JP2550188B2 - Oxide-based high temperature superconductor, joining method and brazing material - Google Patents

Oxide-based high temperature superconductor, joining method and brazing material

Info

Publication number
JP2550188B2
JP2550188B2 JP1303120A JP30312089A JP2550188B2 JP 2550188 B2 JP2550188 B2 JP 2550188B2 JP 1303120 A JP1303120 A JP 1303120A JP 30312089 A JP30312089 A JP 30312089A JP 2550188 B2 JP2550188 B2 JP 2550188B2
Authority
JP
Japan
Prior art keywords
oxide
coil
temperature
based high
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1303120A
Other languages
Japanese (ja)
Other versions
JPH02252664A (en
Inventor
知絵 佐藤
征彦 坂本
久宣 岡村
孝雄 舟本
正弘 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1303120A priority Critical patent/JP2550188B2/en
Publication of JPH02252664A publication Critical patent/JPH02252664A/en
Application granted granted Critical
Publication of JP2550188B2 publication Critical patent/JP2550188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物系高温超電導体の接合方法及び接合
用ろう材とそれによつて接合した前記超電導体接合体に
係り、特に、工程が非常に簡便で、しかも接続部の抵抗
の小さい接合体を得ることができる酸化物系高温超電導
体の接合に関する。
The present invention relates to a method for joining oxide-based high-temperature superconductors, a brazing filler metal for joining, and the above-mentioned superconductor joined body joined by the brazing filler metal. The present invention relates to the joining of oxide-based high temperature superconductors, which is very simple and can obtain a joined body having a low resistance at the connecting portion.

〔従来の技術〕[Conventional technology]

超電導体の接合は、接合によつて超電導特性を失うこ
となく、また液体窒素温度での接続部の抵抗が、できる
だけゼロに近いことが要求される、機能的接合である。
The superconducting joint is a functional joint which requires that the joint lose its superconducting properties and that the resistance of the joint at liquid nitrogen temperature is as close to zero as possible.

酸化物系高温超電導体の接合は、現在のところ超電導
特性評価時の端子接続を主目的としている。
At present, the main purpose of joining oxide-based high-temperature superconductors is to connect terminals when evaluating superconducting characteristics.

従来、該接合方法には、一般に用いられている方法と
して、Inを超音波をかけながらはんだ付けする方法が公
知であるが、接続抵抗が大きく実用上問題がある。少な
くとも接続抵抗による発熱量が放熱量に比べて小さくな
るまで接続抵抗を低減させる必要がある。一方、アブラ
イド フイジツク レターズ 52(21)第1819頁から第
1821頁(1988年)(Appl.Phys.Lett.52(21)PP1819−1
821(1988))記載のように、Arイオン等によるスパツ
タエツチング後貴金属を蒸着し、その上にワイヤボンデ
イングで端子を取り付ける方法は、接続抵抗が10-10Ω
・cm2と極めて小さくできる効果がある。しかし、この
接合法では被接合体の大きさ及びリード線の接続等に制
限があり、したがつて応用範囲も限られてしまうことに
なる。今後、酸化物系高温超電導体の種々の応用を踏ま
えた接合を考えた場合、被接合体の形状,大きさ,材質
等に制限されない接続手法の開発が望まれる。特に、超
電導マグネツトへの応用を考えるならば、抵抗による発
熱でのクエンチをなくし、より安定性を高めるために
も、また永久電流モードで使用する場合の電流減衰をで
きるだけ小さくするためにも、接続抵抗を少しでも小さ
くすることは必須である。
Conventionally, as the joining method, a method of soldering In while applying ultrasonic waves is known as a generally used method, but there is a problem in practical use due to a large connection resistance. It is necessary to reduce the connection resistance at least until the amount of heat generated by the connection resistance becomes smaller than the amount of heat radiation. On the other hand, Abride Physic Letters 52 (21) pp. 1819-
1821 (1988) (Appl.Phys.Lett.52 (21) PP1819-1
821 (1988)), a method of depositing a noble metal after sputter etching with Ar ions, etc., and then attaching a terminal by wire bonding on it has a connection resistance of 10 -10 Ω.
・ There is an effect that it can be made extremely small as cm 2 . However, this joining method has limitations on the size of the article to be joined, the connection of the lead wires, and the like, and thus limits the range of applications. In the future, when considering joining based on various applications of oxide-based high-temperature superconductors, it is desired to develop a connection method that is not limited by the shape, size, material, etc. of the objects to be joined. Especially when considering the application to superconducting magnets, the connection should be made in order to eliminate quenching due to heat generation due to resistance and to improve stability, and to minimize current attenuation when used in the persistent current mode. It is essential to reduce the resistance as much as possible.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術では、手法の簡単な、インジウムのはん
だ付けでは接続抵抗が大きく、一方の蒸着による接続方
法では、接続抵抗は小さいが、酸化物系高温超伝導体と
接合できる材料が限られてしまい、種々の用途を目的と
した場合の各種部材との接合には適さないという問題が
あつた。
In the above-mentioned conventional technology, the connection resistance is large in indium soldering with a simple method and the connection method by vapor deposition on one side has a small connection resistance, but the materials that can be bonded to the oxide-based high temperature superconductor are limited. However, there is a problem that it is not suitable for joining with various members for various purposes.

本発明の目的は、上記従来技術の問題点を解決した、
接続抵抗が小さく、かつ用途の広い、接合工程のより簡
単な、酸化物系高温超電導体とその接合方法及びろう材
を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art,
(EN) An oxide high-temperature superconductor, a method for joining the same, and a brazing material, which have low connection resistance and a wide range of applications, and which can be easily joined by a joining process.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、酸化物系高温超電導体の表面に、重量で、
Be,Mg,Ca,Sr,Ba及びRaの1種を1〜7%又は2種以上を
合計量で2〜10%、又はZn1〜40%、又はCd5〜75%、又
はMn,Fe,Co,Ni,Cr,Cu及びPdの1種を0.5〜5%又は2種
以上を合計量で1〜7.5%のいずれかを含有し、残部がI
nである合金からなるろう材が接合され、その接合部の
電気抵抗率が温度の低下とともに低下することを特徴と
する酸化物系高温超電導体にある。
The present invention, on the surface of the oxide-based high temperature superconductor, by weight,
1 to 7% of Be, Mg, Ca, Sr, Ba and Ra, or 2 to 10% in total of 2 to 10%, or Zn1 to 40%, or Cd5 to 75%, or Mn, Fe, Co , Ni, Cr, Cu and Pd, one of 0.5 to 5%, or two or more of them in a total amount of 1 to 7.5%, and the balance is I
A high-temperature oxide-based superconductor is characterized in that a brazing material made of an alloy of n is joined, and the electrical resistivity of the joint decreases with a decrease in temperature.

前記酸化物系高温超電導体が線材であり、前記ろう材
によって該線材同志又は該線材と金属線とが接合され
る。
The oxide-based high temperature superconductor is a wire rod, and the wire rods or the wire rod and the metal wire are joined by the brazing material.

本発明は、酸化物系高温超電導体の接合方法におい
て、該超電導体同志又は該超電導体と金属とを、重量
で、Be,Mg,Ca,Sr,Ba及びRaの1種を1〜7%又は2種以
上を合計量で2〜10%、又はZn1〜40%、又はCd5〜75
%、又はMn,Fe,Co,Ni,Cr,Cu及びPdの1種を0.5〜5%又
は2種以上を合計量で1〜7.5%のいずれかを含有し、
残部がInである合金からなるろう材を150〜350℃の温度
で加熱溶融することによって接合し、その接合部の電気
抵抗率が温度の低下とともに低下することを特徴とす
る。加熱溶融には所定温度に加熱される超音波ごてをろ
う材に接触させることにより行うのが好ましく、超音波
周波数として10〜100KHzが好ましい。また、出力として
10〜1000Wが好ましい。超音波振動をろう材に加えるこ
とによりろう材の酸化物への高い接合力が得られる。ま
た、ろう材の融点は100〜300℃のものが好ましい。
The present invention relates to a method for joining oxide-based high-temperature superconductors, wherein the superconductors are the same or the superconductor and a metal are 1 to 7% by weight of one of Be, Mg, Ca, Sr, Ba and Ra. Or 2 to 10% in total of 2 to 10%, or Zn1 to 40%, or Cd5 to 75
%, Or one of Mn, Fe, Co, Ni, Cr, Cu and Pd, 0.5 to 5%, or two or more of the total amount of 1 to 7.5%,
A brazing material made of an alloy with the balance being In is joined by being heated and melted at a temperature of 150 to 350 ° C., and the electrical resistivity of the joined portion is decreased with a decrease in temperature. The heating and melting are preferably performed by bringing an ultrasonic iron heated to a predetermined temperature into contact with the brazing material, and the ultrasonic frequency is preferably 10 to 100 KHz. Also as an output
10 to 1000 W is preferable. By applying ultrasonic vibration to the brazing material, a high bonding strength of the brazing material to the oxide can be obtained. The melting point of the brazing material is preferably 100 to 300 ° C.

本発明は、重量で、Be,Mg,Ca,Sr,Ba及びRaの1種を1
〜7%又は2種以上を合計量で2〜10%を含有し、残部
がInである合金からなること、Zn1〜40重量%及び残部
がInである合金からなること、Cd5〜75重量%及び残部
がInである合金からなること、重量で、Mn,Fe,Co,Ni,C
r,Cu及びPdの1種を0.5〜5%又は2種以上を合計量で
1〜7.5%を含有し、残部がInである合金からなること
を特徴とする酸化物系高温超電導体接合用ろう材にあ
る。
According to the present invention, by weight, one of Be, Mg, Ca, Sr, Ba and Ra is
~ 7% or 2 to 10% in total, containing 2 to 10% in total, the balance being made of In alloy, Zn 1 to 40 wt% and the balance being made of In alloy, Cd 5 to 75 wt% And the balance is In alloy, by weight, Mn, Fe, Co, Ni, C
For oxide-based high temperature superconductor bonding, characterized by comprising an alloy containing 0.5 to 5% of one of r, Cu and Pd, or 1 to 7.5% of two or more in total, with the balance being In. It is in brazing material.

本発明は、回転機のロータ及びステータ用コイル,エ
ネルギー貯蔵用コイル,該融合装置のプラズマ容器用コ
イル,送配電用ケーブル,変圧器用コイル,粒子加速器
用コイル,MRIの磁石用コイル,NMRの磁石用コイル,電子
顕微鏡用コイル,原子吸光分析装置の磁石用コイル,リ
ニアモータカーの磁石用コイル,交通機関の電動機のロ
ータ及びステータ用コイル線材のいずれかが酸化物系高
温超電導体よりなり、該超電体同志又は該超電導体と金
属とが前述のろう材によって接合されていることを特徴
とする酸化物系高温超電導線を用いた装置にある。
The present invention is applicable to rotor and stator coils of rotating machines, energy storage coils, plasma container coils of the fusion device, power transmission and distribution cables, transformer coils, particle accelerator coils, MRI magnet coils, and NMR magnets. Coil, electron microscope coil, atomic absorption spectrometer magnet coil, linear motor car magnet coil, transportation motor rotor and stator coil wire, which is made of an oxide-based high-temperature superconductor. An apparatus using an oxide-based high-temperature superconducting wire, characterized in that the electric conductors or the superconductor and the metal are joined by the brazing material.

また、本発明の酸化物系高温超電導体としては、公知
の酸化物系の超電導体などすべて適用できるが、例え
ば、ランタン系,イツトリウム系,タリウム系及びビス
マス系等がある。
As the oxide-based high temperature superconductor of the present invention, all known oxide-based superconductors can be applied, and examples thereof include lanthanum-based, yttrium-based, thallium-based and bismuth-based.

具体的な化合物として、以下のペロブスカイト型酸化
物がある。
Specific compounds include the following perovskite type oxides.

ABO3;AはBa,Pb,La,Pr又はNd,BはCu,Mg,Mn,Fe,Co、又
はNi,A1-xA′xBO3;AとB上と同じ、A′はCa,Ba,Sr又は
PdOこのようなものとしてBaPb1-xBixO3,BaPbO3,LaCuO3,
LaCoO3,(La1-xSrx)CoO3,(La1-xSrx)CrO3,(La1-xSr
x)CrO3−δ又はSrFeO3がある。
ABO 3 ; A is Ba, Pb, La, Pr or Nd, B is Cu, Mg, Mn, Fe, Co, or Ni, A 1-x A ′ x BO 3 ; A and B are the same as above, A ′ is Ca, Ba, Sr or
PdO such as BaPb 1-x Bi x O 3 , BaPbO 3 , LaCuO 3 ,
LaCoO 3 ,, (La 1-x Sr x ) CoO 3 , (La 1-x Sr x ) CrO 3 , (La 1-x Sr
x ) CrO 3 −δ or SrFeO 3 .

A2BO4;Aはrare earth metal,Bは遷移金属である。こ
のようなものとしてLa2CuO4,La2NiO4がある。
A 2 BO 4 ; A is rare earth metal, B is transition metal. Examples of such materials include La 2 CuO 4 and La 2 NiO 4 .

A21-x)′2xBO4;AとA′はGroup III BとGroup II
Aの元素である。Periodic Table,respectively,and Bは
遷移金属である。このようなものとして(La1-xSrx2C
uO4,(La1-xBaxx2CuO4,(Y1-xBax2CuO4,(Y1-xS
rx2CuO4 or (Sc1-xSrx2CuO4がある。
A 2 ( 1-x ) ′ 2x BO 4 ; A and A ′ are Group III B and Group II
It is an element of A. Periodic Table, respectively, and B are transition metals. Such as (La 1-x Sr x ) 2 C
uO 4 , (La 1-x Ba xx ) 2 CuO 4 , (Y 1-x Ba x ) 2 CuO 4 , (Y 1-x S
r x ) 2 CuO 4 or (Sc 1-x Sr x ) 2 CuO 4 .

AB2C3O7-x;AはY,La,Nd,Dy,Sm,Eu,Gd,Ho,Er,Tm又はYb,
BはBa,Sr,Ca又はSc,Cは主にCuであり、このようなもの
としてYBa2Cu3O7-x,LnBa2Cu3O7-xがあり、Lnはランタノ
イドであり、具体的にはYSr2Cu3O7-x,YBa2Cu3-xNi
xO7-y,YBa2Cu3-xAgxO7-y,YBaCaCu3O7-x,Y0.75Sc0.25Ba2
Cu3O7-x or YBa2Cu3F2Oyがある。
AB 2 C 3 O 7-x ; A is Y, La, Nd, Dy, Sm, Eu, Gd, Ho, Er, Tm or Yb,
B is Ba, Sr, Ca or Sc, C is mainly Cu, such as YBa 2 Cu 3 O 7-x , LnBa 2 Cu 3 O 7-x , Ln is a lanthanoid, YSr 2 Cu 3 O 7-x , YBa 2 Cu 3-x Ni
x O 7-y , YBa 2 Cu 3-x Ag x O 7-y , YBaCaCu 3 O 7-x , Y 0.75 Sc 0.25 Ba 2
There is Cu 3 O 7-x or YBa 2 Cu 3 F 2 O y .

A2(B,C)3D2+xO8;AはBi又はTl,BはBa又はSr,CはCa,D
はCuで、Bi4Sr3Ca3Cu4+xO16又はTl4Ba2Ca2Cu4+xO16があ
る。
A 2 (B, C) 3 D 2 + x O 8 ; A is Bi or Tl, B is Ba or Sr, C is Ca, D
Is Cu, such as Bi 4 Sr 3 Ca 3 Cu 4 + x O 16 or Tl 4 Ba 2 Ca 2 Cu 4 + x O 16 .

spinel oxideとしてAB2O4があり、AはLi,BはTiで、L
iTi2O4がある。
AB 2 O 4 as spinel oxide, A is Li, B is Ti, L
There is iTi 2 O 4 .

本発明は、あらゆる形状の超電導体の接合に適用でき
るが、今までのところ、超電導体材としての用途が最と
も多い。また、その使用では超電導体に端子を接合して
超電導体の特性を測定し、超電導体の特性評価方法に用
いられる。
INDUSTRIAL APPLICABILITY The present invention can be applied to the joining of superconductors of any shape, but has so far been most used as a superconductor material. In addition, in its use, the terminal is joined to the superconductor, the characteristics of the superconductor are measured, and the method is used as a method for evaluating the characteristics of the superconductor.

本発明に係るろう材の好ましい組成は次の通りであ
る。特にCu以外のMn,Fe,Co,Ni,Cr,Pdは単独では0.5〜2
重量%、複合では1〜3重量%が好ましい。特にZnは2
〜20%,Mn,Fe,Ni,Coはその1種又は2種以上で0.5〜1.5
%、Ca,Mg,Srは同じく1〜5%が好ましい。
The preferred composition of the brazing material according to the present invention is as follows. In particular, Mn, Fe, Co, Ni, Cr, Pd other than Cu alone are 0.5 to 2
%, And 1 to 3% by weight for composites is preferable. Especially Zn is 2
〜 20%, Mn, Fe, Ni, Co are 0.5 to 1.5 for one or more of them.
%, Ca, Mg and Sr are preferably 1 to 5%.

超電導線材の被覆材として酸化物と反応しない材料が
用いられ、Au,Ag,Cu又はこれらの合金が用いられる。
As a coating material for the superconducting wire, a material that does not react with an oxide is used, and Au, Ag, Cu or an alloy thereof is used.

〔作用〕[Action]

本発明は、酸化物系高温超電導体を接合するろう材と
して、+2価状態の安定な前述の金属元素を含み、残部
がInからなる合金を用いる。それによつて、前記超電導
体とろう材との接続抵抗が小さい接合体を得ることが可
能となる。
The present invention uses, as a brazing material for joining an oxide-based high temperature superconductor, an alloy containing the stable metal element in the +2 valent state and the balance being In. As a result, it becomes possible to obtain a joined body having a small connection resistance between the superconductor and the brazing material.

従来のごとく超電導体の接合にIn単位をろう材として
用いた場合、Inの軟性,付着性,加工性等はぬれに有利
であるが、接続工程は大きいという欠点がある。これは
前記超電導体との接合界面にインジウムの酸化物が生成
し、この反応生成物が高抵抗層となつているためと推定
される。そこで、Inに、前述の金属を添加すれば、界面
に酸化インジウムが生成する時点で、一部のインジウム
がこれらの添加金属と置き換わつた結晶構造が得られる
ため、不純物効果から、本来絶縁体に近い半導体である
酸化インジウムが、より高い導電性をもつようになるも
のと考えられる。インジウムは+3価状態であるから、
+2価の金属は不純物準位の形成に都合がよい。+4価
の金属を添加した場合にも同様な効果が期待されるが、
Sn,Pb等を含んだIn合金を用いた時には、接続抵抗の低
減は見られなかつた。YBa2Cu3O7−δをはじめとする酸
化物系高温超電導体は、酸素以外の構成元素が+2価お
よび+3価状態であることに注目すれば、+2価元素は
前記超電導体と何らかの相互作用をもつのに有利である
とも考えられる。
When the In unit is used as a brazing filler metal for joining a superconductor as in the conventional case, the softness, adhesion, workability, etc. of In are advantageous for wetting, but there is a drawback that the connection process is large. It is presumed that this is because indium oxide was generated at the bonding interface with the superconductor, and the reaction product formed a high resistance layer. Therefore, if the above-mentioned metals are added to In, a crystal structure in which some of the indium is replaced with these added metals is obtained at the time when indium oxide is generated at the interface. It is considered that indium oxide, which is a semiconductor close to the body, becomes more conductive. Since indium is in the +3 valence state,
A +2 valent metal is convenient for forming an impurity level. A similar effect is expected when a +4 valent metal is added,
No reduction in connection resistance was observed when an In alloy containing Sn, Pb, etc. was used. In oxide-based high temperature superconductors such as YBa 2 Cu 3 O 7- δ, it should be noted that the constituent elements other than oxygen are in the +2 valence and +3 valence states. It is also considered to be advantageous in having an effect.

ここで用いるIn合金は、添加元素の割合を適当に選択
することにより、融点を300℃以下にすることができ、
比較的低温で接合が可能なため接合時の加熱で超電導体
の特性を損なうことはない。さらに前記の理由から、接
合の工程が非常に簡単になるばかりでなく、被接合体の
形状及び大きさ等の制限がほとんどなくなる。
The In alloy used here can have a melting point of 300 ° C. or lower by appropriately selecting the ratio of the additional element,
Since the joining can be performed at a relatively low temperature, the heating of the joining does not impair the characteristics of the superconductor. Further, for the above reason, not only the joining process becomes very simple, but also the shape and size of the article to be joined are almost completely unrestricted.

より低温で接合すること(ろう付温度は融点より約50
℃高い温度であることと、100℃以下では接合性に問題
が生ずることを考慮して、用いる合金の融点は100℃〜3
00℃にする)、 〔実施例〕 実施例1 本発明の一例を従来例と比較して説明する。
Join at a lower temperature (the brazing temperature is about 50% higher than the melting point)
The melting point of the alloy used is 100 ° C to 3 ° C, considering that the temperature is higher by 100 ° C and that a bondability problem occurs below 100 ° C.
Example: Example 1 An example of the present invention will be described in comparison with a conventional example.

第1図に示すように、長さ15mm,幅4mm,厚さ1mmの短冊
状のYBa2Cu3O7−δ超電導体1上に、75wt%In−25wt%C
d合金2を配置し、超音波振動するコテ3を用い、はん
だに超音波を与えながら180℃に加熱されるコテ3をろ
う材に接触させて加熱溶融して、銅線4とのろう付けを
行つた。ろう付厚さは約1mmとした。これによつてYBa2C
u3O7−δ超電導体と金属との接合体が得られた。超音波
はんだゴテにて超音波を与えることによつて清浄な金属
面を有する接合が与えられた。発振周波数は60KHz、発
振出力は15Wで行つた。
As shown in FIG. 1, 75 wt% In-25 wt% C was deposited on a rectangular YBa 2 Cu 3 O 7 −δ superconductor 1 having a length of 15 mm, a width of 4 mm, and a thickness of 1 mm.
Place the d alloy 2 and use the iron 3 that vibrates ultrasonically. While applying ultrasonic waves to the solder, bring the iron 3 that is heated to 180 ° C into contact with the brazing material, heat and melt it, and braze it with the copper wire 4. I went. The brazing thickness was about 1 mm. By this, YBa 2 C
A joined body of u 3 O 7 −δ superconductor and metal was obtained. Bonding with a clean metal surface was provided by applying ultrasonic waves with an ultrasonic soldering iron. The oscillation frequency was 60 KHz and the oscillation output was 15 W.

この接合部の接続抵抗を測定したところ、第2図のよ
うな温度−抵抗率曲線となつた。従来、一般的に用いら
れてきたInで同様な方法で接合を行い、接続抵抗を測定
した結果を第3図に示す。これらを比較すると、第3図
では温度の低下に伴ない接続抵抗が大きくなる半導体的
挙動を示しており、77Kでは抵抗率は7400μΩ・cm2であ
つた。一方、本発明の第2図の曲線は、温度の低下とと
もに抵抗率が小さくなり、特に77Kで急激に抵抗率が低
下する超電導の抵抗曲線とほぼ同じ挙動を示している。
77Kでの抵抗率は37.5μΩ・cm2となつた。
When the connection resistance of this joint portion was measured, a temperature-resistivity curve as shown in FIG. 2 was obtained. FIG. 3 shows the results of measuring the connection resistance by bonding with In, which has been generally used in the past, by the same method. Comparing these results, FIG. 3 shows a semiconductor-like behavior in which the connection resistance increases as the temperature decreases, and the resistivity was 77,400 μΩ · cm 2 at 77K. On the other hand, the curve of FIG. 2 of the present invention shows almost the same behavior as the resistance curve of superconductivity in which the resistivity decreases with decreasing temperature, and in particular, the resistivity rapidly decreases at 77K.
The resistivity at 77K was 37.5 μΩ · cm 2 .

ここで示されるように、本実施例によれば、超電導体
接合部の接続抵抗が小さい接合体を、非常に簡単な工程
で得ることができる。接続抵抗は、Inの場合に比べ、約
1/200に低減できた。
As shown here, according to the present embodiment, it is possible to obtain a joined body in which the connection resistance of the superconductor joined portion is small in a very simple process. Connection resistance is approx.
It was reduced to 1/200.

実施例2 長さ15mm,幅4mm,厚さ1mmのYBa2Cu3O7−δ超電導体上
に、98wt%In−2wt%Zn合金を配置し、超音波を与えな
がら200℃に加熱して、銅線とのろう付けを行つた。得
られた接合体の接続抵抗を測定したところ、実施例1と
同様に、温度−抵抗率曲線は超電導の温度−抵抗曲線と
同じ挙動を示し、77Kでの接続抵抗率は、80.2μΩ・cm2
であつた。
Example 2 A 98 wt% In-2 wt% Zn alloy was placed on a YBa 2 Cu 3 O 7 −δ superconductor having a length of 15 mm, a width of 4 mm, and a thickness of 1 mm, and heated to 200 ° C. while applying ultrasonic waves. , Brazed with copper wire. When the connection resistance of the obtained joined body was measured, the temperature-resistivity curve exhibited the same behavior as the temperature-resistance curve of superconductivity, and the connection resistance at 77K was 80.2 μΩ · cm, as in Example 1. 2
It was.

実施例3 第4図に示すように長さ100mm,幅7mm,厚さ0.1mmのYBa
2Cu3O7−δリボン状線材1(Agシース)2本を、それぞ
れの傾斜して切断させた断面部でつき合わせ、両線材間
に75wt%In−25wt%Cd合金箔2を入れる。さらに接続部
に上記In合金6またはIn6を両側からはさむように配置
し、これらを同時に実施例1と同様に180℃に加熱接合
した。はんだゴテをはんだ6に接触させて加熱した。ろ
う材が溶けた時点でわずかに圧力を加え、密着性をよく
した。これにより、前記超電導線材どうしの接合体が得
られた。この接合線の臨界電流密度を測定したところ、
Jc=740A/cm2であつた。接合前のこのリボン状線材の臨
界電流密度はJc=800A/cm2であり、接合によるJcの低下
はわずかであることがわかつた。
Example 3 YBa having a length of 100 mm, a width of 7 mm and a thickness of 0.1 mm as shown in FIG.
2 Cu 3 O 7Two ribbon-shaped wire rods 1 (Ag sheath) are butted against each other at their inclined cross-sections, and 75 wt% In-25 wt% Cd alloy foil 2 is put between both wire rods. Further, the above-mentioned In alloy 6 or In6 was arranged so as to be sandwiched from both sides at the connection portion, and these were simultaneously heat-bonded to 180 ° C. in the same manner as in Example 1. The soldering iron was brought into contact with the solder 6 and heated. When the brazing material melted, a slight pressure was applied to improve the adhesion. As a result, a joined body of the superconducting wires was obtained. When the critical current density of this junction line was measured,
It was Jc = 740 A / cm 2 . It was found that the critical current density of this ribbon-shaped wire before joining was Jc = 800 A / cm 2 , and the decrease in Jc due to joining was slight.

これを超電導コイルに適用し、この接合方法によつて
接合された線材からコイルを作製した。さらにそのコイ
ルを用いて、超電導マグネツトを形成した。ここで、接
合部をもたないコイルで形成した場合と比較して、特性
はほとんど変わらずに安定なマグネツトが得られた。こ
の超電導マグネツトは、磁気浮上列車、加速器、電力貯
蔵等への応用も可能である。
This was applied to a superconducting coil, and a coil was produced from the wire material joined by this joining method. Furthermore, the coil was used to form a superconducting magnet. Here, as compared with the case where the coil is formed without a joint, the characteristics are almost unchanged and a stable magnet is obtained. This superconducting magnet can also be applied to magnetic levitation trains, accelerators, power storage, etc.

本発明のろう材によつて接合された酸化物系超電導線
は回転機のロータ及びステータ用コイル,エネルギー貯
蔵用コイル,核融合装置磁石用コイル,送配電用ケーブ
ル,変圧器用コイル,粒子加速器用コイル,MRI及びNMR
の磁石用コイル,電子顕微鏡用コイル,原子吸光分析装
置の磁石用コイル,電車,自動車,エレベータ,エスカ
レータの電動機のロータ,ステータ用コイル,リニアモ
ータカーの磁石用コイルとして用いることができる。
The oxide superconducting wire joined by the brazing material of the present invention is used for rotor and stator coils of rotating machines, energy storage coils, fusion device magnet coils, power transmission and distribution cables, transformer coils, particle accelerators. Coil, MRI and NMR
Can be used as a coil for a magnet, a coil for an electron microscope, a coil for an atomic absorption spectrometer, a rotor for a motor of a train, an automobile, an elevator, and an escalator, a coil for a stator, and a coil for a linear motor car.

実施例4 第5図は実施例3の端面による接合に対して、端部で
両者のシース片側を除去して露出させ平面で接合したも
ので、その接合は実施例3と同様に行つた。この方法で
は接合面を大きくできるメリツトがある。接合方法は実
施例3と同じである。
Example 4 FIG. 5 shows that, in contrast to the joining by the end face of Example 3, one end of both sheaths was removed and exposed at the end, and joining was performed in a plane, and the joining was performed in the same manner as in Example 3. This method has a merit that the joint surface can be enlarged. The joining method is the same as in the third embodiment.

実施例5 実施例4と同じように超電導線の端部をシースより露
出させて、この露出部を銅線を接合した。
Example 5 As in Example 4, the end of the superconducting wire was exposed from the sheath, and the exposed part was joined with a copper wire.

長さ100mm,幅7mm,厚さ0.1mmのYBa2Cu3O7−δリボン状
線材1(Agシース)の先端断面部に、99wt%In−1wt%N
i合金を配置し、超音波をかけながら180℃に加熱して、
銅線とのろう付けを行つた。これによつて、YBa2Cu3O7
−δ超電導線材と金属線の接合体が得られた。この接合
体の臨界電流密度を測定したところ、実施例3と同様
に、Jcの値は、接合前の超電導線材で得られた値とほぼ
同じであり、接続部の抵抗により超電導がやぶれる可能
性はないことがわかつた。
99 wt% In-1 wt% N at the tip cross section of YBa 2 Cu 3 O 7 -δ ribbon wire 1 (Ag sheath) with 100 mm length, 7 mm width and 0.1 mm thickness
Place the i alloy and heat it to 180 ° C while applying ultrasonic waves,
I brazed with a copper wire. As a result, YBa 2 Cu 3 O 7
A bonded body of the -δ superconducting wire and the metal wire was obtained. When the critical current density of this joined body was measured, the value of Jc was almost the same as the value obtained with the superconducting wire before joining, as in Example 3, and there is a possibility that the superconductivity may break due to the resistance of the connecting portion. I knew it wasn't.

実施例6 長さ15mm,幅4mm,厚さ1mmの短冊状のBi2Sr2Ca2Cu3Ox
電導体上に、75wt%In−25wt%Cd合金を配置し、実施例
1と同様に超音波を与えながら180℃に加熱して、銅線
とのろう付けを行つた。接続面積は4mm2、ろう付け厚さ
は約1mmとした。これによつてBi2Sr2Ca2Cu3Ox超電導体
と金属との接合体が得られた。この接合部の77K゜での
電流−電圧特性(以下V−I特性と記す)及び接続抵抗
を測定したところ、第6図のような電流−電圧曲線とな
つた。比較のため、Inで同様な接合を行い、V−I特性
を測定した結果を第7図に示す。第7図では、上に凸の
曲線を示し、電流と電圧が比例するオームの法則からは
ずれた半導体的挙動を示しており、77K゜での抵抗率は3
2100μΩ・cm2であつた。一方、本発明の方法を用いた
場合には、第6図からわかるように、下に凸の超電導的
曲線であり、77K゜での抵抗率は300μΩ・cm2と、Inの
場合の約1/100に低減できた。
Example 6 A 75 wt% In-25 wt% Cd alloy was placed on a rectangular Bi 2 Sr 2 Ca 2 Cu 3 O x superconductor having a length of 15 mm, a width of 4 mm and a thickness of 1 mm, and the same procedure as in Example 1 was performed. While applying ultrasonic waves, it was heated to 180 ° C. and brazed with a copper wire. The connection area was 4 mm 2 , and the brazing thickness was about 1 mm. As a result, a joined body of Bi 2 Sr 2 Ca 2 Cu 3 O x superconductor and metal was obtained. When the current-voltage characteristics (hereinafter referred to as VI characteristics) and connection resistance at 77 K ° of this junction were measured, a current-voltage curve as shown in FIG. 6 was obtained. For comparison, FIG. 7 shows the results of measuring the VI characteristics by performing the same joining with In. In Fig. 7, a convex curve is shown, showing a semiconductor-like behavior that deviates from Ohm's law in which current and voltage are proportional, and the resistivity at 77K ° is 3
It was 2100 μΩ · cm 2 . On the other hand, when the method of the present invention is used, as can be seen from FIG. 6, there is a downwardly-convex superconducting curve, and the resistivity at 77 K ° is 300 μΩ · cm 2, which is about 1 in the case of In. It was possible to reduce to / 100.

実施例7 長さ15mm,幅4mm,厚さ1mmの短冊状のYBa2Cu3O7−δ超
電導体上に75wt%In−25wt%Cd合金をろう材として用
い、前述と同様に超音波を与えながら180℃に加熱し
て、第9図に斜視図として示すような4つの銅線端子を
得た。4つの端子のうち、両端は電流端子として、内側
の2つは電圧端子として用いた。臨界電流密度Jcの測定
を第8図に示すような装置を用いて行つた。電流端子7
は、シヤント抵抗(または標準抵抗)を通つて、直流電
流のプラス側に、端子10は直接マイナス側に接続した。
電圧端子8,9は、デイジタルマルチメーターのプラス及
びマイナス端子にそれぞれ接続した。測定結果の表示に
はX−Yレコーダを用いた。X−YレコーダのX側端子
はシヤント抵抗に並列に、またY側端子はデイジタルマ
ルチメータに並列に接続した。液体窒素(77K゜)、磁
場0で、この試料のJcは1250A/cm2であつた。比較のた
め、同じ試料に、Inをろう材として用いて端子を形成し
たものについても測定を行つた。接続面積はどちらもほ
とんどかわらない。この場合、Jc=160A/cm2と、約8分
の1の値であつた。これは、SCとInの接続抵抗が大きい
ため、発熱による超電導状態の破れが、より低い電流で
も起こつてしまうからである。したがつて、真のJc値を
測定するには問題がある。本発明の接合方法及びろう材
を用いて超電導特性評価を行うことにより、信頼性の高
い測定値を得ることが可能となる。また、端子形成が簡
単であることは、超電導開発の過程で随時行われる、超
電導特性評価において、たいへん重要となつてくる。
Example 7 A 75 wt% In-25 wt% Cd alloy was used as a brazing material on a strip-shaped YBa 2 Cu 3 O 7 -δ superconductor having a length of 15 mm, a width of 4 mm, and a thickness of 1 mm, and ultrasonic waves were applied in the same manner as described above. While applying, it was heated to 180 ° C. to obtain four copper wire terminals as shown in a perspective view in FIG. Of the four terminals, both ends were used as current terminals and the inner two were used as voltage terminals. The critical current density Jc was measured using an apparatus as shown in FIG. Current terminal 7
Is connected to the positive side of the direct current and terminal 10 is directly connected to the negative side through a shunt resistor (or standard resistor).
The voltage terminals 8 and 9 were connected to the plus and minus terminals of the digital multimeter, respectively. An XY recorder was used to display the measurement results. The X-side terminal of the XY recorder was connected in parallel with the shunt resistor, and the Y-side terminal was connected in parallel with the digital multimeter. With liquid nitrogen (77 K °) and a magnetic field of 0, the Jc of this sample was 1250 A / cm 2 . For comparison, measurement was also performed on the same sample in which terminals were formed using In as a brazing material. The connection area is almost the same. In this case, Jc = 160 A / cm 2, which was a value of about 1/8. This is because the connection resistance between SC and In is large, and the breakage of the superconducting state due to heat generation may occur even at a lower current. Therefore, there is a problem in measuring the true Jc value. By performing superconducting property evaluation using the joining method and brazing material of the present invention, it becomes possible to obtain highly reliable measured values. In addition, the ease of forming terminals is very important in the evaluation of superconducting characteristics, which is performed at any time during the superconducting development process.

実施例8 実施例7と同じ超電導体上に75wt%Cd−25wt%In合金
のろう材を用い、前能と同じく超音波を与えながらろう
材を加熱溶融して同様に銅線を接合した。この接合体の
電流密度を測定した結果、前述の実施例と同様の値であ
つた。
Example 8 A brazing material of 75 wt% Cd-25 wt% In alloy was used on the same superconductor as in Example 7, and the brazing material was heated and melted while applying ultrasonic waves as in the previous example, and a copper wire was similarly bonded. As a result of measuring the current density of this joined body, the value was the same as that in the above-mentioned example.

〔発明の効果〕〔The invention's effect〕

本発明によれば、酸化物系高温超電導体と他の部材と
の接合で、接続抵抗率が〜数10μΩ・cm2と極めて小さ
い接続部を持ち、しかもその工程が非常に簡単な接合が
可能となる。接合する試料の大きさ及び形状等に制限が
なく、また低温で出来ることから、酸化物系高温超導体
どうし及び前記超導体と金属あるいは他のセラミツクス
との接合など、その応用範囲は従来の低抵抗接続方法に
比べて広い。
According to the present invention, when the oxide-based high-temperature superconductor is joined to another member, it has a connection portion having a connection resistivity as small as several tens of μΩ · cm 2 , and the process is very simple. Becomes There is no limitation on the size and shape of the sample to be joined, and since it can be done at low temperature, its application range is conventional low resistance connection such as oxide high temperature superconductors and joining of the superconductor with metal or other ceramics. Wider than the method.

さらに本発明によつて、接続抵抗による発熱はより小
さくおさえられるため、高磁界用マグネツト、MRI等で
使用する超電導マグネツトでは、通電可能な電流値が大
きくなり、安定性もよくなる。また、超電導体のJc値等
の特性評価においては、真の値により近い測定値を得る
ことが可能となる。
Further, according to the present invention, since the heat generated by the connection resistance can be suppressed further, the current value that can be conducted is increased and the stability is improved in the high magnetic field magnet, the superconducting magnet used in MRI and the like. Also, in the characteristic evaluation of the Jc value and the like of the superconductor, it becomes possible to obtain a measured value closer to the true value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の接合方法を示した斜視図、
第2図は本発明の一実施例の接続部の温度と抵抗率の関
係を示すグラフ、第3図はInを用いて接合したときの接
続部の温度と抵抗率の関係を示すグラフ、第4図及び第
5図は本発明の一実施例の接合部の縦断面図、第6図は
本発明の一実施例の接続部の電流と電圧の関係を示すグ
ラフ、第7図はInを用いて接合したときの接続部の電流
と電圧の関係を示すグラフ、第8図は本発明の一実施例
の、酸化物系高温超電導体のJc測定装置構成図、第9図
は銅線を接続した試料の斜視図である。 1……YBa2Cu3O7−δ超電導体、2……75wt%In−25wt
%Cd合金、3……超電波はんだコテ、4……銅線、5…
…Agシース、6……In合金またはIn、7,10……電流端
子、8,9……電圧端子。
FIG. 1 is a perspective view showing a joining method according to an embodiment of the present invention,
FIG. 2 is a graph showing the relationship between the temperature and the resistivity of the connection portion of one embodiment of the present invention, and FIG. 3 is a graph showing the relationship between the temperature and the resistivity of the connection portion when joined using In. 4 and 5 are vertical cross-sectional views of the joint portion according to one embodiment of the present invention, FIG. 6 is a graph showing the current-voltage relationship of the connection portion according to one embodiment of the present invention, and FIG. FIG. 8 is a graph showing the relationship between the current and voltage of the connection portion when they are joined together, FIG. 8 is a Jc measuring device configuration diagram of an oxide high temperature superconductor according to an embodiment of the present invention, and FIG. 9 is a copper wire. It is a perspective view of the connected sample. 1 …… YBa 2 Cu 3 O 7 −δ Superconductor 2 …… 75wt% In-25wt
% Cd alloy, 3 ... Super wave soldering iron, 4 ... Copper wire, 5 ...
… Ag sheath, 6 …… In alloy or In, 7,10 …… Current terminal, 8,9 …… Voltage terminal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 H01B 13/00 565D H01R 43/00 ZAA H01R 43/00 ZAAZ (72)発明者 舟本 孝雄 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 荻原 正弘 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (56)参考文献 特開 昭63−284767(JP,A) 特開 昭60−255947(JP,A) 特開 昭50−133792(JP,A) 特開 昭61−165293(JP,A) 特開 平3−150273(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H01B 13/00 565 H01B 13/00 565D H01R 43/00 ZAA H01R 43/00 ZAAZ (72) Inventor Takao Funamoto 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Masahiro Ogihara 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. (56) References JP 63- 284767 (JP, A) JP 60-255947 (JP, A) JP 50-133792 (JP, A) JP 61-165293 (JP, A) JP 3-150273 (JP, A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物系高温超電導体の表面に、重量で、
Be,Mg,Ca,Sr,Ba及びRaの1種を1〜7%又は2種以上を
合計量で2〜10%、又はZn1〜40%、又はCd5〜75%、又
はMn,Fe,Co,Ni,Cr,Cu及びPdの1種を0.5〜5%又は2種
以上を合計量で1〜7.5%のいずれかを含有し、残部がI
nである合金からなるろう材が接合され、その接合部の
電気抵抗率が温度の低下とともに低下することを特徴と
する酸化物系高温超電導体。
1. A surface of an oxide-based high-temperature superconductor, by weight,
1 to 7% of Be, Mg, Ca, Sr, Ba and Ra, or 2 to 10% in total of 2 to 10%, or Zn1 to 40%, or Cd5 to 75%, or Mn, Fe, Co , Ni, Cr, Cu and Pd, one of 0.5 to 5%, or two or more of them in a total amount of 1 to 7.5%, and the balance is I
An oxide-based high-temperature superconductor characterized in that a brazing material made of an alloy of n is joined, and the electrical resistivity of the joint decreases with a decrease in temperature.
【請求項2】特許請求の範囲第1項において、前記酸化
物系高温超電導体が線材であり、前記ろう材によって該
線材同志又は該線材と金属線とが接合されていることを
特徴とする酸化物系高温超電導材。
2. The oxide high-temperature superconductor according to claim 1, wherein the oxide-based high-temperature superconductor is a wire rod, and the wire rods or the wire rods and metal wires are joined by the brazing filler metal. Oxide-based high temperature superconducting material.
【請求項3】酸化物系高温超電導体の接合方法におい
て、該超電導体同志又は該超電導体と金属とを、重量
で、Be,Mg,Ca,Sr,Ba及びRaの1種を1〜7%又は2種以
上を合計量で2〜10%、又はZn1〜40%、又はCd5〜75
%、又はMn,Fe,Co,Ni,Cr,Cu及びPdの1種を0.5〜5%又
は2種以上を合計量で1〜7.5%のいずれかを含有し、
残部がInである合金からなるろう材を150〜350℃の温度
で加熱溶融することによって接合し、その接合部の電気
抵抗率が温度の低下とともに低下することを特徴とする
酸化物系高温超電導体の接合方法。
3. A method for joining oxide-based high-temperature superconductors, wherein the superconductors are the same or the superconductors and a metal are, by weight, one of Be, Mg, Ca, Sr, Ba and Ra. % Or 2 or more kinds in total amount of 2 to 10%, or Zn1 to 40%, or Cd5 to 75
%, Or one of Mn, Fe, Co, Ni, Cr, Cu and Pd, 0.5 to 5%, or two or more of the total amount of 1 to 7.5%,
Oxide-based high-temperature superconductivity characterized in that the brazing filler metal made of an alloy with the balance being In is joined by heating and melting at a temperature of 150 to 350 ° C, and the electrical resistivity of the joint decreases as the temperature decreases. How to join the body.
【請求項4】重量で、Be,Mg,Ca,Sr,Ba及びRaの1種を1
〜7%又は2種以上を合計量で2〜10%を含有し、残部
がInである合金からなることを特徴とする酸化物系高温
超電導体接合用ろう材。
4. By weight, one of Be, Mg, Ca, Sr, Ba and Ra is 1
An oxide-based brazing filler material for high-temperature superconductor joining, comprising 7% or 2 to 10% in total of 2 to 10% and the balance being In.
【請求項5】Zn1〜40重量%及び残部がInである合金か
らなることを特徴とする酸化物系高温超電導体接合用ろ
う材。
5. An oxide-based brazing filler material for joining a high-temperature superconductor, comprising an alloy containing 1 to 40% by weight of Zn and the balance being In.
【請求項6】Cd5〜75重量%及び残部がInである合金か
らなることを特徴とする酸化物系高温超電導体接合用ろ
う材。
6. An oxide-based high-temperature superconductor joining brazing material comprising an alloy containing Cd of 5 to 75% by weight and the balance of In.
【請求項7】重量で、Mn,Fe,Co,Ni,Cr,Cu及びPdの1種
を0.5〜5%又は2種以上を合計量で1〜7.5%を含有
し、残部がInである合金からなることを特徴とする酸化
物系高温超電導体接合用ろう材。
7. By weight, one of Mn, Fe, Co, Ni, Cr, Cu and Pd is contained in an amount of 0.5 to 5%, or 2 or more are contained in a total amount of 1 to 7.5%, and the balance is In. A brazing filler material for joining an oxide-based high-temperature superconductor characterized by comprising an alloy.
【請求項8】回転機のロータ及びステータ用コイル,エ
ネルギー貯蔵用コイル,核融合装置のプラズマ容器用コ
イル,送配電用ケーブル,変圧器用コイル,粒子加速器
用コイル,MRIの磁石用コイル,NMRの磁石用コイル,電子
顕微鏡用コイル,原子吸光分析装置の磁石用コイル,リ
ニアモータカーの磁石用コイル,交通機関の電動機のロ
ータ及びステータ用コイル線材のいずれかが酸化物系高
温超電導体よりなり、該超電体同志又は該超電導体と金
属とが特許請求の範囲第4項〜第7項のいずれかに記載
のろう材によって接合されていることを特徴とする酸化
物系高温超電導線を用いた装置。
8. A rotor / stator coil for a rotating machine, an energy storage coil, a plasma container coil for a fusion device, a power transmission / distribution cable, a transformer coil, a particle accelerator coil, an MRI magnet coil, and an NMR coil. A coil for a magnet, a coil for an electron microscope, a coil for an atomic absorption spectroscope, a coil for a linear motor car, a coil wire for a rotor or a stator of a motor for a transportation system is made of an oxide-based high-temperature superconductor. An oxide high temperature superconducting wire is used which is characterized in that superconductors or the superconductor and metal are joined by a brazing material according to any one of claims 4 to 7. apparatus.
JP1303120A 1988-11-25 1989-11-24 Oxide-based high temperature superconductor, joining method and brazing material Expired - Fee Related JP2550188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303120A JP2550188B2 (en) 1988-11-25 1989-11-24 Oxide-based high temperature superconductor, joining method and brazing material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-296069 1988-11-25
JP29606988 1988-11-25
JP1303120A JP2550188B2 (en) 1988-11-25 1989-11-24 Oxide-based high temperature superconductor, joining method and brazing material

Publications (2)

Publication Number Publication Date
JPH02252664A JPH02252664A (en) 1990-10-11
JP2550188B2 true JP2550188B2 (en) 1996-11-06

Family

ID=26560526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303120A Expired - Fee Related JP2550188B2 (en) 1988-11-25 1989-11-24 Oxide-based high temperature superconductor, joining method and brazing material

Country Status (1)

Country Link
JP (1) JP2550188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696436B2 (en) * 1999-11-04 2011-06-08 住友電気工業株式会社 Oxide superconducting wire manufacturing method, oxide superconducting wire, superconducting coil, and superconducting equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU653983B2 (en) 1991-02-25 1994-10-20 Sumitomo Electric Industries, Ltd. Junction between wires employing oxide superconductors and joining method therefor
US7628871B2 (en) * 2005-08-12 2009-12-08 Intel Corporation Bulk metallic glass solder material
JP4810268B2 (en) * 2006-03-28 2011-11-09 株式会社東芝 Superconducting wire connection method and superconducting wire
JP4697128B2 (en) * 2006-11-30 2011-06-08 住友電気工業株式会社 Superconducting coil
CN102837093B (en) * 2012-09-29 2014-11-05 中国东方电气集团有限公司 Welding method for yttrium series high-temperature superconducting tape
JP7531205B2 (en) * 2019-05-13 2024-08-09 国立大学法人東北大学 Method for joining high-temperature oxide superconducting tape wires

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1458284A (en) * 1974-03-20 1976-12-15 Bnf Metals Tech Centre Superconducting alloys
KR850007814A (en) * 1984-04-30 1985-12-09 로이 에이취. 맷신길 New Nickel / Indium Alloys Used in the Manufacturing of Electrical Contact Electrical Devices
JPS61165293A (en) * 1985-01-18 1986-07-25 Toshiba Corp Solder material
JPS63284767A (en) * 1987-05-14 1988-11-22 Fujikura Ltd Connecting structure for superconducting wire
NL8701789A (en) * 1987-07-29 1989-02-16 Philips Nv METHOD FOR MAKING AN ELECTRICALLY CONDUCTIVE COMPOUND
US4966142A (en) * 1989-06-30 1990-10-30 Trustees Of Boston University Method for electrically joining superconductors to themselves, to normal conductors, and to semi-conductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696436B2 (en) * 1999-11-04 2011-06-08 住友電気工業株式会社 Oxide superconducting wire manufacturing method, oxide superconducting wire, superconducting coil, and superconducting equipment

Also Published As

Publication number Publication date
JPH02252664A (en) 1990-10-11

Similar Documents

Publication Publication Date Title
US5051397A (en) Joined body of high-temperature oxide superconductor and method of joining oxide superconductors
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
EP1353339A1 (en) Low resistance conductor, method of producing the same, and electric component using the same
US5321003A (en) Connection between high temperature superconductors and superconductor precursors
Bagrets et al. Correlation between resistances of face-to-face soldered joints and interface resistance between layers in superconducting tapes
US3523361A (en) Method of splicing superconductive wires
JP2550188B2 (en) Oxide-based high temperature superconductor, joining method and brazing material
JP4112884B2 (en) Superconducting material
US8304372B2 (en) Process for joining oxide superconducting tubes with a superconducting joint
US6440904B1 (en) High-temperature superconductor arrangement
Suzuki et al. Low‐resistance contacts on YBa2Cu3O7− δ ceramics prepared by direct wire bonding methods
JPH05283138A (en) Superconductive joint for superconductive oxide tape
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP3783518B2 (en) Superconducting wire connection structure
JPS63284767A (en) Connecting structure for superconducting wire
JP4414617B2 (en) Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply
JP7256347B2 (en) CONNECTION OF HIGH-TEMPERATURE SUPERCONDUCTING WIRE AND CONNECTION METHOD
JP4171253B2 (en) Low resistance composite conductor and method of manufacturing the same
JP7335501B2 (en) Oxide superconducting bulk conductor and current-carrying element
JPH0982446A (en) Superconductive connecting method for superconductive wire
Speller et al. Persistent mode joints
JP2549684B2 (en) Oxide-based superconducting wire connection method
JP2770247B2 (en) Method for producing superconducting composite with electrode
JPH06163255A (en) Superconducting current connection part
JPH0378979A (en) Joint structure of oxide type superconductor and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees