必要としない)、(ii)その接合面に熱エネルギーを付与するとともに圧力を負荷すれば、RE系酸化物超電導線材の優れた超電導特性を損なわず、所要の接合強度を有する低抵抗の接合部を形成できることを見いだした。 The present inventor has continued diligent research in consideration of the above-mentioned relationship. As a result, the RE-based oxide superconducting wire having a laminated structure coated with a metal material and a member coated with the metal material or the metal material (the laminated structure (Including RE partial oxide superconducting wire) (i) the oxygen partial pressure and the temperature of the bonding surface are set in the RE oxide constituting the superconducting layer of the RE oxide superconducting wire during the bonding process. In an oxidizing atmosphere maintained in an oxygen partial pressure-temperature range that can secure the amount of oxygen necessary for the RE-based oxide to exhibit superconducting properties , the joining surfaces are directly stacked (no solder or the like is required), (ii It has been found that if a thermal energy is applied to the joint surface and a pressure is applied, a low resistance joint having the required joint strength can be formed without impairing the superconducting properties of the RE-based oxide superconducting wire.

本発明は、上記知見に基づいてなされたもので、その要旨は次ぎのとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)金属材料で被覆されている積層構造のRE系酸化物超電導線材と金属材料又は金属材料で被覆されている部材(積層構造のRE系酸化物超電導線材を含む)を接合する接合方法において、
(i)酸素分圧及び接合面の温度を、接合処理中、上記RE系酸化物超電導線材の超電導層を構成するRE系酸化物中に、RE系酸化物が超電導特性を呈するのに必要な酸素量を確保できる酸素分圧−温度域に維持した酸化性雰囲気中にて、
(ii)接合部の金属表面を直接重ねた接合面に熱エネルギーを付与するとともに圧力を負荷して接合面を接合する
ことを特徴とするRE系酸化物超電導線材の接合方法。
但し、REは、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、及び、Yのいずれか1種又は2種以上の元素
(1) In the joining method for joining RE-based oxide superconducting wire and a metal or metal material coated with it are members of the layered structure is coated with a metallic material (including RE-based oxide superconducting wire of a laminated structure) ,
(I) The oxygen partial pressure and the temperature of the bonding surface are required for the RE oxide to exhibit superconducting properties in the RE oxide constituting the superconducting layer of the RE oxide superconducting wire during the bonding process. In an oxidizing atmosphere maintained in an oxygen partial pressure-temperature range that can secure an oxygen amount ,
(Ii) A method for joining RE-based oxide superconducting wires, in which thermal energy is applied to a joint surface obtained by directly overlapping metal surfaces of a joint portion, and a pressure is applied to join the joint surface.
However, RE is one or more elements of La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y.

)前記接合面への熱エネルギーの付与に関して、前記接合部を加熱することを特徴とする前記(1)に記載のRE系酸化物超電導線材の接合方法。 ( 2 ) The method for bonding an RE-based oxide superconducting wire according to (1 ) , wherein the bonding portion is heated with respect to the application of thermal energy to the bonding surface.

)前記接合面への熱エネルギーの付与に関して、前記接合部に、通電、超音波又は電磁波付与、及び、摩擦のいずれか1つ又は2つ以上の処理を施し、接合面に熱エネルギーを誘起することを特徴とする前記(1)に記載のRE系酸化物超電導線材の接合方法。 ( 3 ) With respect to the application of thermal energy to the joining surface, the joining portion is subjected to any one or more treatments of energization, ultrasonic wave or electromagnetic wave application, and friction, and thermal energy is applied to the joining surface. The RE-based oxide superconducting wire joining method according to the above (1 ), which is induced.

)前記接合面への熱エネルギーの付与に関して、前記接合部を加熱するとともに、該接合部に、通電、超音波又は電磁波付与、及び、摩擦のいずれか1つ又は2つ以上の処理を施し、接合面に熱エネルギーを誘起することを特徴とする前記(1)に記載のRE系酸化物超電導線材の接合方法。 ( 4 ) Regarding the application of thermal energy to the bonding surface, the bonding portion is heated, and the bonding portion is subjected to any one or more treatments of energization, ultrasonic wave or electromagnetic wave application, and friction. The RE oxide superconducting wire joining method according to (1 ), wherein heat energy is induced on the joining surface.

)前記RE系酸化物超電導線材の超電導層が、主として、RE−Ba−Cu−O系酸化物で構成されていることを特徴とする前記(1)〜()のいずれかに記載のRE系酸化物超電導線材の接合方法。 ( 5 ) The superconducting layer of the RE-based oxide superconducting wire is mainly composed of a RE-Ba-Cu-O-based oxide, and any one of (1) to ( 4 ) above Joining method of RE oxide superconducting wire.

)前記金属材料が、Au、Ag、Cu、Pt、Ni、Al、Ti、W、In、Ir、及び、Rhのいずれか1種、又は、それらの元素を含む合金のいずれか1種であることを特徴とする前記(1)〜()に記載のRE系酸化物超電導線材の接合方法。 ( 6 ) The metal material is any one of Au, Ag, Cu, Pt, Ni, Al, Ti, W, In, Ir, and Rh, or any one of alloys containing these elements. The RE oxide superconducting wire joining method according to any one of (1) to ( 5 ) above, wherein

本発明によれば、金属で被覆された積層構造のRE系酸化物超電導線材と、金属材料や金属で被覆された部材を、積層構造のRE系酸化物超電導線材の優れた超電導特性を損なうことなく、簡便に、かつ、接合後の後処理を必要とせずに効率よく接合し、低抵抗(従来の接合部抵抗を10分の1以上低減)の接合部を、再現性よく形成することができる。 According to the present invention, compromising the RE-based oxide superconducting wire coated laminated structure with a metal, the coated member of a metal material or a metal, excellent superconducting properties of the RE-based oxide superconducting wire of a laminated structure In addition, it is possible to simply and efficiently join without requiring post-treatment after joining, and to form a joint having low resistance (reducing the conventional joint resistance by 1/10 or more) with good reproducibility. it can.

金属材料で被覆されている積層構造のRE系酸化物超電導線材の接合においては、その端部(接合部)のAg層(保護層)を対向させ、任意の面積を重ね合わせて、酸化性雰囲気中、接合面に加圧下で熱処理を施すが、この熱処理により、積層構造のRE系酸化物超電導線材の超電導層を構成するRE系酸化物から酸素が解離し、Tc及びJcなどの超電導特性が損なわれてはならない。 When joining RE-based oxide superconducting wires having a laminated structure covered with a metal material, the Ag layer (protective layer) at the end (joint) is opposed to each other, and an arbitrary area is overlapped to form an oxidizing atmosphere. among, but the heat treatment under pressure to the joining surface, this heat treatment, oxygen is dissociated from the RE-based oxide forming the superconducting layer of the RE-based oxide superconducting wire of the laminated structure, superconductivity such as T c and J c The properties must not be impaired.

本発明者は、図1(a)に示す接合形態で、2本のRE系酸化物超電導線材4(基材3の上にRE系酸化物超電導層1が形成され、その上にAg層2が被覆されている)を、所要の圧力下で固定し、室温までの冷却(炉冷)を含む熱処理を、アルゴン雰囲気中、及び、酸素雰囲気中で行い、接合部の抵抗値と、Tc及びJcを測定した。 The inventor forms two RE-based oxide superconducting wires 4 (a RE-based oxide superconducting layer 1 on a base material 3 and an Ag layer 2 on the RE-based oxide superconducting layer 1 in the bonding form shown in FIG. Is fixed under a required pressure, and heat treatment including cooling to room temperature (furnace cooling) is performed in an argon atmosphere and an oxygen atmosphere, and the resistance value of the junction and T c And J c were measured.

その結果を表1に示す。   The results are shown in Table 1.

表1から、室温までの冷却を含む熱処理をアルゴン雰囲気中で行った場合において、接合部の抵抗値は高く、かつ、Tc及びJcの測定が不能で、超電導特性が完全に消失したことが分かる。一方、室温までの冷却を含む熱処理を純酸素雰囲気中で行った場合においては、接合部の抵抗値が低く、かつ、Tc及びJcが、接合の前後で変化していないことが分かる。 From Table 1, when the heat treatment including cooling to room temperature is performed in an argon atmosphere, the resistance value of the junction is high, and T c and J c cannot be measured, and the superconducting characteristics are completely lost. I understand. On the other hand, when the heat treatment including cooling to room temperature is performed in a pure oxygen atmosphere, it can be seen that the resistance value of the joint is low and T c and J c are not changed before and after the joining.

図2に、光学顕微鏡で観察したY系酸化物超電導線材の接合部の断面(倍率×50)を示す。接合部においては、所要の強度や、導電性を確保する観点から、緻密に接合されていることが必要であるが、本発明によれば、図2に示すように、Ag層が接合面で緊密に密着している。   FIG. 2 shows a cross section (magnification × 50) of the joint portion of the Y-based oxide superconducting wire observed with an optical microscope. In the joint portion, it is necessary to be densely joined from the viewpoint of ensuring required strength and conductivity. According to the present invention, as shown in FIG. It is closely attached.

以上の知見を踏まえ、本発明においては、金属材料で被覆されている積層構造のRE系酸化物超電導線材と、金属材料又は金属材料で被覆されている部材(積層構造のRE系酸化物超電導線材を含む)を、
(i)酸化性雰囲気中にて、
(ii)接合部の金属表面を直接重ねた接合面に熱エネルギーを付与するとともに圧力を負荷して接合面を接合することを基本思想とする
Based on the above findings, in the present invention, a laminated structure RE-based oxide superconducting wire coated with a metal material and a metal material or a member coated with a metal material ( stacked-structured RE-based oxide superconducting wire) Including)
(I) In an oxidizing atmosphere
(Ii) The basic idea is to apply thermal energy to the joint surface obtained by directly overlapping the metal surfaces of the joint portion and to apply pressure to join the joint surface.

但し、REは、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、及び、Yのいずれか1種又は2種以上の元素である。   However, RE is one or more elements of La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y.

RE系酸化物超電導線材の超電導層を構成するRE系酸化物は、RE1+xBa2-xCu3Oy(0≦x≦0.2)、REBa2Cu48、RE2Ba4Cu715などであり、さらに、これらを主成分とし、RE23、CeO2、RE2BaCuO5(RE=Nd、LaのときはRE4Ba2Cu210)など非超電導相を分散させたものや、Ca、Mg、Sr、Zr、Zn、Ti、Hfなどを添加したものである。 RE oxides constituting the superconducting layer of the RE oxide superconducting wire are RE 1 + x Ba 2−x Cu 3 O y (0 ≦ x ≦ 0.2), REBa 2 Cu 4 O 8 , RE 2 Ba. 4 Cu 7 O 15 and the like, and these are the main components, and non-superconducting such as RE 2 O 3 , CeO 2 , RE 2 BaCuO 5 (RE 4 Ba 2 Cu 2 O 10 when RE = Nd, La) One in which phases are dispersed or one to which Ca, Mg, Sr, Zr, Zn, Ti, Hf, or the like is added.

なお、前記非超電導相や添加物は、特に限定されるものではない。   The non-superconducting phase and additives are not particularly limited.

積層構造のRE系酸化物超電導線材は、通常、超電導層の保護、クエンチの際の電流のバイパスやクエンチで発生する電圧による発熱の放出などの理由で、表面が、Au、Ag、Cu、Pt、Ni、Al、Ti、W、In、Ir、及び、Rhのいずれか1種、又は、それらの元素を含む合金のいずれか1種で被覆されている。 The RE-based oxide superconducting wire having a laminated structure usually has a surface of Au, Ag, Cu, Pt for reasons such as protection of the superconducting layer, bypass of current during quenching, or release of heat generated by voltage generated by quenching. , Ni, Al, Ti, W, In, Ir, and Rh, or any one of alloys containing these elements.

このような被覆金属層を有する積層構造のRE系酸化物超電導線材を接合する場合、接合部において、その被覆金属層の表面同士を、所要の面積で重ね合わせる。この場合、被覆金属層の表面に対する表面処理は、特に行わなくてもよいが、より緊密で低抵抗の接合を得るため、被覆金属層の表面に、洗浄や研磨などの表面清浄化処理を施してもよい。 When joining a RE-based oxide superconducting wire having a laminated structure having such a covering metal layer, the surfaces of the covering metal layers are overlapped with each other at a required area at the joint. In this case, the surface treatment on the surface of the coated metal layer is not particularly required. However, in order to obtain a tighter and lower resistance bonding, the surface of the coated metal layer is subjected to a surface cleaning treatment such as washing or polishing. May be.

被覆金属層の表面同士を重ね合わせた接合部を、例えば、図1(a)に示すような接合形態のもとで固定し、接合部を均一に加圧する。また、図1(b)のような接合形態を採用すれば、RE系酸化物超電導線材の超電導層の向きを揃えることができる。   For example, the joining portion obtained by superimposing the surfaces of the coated metal layers is fixed under a joining form as shown in FIG. 1A, and the joining portion is uniformly pressurized. Moreover, if the joining form as shown in FIG. 1B is adopted, the direction of the superconducting layer of the RE-based oxide superconducting wire can be made uniform.

接合部に負荷する圧力は、被覆金属の種類や、接触面積により適宜選択すればよく、特に限定されるものではない。上記圧力は、より緊密で低抵抗の接合を形成する点で、通常、10MPa以上が好ましいが、より緊密で低抵抗の接合を形成できれば、10MPa未満でもよい。   What is necessary is just to select suitably the pressure loaded to a junction part with the kind of coating metal, and a contact area, and it is not specifically limited. The pressure is usually preferably 10 MPa or more in terms of forming a tighter and lower resistance bond, but may be less than 10 MPa as long as a tighter and lower resistance bond can be formed.

接合部を覆う雰囲気は、酸化性のガスを含む雰囲気であればよく、特定の雰囲気に限定されないが、純酸素ガス雰囲気、不活性ガスと酸素の混合ガス雰囲気、及び、大気のいずれか1種の雰囲気が好ましい。   The atmosphere covering the bonding portion may be an atmosphere containing an oxidizing gas, and is not limited to a specific atmosphere, but is any one of a pure oxygen gas atmosphere, a mixed gas atmosphere of inert gas and oxygen, and air Is preferable.

酸化性雰囲気の雰囲気圧(全圧)も、特に限定されるものではないが、超電導層が超電導特性を呈するのに必要な酸素量(例えば、RE1+xBa2-xCu3yの場合は、yが6.8以上)を得るまでに長時間を要し、また、超電導層が上記酸素量を確実に安定して得ることができない場合もあるので、上記雰囲気圧(全圧)は、接合時間(即ち、RE系酸化物への酸素導入時間)の短縮、及び、安定的なRE系酸化物中での酸素量確保という点で、1atm以上が好ましい。 The atmospheric pressure (total pressure) of the oxidizing atmosphere is not particularly limited, but the amount of oxygen necessary for the superconducting layer to exhibit superconducting properties (for example, RE 1 + x Ba 2-x Cu 3 O y In this case, it takes a long time to obtain y of 6.8 or more), and the superconducting layer may not be able to reliably obtain the oxygen amount in a stable manner, so that the atmospheric pressure (total pressure) Is preferably 1 atm or more in terms of shortening the junction time (that is, the time for introducing oxygen into the RE-based oxide) and securing the amount of oxygen in the stable RE-based oxide.

本発明では、酸化性雰囲気の酸素分圧が重要であるが、この点については後述する。   In the present invention, the oxygen partial pressure of the oxidizing atmosphere is important, and this point will be described later.

酸化性雰囲気中で、所要の圧力で均一に加圧された状態の接合面に、熱エネルギーを付与して、接合面を加熱する。   In the oxidizing atmosphere, heat energy is applied to the joint surface that has been uniformly pressurized at a required pressure to heat the joint surface.

接合面に熱エネルギーを付与する方法は、特に制限されるものではないが、接合部の加熱、接合部への通電、超音波又は電磁波付与、及び、接合部の摩擦のいずれかで行うことが好ましい。また、これら熱エネルギーを付与する方法の2つ以上を併用してもよい。   The method of applying thermal energy to the joint surface is not particularly limited, but may be performed by any one of heating of the joint, energization of the joint, application of ultrasonic waves or electromagnetic waves, and friction of the joint. preferable. Moreover, you may use together two or more of the methods of providing these thermal energy.

接合部の加熱は、酸化性雰囲気中で接合部を直接加熱してもよいし、また、接合部を、熱せられた酸化性雰囲気中で保持してもよい。   The heating of the bonding portion may be performed by directly heating the bonding portion in an oxidizing atmosphere, or the bonding portion may be held in a heated oxidizing atmosphere.

通電は、重ね合わせて加圧した接合面をまたいで電流を流し、接合面に発生する抵抗によりジュール発熱を得る方法である。超音波や電磁波付与は、重ね合わせて加圧した接合面の金属原子に、超音波や電磁波による外部エネルギーで振動を誘起し、発熱させる方法である。摩擦は、重ね合わせて加圧した接合面を高速で擦り合わせるなどして、接合部に摩擦熱を発生させる方法である。   The energization is a method in which a current is passed across the bonded surfaces that are superimposed and pressed, and Joule heat is generated by the resistance generated on the bonded surfaces. The application of ultrasonic waves or electromagnetic waves is a method in which vibration is induced by external energy generated by ultrasonic waves or electromagnetic waves in the metal atoms on the bonded surfaces that are superposed and pressed. Friction is a method of generating frictional heat at the joint by, for example, rubbing the joint surfaces that are superposed and pressed together at high speed.

前述したように、積層構造のRE系酸化物超電導線材の優れた超電導特性を維持しつつ、低抵抗の接合部を形成するためには、低抵抗と所要の接合強度を確保する接合と、超電導特性を維持するための酸素導入を同時に行うことができる酸素分圧(例えば、RE1+xBa2-xCu3yの場合には、yが6.8以上となる酸素分圧)と温度の関係を考慮しなければならない。 As described above, in order to form a low-resistance junction while maintaining the excellent superconducting characteristics of the RE-based oxide superconducting wire having a laminated structure, a junction that secures low resistance and required junction strength, and superconductivity Oxygen partial pressure at which oxygen can be introduced simultaneously to maintain the characteristics (for example, in the case of RE 1 + x Ba 2-x Cu 3 O y , the oxygen partial pressure at which y is 6.8 or more) The temperature relationship must be taken into account.

本発明では、酸化性雰囲気の酸素分圧及び接合面の温度を、接合後の冷却過程をも含む接合処理中、積層構造のRE系酸化物超電導線材の超電導層を構成するRE系酸化物中に、RE系酸化物が超電導特性を呈するのに必要な酸素量を確保できる酸素分圧−温度域に維持する。この点が、本発明の特徴である。 In the present invention, the oxygen partial pressure of the oxidizing atmosphere and the temperature of the bonding surface are adjusted during the bonding process including the cooling process after bonding, in the RE-based oxide constituting the superconducting layer of the RE-based oxide superconducting wire having a laminated structure. In addition, the RE oxide is maintained in an oxygen partial pressure-temperature region that can secure the amount of oxygen necessary for exhibiting superconducting properties. This is a feature of the present invention.

例えば、RE系酸化物がRE1+xBa2-xCu3yの場合、接合後の冷却過程をも含む接合処理中、酸素分圧及び温度を、yが6.8以上となる酸素分圧−温度域に維持しなければならない。 For example, when the RE oxide is RE 1 + x Ba 2−x Cu 3 O y , the oxygen partial pressure and temperature during the bonding process including the cooling process after bonding are set such that oxygen becomes y 6.8 or more. It must be maintained in the partial pressure-temperature range.

この酸素分圧−温度域は、RE系酸化物によって異なるが、例えば、YBa2Cu3yの場合は、図3に示す酸素分圧−温度曲線より下側の領域である。 Although this oxygen partial pressure-temperature region varies depending on the RE oxide, for example, in the case of YBa 2 Cu 3 O y , it is a region below the oxygen partial pressure-temperature curve shown in FIG.

なお、図3は、J.Shimoyamaらの論文(MRS Proceedings,689(2002)265)に記載のFig.1(Oxygen nonstoichiometry of YBa2Cu3y)において、y=6.8のところの酸素分圧と温度を読み取って作成したものである。 3 is shown in FIG. 3 described in a paper by J. Shimoyama et al. (MRS Proceedings, 689 (2002) 265). In 1 (Oxygen nonstoichiometry of YBa 2 Cu 3 O y ), the oxygen partial pressure and temperature at y = 6.8 were read and prepared.

即ち、RE1+xBa2-xCu3yが超電導層を構成している積層構造のRE系酸化物超電導線材を接合する場合、接合後の冷却過程をも含む接合処理中、酸素分圧及び温度を、図3に示す酸素分圧−温度曲線より下側の領域に維持しなければならない。 That is, when RE 1 + x Ba 2-x Cu 3 O y is bonded to a RE-based oxide superconducting wire having a laminated structure in which a superconducting layer is formed, oxygen content is reduced during the bonding process including the cooling process after bonding. The pressure and temperature must be maintained in the region below the oxygen partial pressure-temperature curve shown in FIG.

上記接合処理に係る酸素分圧及び温度を上記領域に維持することにより、低抵抗と所要の接合強度を確保する接合と、超電導層において超電導特性を維持するためのRE系酸化物への酸素導入を同時に行うことができ、積層構造のRE系酸化物超電導線材の優れた超電導特性を維持しつつ、低抵抗の接合部を形成することができる。 Maintaining oxygen partial pressure and temperature related to the above-mentioned bonding process in the above-mentioned region, joining oxygen to ensure low resistance and required bonding strength, and introducing oxygen into RE-based oxides to maintain superconducting characteristics in the superconducting layer Can be performed simultaneously, and a low-resistance junction can be formed while maintaining the excellent superconducting properties of the RE-based oxide superconducting wire having a laminated structure .

以下、本発明の実施例について説明するが、実施例で採用した条件は、本発明の実施可能性又は再現性を実証するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。   Hereinafter, examples of the present invention will be described, but the conditions adopted in the examples are one condition example adopted for demonstrating the feasibility or reproducibility of the present invention, and the present invention is included in this one condition example. It is not limited.

本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
ハステロイ上にGd2Zr27、CeO2、YBa2Cu3y、Agの順で積層した2本のY系酸化物超電導線材のそれぞれの端部のAg層を対向させて、2×5mm2の面積で重ね合わせた。
Example 1
An Ag layer at each end of two Y-based oxide superconducting wires laminated in the order of Gd 2 Zr 2 O 7 , CeO 2 , YBa 2 Cu 3 O y , Ag on the Hastelloy is 2 × Overlaid with an area of 5 mm 2 .

重ね合わせ部分のAg層に、特に、清浄化又は研磨など表面処理を施さなかったが、接合部において正確なI−V特性を測定するため、重ね合わせ部分以外のAg層の所定の箇所において、図4に示すように、Ag層2を除去するエッチングを施し、超電導層1を露出させた。   In particular, surface treatment such as cleaning or polishing was not performed on the Ag layer in the overlapped portion, but in order to measure accurate IV characteristics at the joint, in a predetermined portion of the Ag layer other than the overlapped portion, As shown in FIG. 4, the etching which removes Ag layer 2 was performed, and superconducting layer 1 was exposed.

このAg層の除去は、接合したY系酸化物超電導線材の接合部におけるI−V特性を測定する際に、Ag層の電流を遮断し、接合部における電流の流れを、超電導層−Ag層−超電導層とするものである。   The removal of this Ag layer cuts off the current in the Ag layer when measuring the IV characteristics at the junction of the joined Y-based oxide superconducting wire, and the current flow in the junction becomes superconducting layer-Ag layer. -A superconducting layer.

Y系酸化物超電導線材のAg層を対向して重ね合わせた部分を、図5に示すように、プレート5(例えば、インコネル板)で上下から挟み、プレート5の両端をボルト・ナット6で固定した。この固定状態において、Y系酸化物超電導線材の接合面に加わる荷重は、ほぼ均一であり、室温で約50MPaであった。   As shown in FIG. 5, the portion where the Ag layers of the Y-based oxide superconducting wire are opposed to each other is sandwiched from above and below by a plate 5 (for example, an Inconel plate), and both ends of the plate 5 are fixed by bolts and nuts 6. did. In this fixed state, the load applied to the joint surface of the Y-based oxide superconducting wire was substantially uniform and was about 50 MPa at room temperature.

固定・加圧状態にある接合部を、純酸素雰囲気中で500℃まで昇温し、1時間保持し、その後、室温まで炉冷した。酸化性雰囲気中での熱処理が終了した後、接合部を固定していたプレートを取り去り、図6に示すように結線し、液体窒素中で、I−V特性を測定した。   The joint in the fixed / pressurized state was heated to 500 ° C. in a pure oxygen atmosphere, held for 1 hour, and then furnace-cooled to room temperature. After the heat treatment in the oxidizing atmosphere was completed, the plate that had fixed the joint was removed, connected as shown in FIG. 6, and the IV characteristics were measured in liquid nitrogen.

その結果、接合部の電圧は電流に比例して上昇しており、オーミックなI−V特性を示した。その結果から抵抗を計算すると、0.1μΩで、これを単位面積の抵抗に換算すると、10nΩcm2である。この抵抗値は、従来技術で得られる抵抗値の10分の1である。 As a result, the voltage at the junction increased in proportion to the current and exhibited ohmic IV characteristics. When the resistance is calculated from the result, it is 0.1 μΩ, and when this is converted into the resistance of the unit area, it is 10 nΩcm 2 . This resistance value is one tenth of the resistance value obtained with the prior art.

また、接合部は、線材として使用する際に線材の長手方向に負荷される荷重に十分耐えることができる接合強度を有することを、単純な引張り試験で確認した。   Further, it was confirmed by a simple tensile test that the joint has a joint strength that can sufficiently withstand a load applied in the longitudinal direction of the wire when used as a wire.

さらに、上記接合法と同様の方法で、接合面積を2×10mm2、2×20mm2として接合し、その接合部の抵抗を測定した。その結果、抵抗値は、それぞれ、0.08μΩ、0.05μΩであり、接合面積を大きくすることにより、さらに抵抗値を減少できることを確認できた。 Furthermore, it joined by the method similar to the said joining method, making the joining area 2 * 10mm < 2 >, 2 * 20mm < 2 >, and measured the resistance of the junction part. As a result, the resistance values were 0.08 μΩ and 0.05 μΩ, respectively, and it was confirmed that the resistance value could be further reduced by increasing the junction area.

(実施例2)
ハステロイ上に、Gd2Zr27、CeO2、YBa2Cu3y、Agの順で積層したY系酸化物超電導線材を、2×70mm2の形状に切り出し、図7に示すように結線し、液体窒素中でI−V特性を測定した。次に、前記線材を中央で切断し、2本の線材の端部のAg層を対向させて、2×20mm2の面積で重ね合わせた(図1(a)、参照)。
(Example 2)
A Y-based oxide superconducting wire laminated in the order of Gd 2 Zr 2 O 7 , CeO 2 , YBa 2 Cu 3 O y , Ag on Hastelloy is cut out into a 2 × 70 mm 2 shape, as shown in FIG. Wiring was performed, and IV characteristics were measured in liquid nitrogen. Next, the said wire was cut | disconnected in the center, the Ag layer of the edge part of two wires was made to oppose, and it overlap | superposed by the area of 2 * 20 mm < 2 > (refer Fig.1 (a)).

重ね合わせ部分のAg層には、特に、清浄化又は研磨などの表面処理を施さず、Y系酸化物超電導線材のAg層を対向して重ね合わせた部分を、インコネル製治具で固定した(図8、参照)。この固定状態において、Y系酸化物超電導線材の接合面に加わる荷重は、ほぼ均一であり、室温で約10MPaであった。   The Ag layer in the overlapped portion was not particularly subjected to surface treatment such as cleaning or polishing, and the portion where the Ag layer of the Y-based oxide superconducting wire was opposed to each other was fixed with an Inconel jig ( FIG. 8). In this fixed state, the load applied to the joint surface of the Y-based oxide superconducting wire was almost uniform and was about 10 MPa at room temperature.

固定・加圧状態にある接合部を、純酸素雰囲気中で500℃まで昇温し、1時間保持し、その後、室温まで炉冷した。酸化性雰囲気中での熱処理が終了した後、接合部を固定していたインコネル治具を取り去り、図6に示すように結線し、液体窒素中で、I−V特性を測定した。その結果を、図9に示す。   The joint in the fixed / pressurized state was heated to 500 ° C. in a pure oxygen atmosphere, held for 1 hour, and then furnace-cooled to room temperature. After the heat treatment in the oxidizing atmosphere was completed, the Inconel jig that fixed the joint was removed, connected as shown in FIG. 6, and the IV characteristics were measured in liquid nitrogen. The result is shown in FIG.

図9に示すように、本発明による方法で接合した後のY系酸化物超電導線材には、接合前のY系酸化物超電導線材と同等の電流を流すことができる。よって、本接合法では、超電導線材の超電導層を劣化させない接合を可能とすることが確認できた。   As shown in FIG. 9, a current equivalent to that of the Y-based oxide superconducting wire before joining can be passed through the Y-based oxide superconducting wire after being joined by the method according to the present invention. Therefore, it has been confirmed that this joining method enables joining without degrading the superconducting layer of the superconducting wire.

また、低電圧を検出できる装置で測定した電流、電圧値から接合部の抵抗を計算すると、0.03μΩで、単位面積の抵抗に換算すると約10nΩcm2であった。 Also, the resistance of the junction was calculated from the current and voltage values measured by a device capable of detecting a low voltage, and it was 0.03 μΩ, which was about 10 nΩcm 2 when converted to a unit area resistance.

(比較例)
ハステロイ上に、Gd2Zr27、CeO2、YBa2Cu3y、Agの順で積層したY系酸化物超電導線材を、250℃に熱したホットプレート上に置き、市販のはんだ、インジウム等の接着層を溶融させ、Ag層に塗布した。その結果、市販のはんだは、Ag層上ではぬれ性が悪く、球状に凝集し、均一に塗布することができなかった。一方、インジウムは、Ag層上でぬれ性が非常に良く、均一に塗布することができた。
(Comparative example)
A Y-based oxide superconducting wire layered in the order of Gd 2 Zr 2 O 7 , CeO 2 , YBa 2 Cu 3 O y , Ag on Hastelloy is placed on a hot plate heated to 250 ° C. An adhesive layer such as indium was melted and applied to the Ag layer. As a result, the commercially available solder had poor wettability on the Ag layer, aggregated in a spherical shape, and could not be applied uniformly. On the other hand, indium was very wettable on the Ag layer and could be applied uniformly.

次に、インジウムを使用して、Y系酸化物超電導線材の接合実験を行った。前記Y系酸化物超電導線材を、2×70mm2の形状に切り出し、図7に示すように結線し、液体窒素中でI−V特性を測定した。次に、前記線材を中央で切断し、2本の線材の端から20mmのAg層上に、それぞれ、溶融させたインジウムを均一に塗布した。 Next, a joining experiment of a Y-based oxide superconducting wire was performed using indium. The Y-based oxide superconducting wire was cut into a 2 × 70 mm 2 shape, connected as shown in FIG. 7, and the IV characteristics were measured in liquid nitrogen. Next, the said wire was cut | disconnected in the center and the melted indium was apply | coated uniformly on the 20-mm Ag layer from the edge of two wires, respectively.

前記インジウムの塗布は、大気中で250℃に熱したホットプレート上で、インジウムを溶融させて行った。溶融インジウムを塗布したAg層を、図10に示すように対向させて、2×20mm2の面積で重ね合わせ、そのままホットプレート上から外し、冷却して接合した。 The indium was applied by melting indium on a hot plate heated to 250 ° C. in the atmosphere. The Ag layers coated with molten indium were opposed to each other as shown in FIG. 10 so as to overlap each other with an area of 2 × 20 mm 2 , removed from the hot plate as they were, and cooled and joined.

前記のインジウムを用いて接合した線材を、図6に示すように結線し、液体窒素中で、I−V特性を測定した。その結果を、図11に示す。   The wire joined using the indium was connected as shown in FIG. 6, and the IV characteristics were measured in liquid nitrogen. The result is shown in FIG.

図11に示すように、インジウムを用いて接合したY系酸化物超電導線材は、接合前のY系酸化物超電導線材と同等の電流を流すことができる。しかし、発生する電圧は、図9に示した本発明の方法で接合した線材に発生する電圧よりはるかに高く、Ic近傍で読みとった電流、電圧値から接合部の抵抗を計算すると、0.25μΩ程度であった。   As shown in FIG. 11, the Y-based oxide superconducting wire joined using indium can pass the same current as the Y-based oxide superconducting wire before joining. However, the generated voltage is much higher than the voltage generated in the wire joined by the method of the present invention shown in FIG. 9, and the resistance of the junction is calculated from the current and voltage values read in the vicinity of Ic. It was about.

これは、前記(実施例2)の抵抗の約10倍で、インジウムの抵抗や、インジウムとAg層の接触抵抗が加算されるために、抵抗が高くなると言える。これと比較して、本接合法は、Ag層とYBCO層の接触抵抗と、Ag層以外の抵抗が発生せず、電圧が発生したとしても非常に低い値に抑制することが可能であることを確認した。   This is about 10 times the resistance of the above (Example 2), and it can be said that the resistance increases because the resistance of indium and the contact resistance of indium and the Ag layer are added. Compared with this, this bonding method can suppress the contact resistance between the Ag layer and the YBCO layer and the resistance other than the Ag layer to a very low value even if a voltage is generated. It was confirmed.

(実施例3)
ハステロイ上に、Gd2Zr27、CeO2、YBa2Cu3y、Agの順で積層したY系酸化物超電導線材を、2×70mm2の形状に、2本、切り出し、図7に示すように結線し、液体窒素中で、それぞれのI−V特性を測定した。次に、前記線材のうち1本を、中央で切断し、他の1本は両端を切断して2×40mm2の形状とし、図1(b)に示すようにAg層を対向させて、2×40mm2の面積で重ね合わせた。
(Example 3)
Two Y-based oxide superconducting wires laminated in the order of Gd 2 Zr 2 O 7 , CeO 2 , YBa 2 Cu 3 O y , Ag on Hastelloy are cut out into a 2 × 70 mm 2 shape, and FIG. As shown in Fig. 4, the wires were connected, and each IV characteristic was measured in liquid nitrogen. Next, one of the wires is cut at the center, and the other is cut at both ends to form a shape of 2 × 40 mm 2 , with the Ag layer facing as shown in FIG. Overlapping with an area of 2 × 40 mm 2 .

重ね合わせ部分のAg層には、特に、清浄化又は研磨などの表面処理を施さず、Y系酸化物超電導線材のAg層を対向して重ね合わせた部分を、インコネル製治具で固定した。この固定状態において、Y系酸化物超電導線材の接合面に加わる荷重は、ほぼ均一であり、室温で約10MPaであった。   The Ag layer in the overlapped portion was not particularly subjected to surface treatment such as cleaning or polishing, and the portion where the Ag layer of the Y-based oxide superconducting wire was opposed to each other was fixed with an Inconel jig. In this fixed state, the load applied to the joint surface of the Y-based oxide superconducting wire was almost uniform and was about 10 MPa at room temperature.

固定・加圧状態にある接合部を、純酸素雰囲気中で500℃まで昇温し、1時間保持し、その後、室温まで炉冷した。酸化性雰囲気中での熱処理が終了した後、接合部を固定していたインコネル治具を取り去り、図12に示すように結線し、液体窒素中で、I−V特性を測定した。   The joint in the fixed / pressurized state was heated to 500 ° C. in a pure oxygen atmosphere, held for 1 hour, and then furnace-cooled to room temperature. After the heat treatment in the oxidizing atmosphere was completed, the Inconel jig that fixed the joint was removed, connected as shown in FIG. 12, and the IV characteristics were measured in liquid nitrogen.

本発明による方法で接合後のY系酸化物超電導線材は、接合前のY系酸化物超電導線材と同等の電流を流すことができることを確認した。よって、本接合法では、超電導線材の超電導層を劣化させない接合を可能とすることが確認できた。   It was confirmed that the Y-based oxide superconducting wire after joining by the method according to the present invention can pass the same current as the Y-based oxide superconducting wire before joining. Therefore, it has been confirmed that this joining method enables joining without degrading the superconducting layer of the superconducting wire.

前述したように、本発明によれば、金属で被覆された積層構造のRE系酸化物超電導線材と、金属材料や金属で被覆された部材を、超電導線材の本来の優れた超電導特性を損なうことなく、簡便に、かつ、接合後の後処理を必要とせずに効率よく接合し、低抵抗の接合部を、再現性よく形成することができる。 As described above, according to the present invention, the RE-based oxide superconducting wire having a laminated structure coated with metal and the metal material or a member coated with metal impair the superconducting properties inherent in the superconducting wire. Therefore, it is possible to easily and efficiently join without requiring post-treatment after joining, and to form a low-resistance joint with good reproducibility.

したがって、本発明は、強磁場発生コイル、電流リード、高電圧送電の他、省資源・エネルギー技術等へ幅広く利用され得るものであり、その利用可能性は極めて大きい。   Therefore, the present invention can be widely used for resource saving / energy technology, etc. in addition to a strong magnetic field generating coil, a current lead, and high voltage power transmission, and its applicability is extremely large.

RE系酸化物超電導線材の接合形態を示す側面図である。(a)は、超電導層を対向させる接合形態を示し、(b)は、超電導層を揃える接合形態を示す。It is a side view which shows the joining form of RE type oxide superconducting wire. (A) shows the joining form which makes a superconducting layer oppose, (b) shows the joining form which arranges a superconducting layer. 接合したY系酸化物超電導線材の接合部の断面(倍率×50)を示す図である。It is a figure which shows the cross section (magnification x50) of the junction part of the joined Y type oxide superconducting wire. YBa2Cu3yのy=6.8となる酸素分圧と温度の関係を示す図である。It is a diagram illustrating a YBa 2 Cu 3 O y of y = 6.8 the oxygen partial pressure and temperature relation of. Y系酸化物超電導線材のAg層を除去した後の形態を示す上面図である。It is a top view which shows the form after removing the Ag layer of a Y-type oxide superconducting wire. RE系酸化物超電導線材の接合部を固定する一態様を示す斜視図である。It is a perspective view which shows the one aspect | mode which fixes the junction part of RE type oxide superconducting wire. Y系酸化物超電導線材の接合部におけるI−V特性を測定するための結線を示す側面図である。It is a side view which shows the connection for measuring the IV characteristic in the junction part of a Y type oxide superconducting wire. Y系酸化物超電導線材の接合前のI−V特性を測定するための結線を示す側面図である。It is a side view which shows the connection for measuring the IV characteristic before joining of a Y-type oxide superconducting wire. RE系酸化物超電導線材の接合部を固定する一態様を示す斜視図である。It is a perspective view which shows the one aspect | mode which fixes the junction part of RE type oxide superconducting wire. Y系酸化物超電導線材の接合前、および、図1(a)の形態で接合後の、I−V特性を示す図である。接合後のI−V特性は、図6に示すように、接合部を挟んで測定したI−V特性である。It is a figure which shows the IV characteristic before joining of Y type oxide superconducting wire, and after joining in the form of Fig.1 (a). As shown in FIG. 6, the IV characteristic after bonding is an IV characteristic measured with the bonding portion interposed therebetween. RE系酸化物超電導線材を、図1(a)の接合形態にて接着層を用いて接合する一態様を示す側面図である。It is a side view which shows the one aspect | mode which joins RE type oxide superconducting wire using a contact bonding layer with the joining form of Fig.1 (a). Y系酸化物超電導線材の接合前、および、接着層にインジウムを用いて図10の形態で接合した後の、I−V特性を示す図である。接合後のI−V特性は、図6に示すように、接合部を挟んで測定したI−V特性である。It is a figure which shows the IV characteristic after joining in the form of FIG. 10 before joining of a Y type oxide superconducting wire, and using an indium for an adhesion layer. As shown in FIG. 6, the IV characteristic after bonding is an IV characteristic measured with the bonding portion interposed therebetween. 図1(b)の接合形態にて接合したY系酸化物超電導線材のI−V特性を測定するための結線を示す側面図である。It is a side view which shows the connection for measuring the IV characteristic of the Y type oxide superconducting wire joined by the joining form of FIG.1 (b).

符号の説明Explanation of symbols

1 RE系酸化物超電導層
2 Ag層
3 基材
4 RE系酸化物超電導線材
5 プレート
6 ボルト・ナット
7 接着層
1 RE-based oxide superconducting layer 2 Ag layer 3 Base material 4 RE-based oxide superconducting wire 5 Plate 6 Bolt / nut 7 Adhesive layer

Claims (6)

金属材料で被覆されている積層構造のRE系酸化物超電導線材と金属材料又は金属材料で被覆されている部材(積層構造のRE系酸化物超電導線材を含む)を接合する接合方法において、
(i)酸素分圧及び接合面の温度を、接合処理中、上記RE系酸化物超電導線材の超電導層を構成するRE系酸化物中に、RE系酸化物が超電導特性を呈するのに必要な酸素量を確保できる酸素分圧−温度域に維持した酸化性雰囲気中にて、
(ii)接合部の金属表面を直接重ねた接合面に熱エネルギーを付与するとともに圧力を負荷して接合面を接合する
ことを特徴とするRE系酸化物超電導線材の接合方法。
但し、REは、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、及び、Yのいずれか1種又は2種以上の元素
The joining method for joining members (including the RE-based oxide superconducting wire of a laminated structure) that has been coated with a RE-based oxide superconducting wire and a metal or metallic material of the laminated structure being coated with a metallic material,
(I) The oxygen partial pressure and the temperature of the bonding surface are required for the RE oxide to exhibit superconducting properties in the RE oxide constituting the superconducting layer of the RE oxide superconducting wire during the bonding process. In an oxidizing atmosphere maintained in an oxygen partial pressure-temperature range that can secure an oxygen amount ,
(Ii) A method for joining RE-based oxide superconducting wires, in which thermal energy is applied to a joint surface obtained by directly overlapping metal surfaces of a joint portion, and a pressure is applied to join the joint surface.
However, RE is one or more elements of La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y.
前記接合面への熱エネルギーの付与に関して、前記接合部を加熱することを特徴とする請求項1に記載のRE系酸化物超電導線材の接合方法。 Regard application of thermal energy to the bonding surface, the bonding method of the RE-based oxide superconducting wire according to claim 1, characterized by heating the joint. 前記接合面への熱エネルギーの付与に関して、前記接合部に、通電、超音波又は電磁波付与、及び、摩擦のいずれか1つ又は2つ以上の処理を施し、接合面に熱エネルギーを誘起することを特徴とする請求項1に記載のRE系酸化物超電導線材の接合方法。 Regarding the application of thermal energy to the joint surface, the joint is subjected to any one or more treatments of energization, ultrasonic wave or electromagnetic wave application, and friction to induce thermal energy on the joint surface. method of bonding RE-based oxide superconducting wire according to claim 1, wherein the. 前記接合面への熱エネルギーの付与に関して、前記接合部を加熱するとともに、該接合部に、通電、超音波又は電磁波付与、及び、摩擦のいずれか1つ又は2つ以上の処理を施し、接合面に熱エネルギーを誘起することを特徴とする請求項1に記載のRE系酸化物超電導線材の接合方法。 Regarding the application of thermal energy to the bonding surface, the bonding portion is heated, and the bonding portion is subjected to any one or more treatments of energization, ultrasonic wave or electromagnetic wave application, and friction, and bonded. method of bonding RE-based oxide superconducting wire according to claim 1, characterized in that induces thermal energy to the surface. 前記RE系酸化物超電導線材の超電導層が、RE−Ba−Cu−O系酸化物で構成されていることを特徴とする請求項1〜のいずれか1項に記載のRE系酸化物超電導線材の接合方法。 Superconducting layer of the RE-based oxide superconducting wire, RE-based oxide according to any one of claims 1 to 4, characterized in that it is constituted by R E-Ba-Cu-O based oxide Superconducting wire joining method. 前記金属材料が、Au、Ag、Cu、Pt、Ni、Al、Ti、W、In、Ir、及び、Rhのいずれか1種、又は、それらの元素を含む合金のいずれか1種であることを特徴とする請求項1〜5のいずれか1項に記載のRE系酸化物超電導線材の接合方法。 The metal material is any one of Au, Ag, Cu, Pt, Ni, Al, Ti, W, In, Ir, and Rh, or any one of alloys containing those elements. The joining method of RE type oxide superconducting wire of any one of Claims 1-5 characterized by these.
JP2005259800A 2005-05-30 2005-09-07 RE oxide superconducting wire joining method Expired - Fee Related JP4744248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259800A JP4744248B2 (en) 2005-05-30 2005-09-07 RE oxide superconducting wire joining method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005157985 2005-05-30
JP2005157985 2005-05-30
JP2005259800A JP4744248B2 (en) 2005-05-30 2005-09-07 RE oxide superconducting wire joining method

Publications (2)

Publication Number Publication Date
JP2007012582A JP2007012582A (en) 2007-01-18
JP4744248B2 true JP4744248B2 (en) 2011-08-10

Family

ID=37750773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259800A Expired - Fee Related JP4744248B2 (en) 2005-05-30 2005-09-07 RE oxide superconducting wire joining method

Country Status (1)

Country Link
JP (1) JP4744248B2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
WO2011129325A1 (en) * 2010-04-16 2011-10-20 株式会社フジクラ Superconducting coil and method for manufacturing the same
TWI458145B (en) 2011-12-20 2014-10-21 Ind Tech Res Inst Method of joining superconductor materials
KR101337432B1 (en) 2012-06-08 2013-12-06 고려대학교 산학협력단 Joining methods of rebco coated conductor tapes with silver protecting layers by diffusion junction process
EP3285341B1 (en) 2013-05-28 2019-05-22 Fujikura Ltd. Method for manufacturing a splice structure
JP5608842B1 (en) * 2013-05-28 2014-10-15 株式会社フジクラ Wire rod connecting device, wire rod connecting method, and manufacturing method of connection structure
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
KR101374212B1 (en) * 2013-08-16 2014-03-17 케이조인스(주) Rebco high temperature superconducting tape joining apparatus and joining method of the same
JP6274975B2 (en) * 2014-06-06 2018-02-07 株式会社フジクラ Oxide superconducting wire connecting structure manufacturing method and oxide superconducting wire connecting structure
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
CN104588863B (en) * 2014-12-05 2016-06-22 南昌大学 A kind of supersonic welding preparation method of Ag-Cu-Ti laminated composite solder
DE112016005097T5 (en) 2015-11-05 2018-08-02 Sumitomo Electric Industries Ltd. Superconducting oxide thin film wire and process for its production
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
JP6998667B2 (en) * 2017-03-30 2022-01-18 古河電気工業株式会社 Connection structure
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247906A (en) * 1989-03-17 1990-10-03 Hitachi Cable Ltd Manufacture of oxide superconducting wire
JPH04292874A (en) * 1991-03-20 1992-10-16 Sumitomo Electric Ind Ltd Junction method for superconductive wire
JPH0696828A (en) * 1992-01-27 1994-04-08 Toshiba Corp Connection of oxide superconductive wire
JP2998398B2 (en) * 1992-02-20 2000-01-11 住友電気工業株式会社 Superconducting wire joining method
JPH0797277A (en) * 1993-08-02 1995-04-11 Kyocera Corp Method for joining oxide superconductor
JP3305233B2 (en) * 1997-06-25 2002-07-22 三菱重工業株式会社 Superconducting wire connection method
JPH1167523A (en) * 1997-08-21 1999-03-09 Toshiba Corp Connecting method of oxide superconductive wire rod oxide superconductor coil and superconductive device using the same

Also Published As

Publication number Publication date
JP2007012582A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4744248B2 (en) RE oxide superconducting wire joining method
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
JP5770947B2 (en) Superconducting recovery method by joining 2nd generation ReBCO high temperature superconductor using partial fine melt diffusion welding by direct contact of high temperature superconductor layer and annealing with oxygen supply annealing
JP5097044B2 (en) Superconducting thin film wire using metal coating layer and bonding method thereof
WO2018030167A1 (en) Oxide superconducting wire
CN107077927B (en) The manufacturing method of oxide superconducting wire rod, superconducting apparatus and oxide superconducting wire rod
WO2011129252A1 (en) Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
JP5847009B2 (en) Oxide superconducting wire
Ito et al. Comparison of heat assisted lap joints of high-temperature superconducting tapes with inserted indium foils
Shin et al. Joint characteristics of ultrasonic welded CC bridge joints for HTS coil applications
JP5552805B2 (en) Oxide superconducting wire connection method
JP2003298129A (en) Superconducting member
EP3100321B1 (en) Method of joining a superconductor
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JPH1167523A (en) Connecting method of oxide superconductive wire rod oxide superconductor coil and superconductive device using the same
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
KR20150067817A (en) METHOD OF SPLICING AND REINFORCING OF SPLICING PART FOR PERSISTENT CURRENT MODE OF 2G ReBCO HIGH TEMPERATURE SUPERCONDUCTORS
JP4634954B2 (en) Superconducting device
JP6078522B2 (en) Superconducting wire and superconducting coil using the same
JP4901585B2 (en) Oxide superconducting current lead
JP5640022B2 (en) Superconducting wire and external terminal joining method, and superconducting wire external terminal joining structure
JP2768776B2 (en) Conductor for current lead
JP6031494B2 (en) Superconducting wire and superconducting coil using the same
JP6484658B2 (en) Oxide superconducting wire and superconducting coil
JP2009110906A (en) High-resistance material composite oxide superconductive tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4744248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees