JPH08213570A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH08213570A
JPH08213570A JP7328454A JP32845495A JPH08213570A JP H08213570 A JPH08213570 A JP H08213570A JP 7328454 A JP7328454 A JP 7328454A JP 32845495 A JP32845495 A JP 32845495A JP H08213570 A JPH08213570 A JP H08213570A
Authority
JP
Japan
Prior art keywords
groove
semiconductor substrate
region
layer
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7328454A
Other languages
Japanese (ja)
Inventor
Shinken Okawa
真賢 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7328454A priority Critical patent/JPH08213570A/en
Publication of JPH08213570A publication Critical patent/JPH08213570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE: To reduce the area of a MOS transistor which occupies the surface of a semiconductor substrate by forming switching elements and capacitor elements vertically in a groove formed into the substrate so that the current paths of the switching elements are formed at only one side face of the groove. CONSTITUTION: On the surface of a semiconductor substrate is formed an impurity diffused layer 1a of the opposite conductivity to that of the substrate. On the bottom face of a groove region b is formed an impurity diffused layer 1a of the opposite conductivity to that of the substrate. On this layer 1b is formed a first conductive layer 2 through an insulation film. A stepped part between the layers 1a and 2b forms a channel region 5. The conductive layer 2 is used as a gate electrode to form a switching element. The current path of the switching element is formed on only the side face of the groove region b. A second conductive layer 3 is formed inside a groove region c through an insulation film. The side face of the region c and bottom face of the substrate are used as opposed electrodes to form a parallel plate type capacitor element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体記憶装置に関
し、特に1個のスイッチング素子(MOSトランジス
タ)と1個の容量素子から構成される半導体記憶装置の
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device, and more particularly to the structure of a semiconductor memory device including one switching element (MOS transistor) and one capacitance element.

【0002】[0002]

【従来の技術】現在、ダイナミック型RAM(DRA
M)と呼ばれる記憶装置の記憶セルとしては1個のMO
Sトランジスタと1個の容量素子から構成されているも
のが用いられている。
2. Description of the Related Art Currently, a dynamic RAM (DRA
One MO is used as a memory cell of a memory device called M).
What is composed of an S transistor and one capacitive element is used.

【0003】近年の大規模化、微細化の要求を満たす記
憶セル構造として容量素子を半導体基板上に設けた溝に
形成するものが提案されている。従来例として図5にそ
の一例を示す。
As a memory cell structure satisfying recent demands for large scale and miniaturization, there has been proposed one in which a capacitor is formed in a groove provided on a semiconductor substrate. As a conventional example, an example thereof is shown in FIG.

【0004】図5(a)は2つのメモリセルの並列配置
を示す平面図、同図(b)は同図(a)のA−A′に於
ける断面図である。第一導電型の半導体基板の表面部に
反対導電型の不純物拡散層1a,1cでMOSトランジ
スタのソース、ドレインを構成している。これら不純物
拡散層1a,1c間の上にはMOSトランジスタのゲー
ト電極とワード線の配線を兼ねる第1の導電層2が形成
されている。不純物拡散層1cに隣接して溝10を有
し、その表面に酸化膜を介して容量素子の一方の電極と
ビット線の配線を兼ねる第2の導電層3が形成されてい
る。5はMOSトランジスタのチャンネル領域(電流経
路)であり、6は配線あるいは素子間を分離する厚い絶
縁層であり、7は素子分離のための半導体基板と同導電
型の不純物拡散層である。
FIG. 5 (a) is a plan view showing the parallel arrangement of two memory cells, and FIG. 5 (b) is a sectional view taken along the line AA 'in FIG. 5 (a). The source and drain of the MOS transistor are formed on the surface portion of the semiconductor substrate of the first conductivity type by the impurity diffusion layers 1a and 1c of the opposite conductivity type. A first conductive layer 2 which doubles as the gate electrode of the MOS transistor and the wiring of the word line is formed between the impurity diffusion layers 1a and 1c. A groove 10 is provided adjacent to the impurity diffusion layer 1c, and a second conductive layer 3 which also functions as one electrode of the capacitor and a bit line wiring is formed on the surface of the groove 10 via an oxide film. Reference numeral 5 is a channel region (current path) of the MOS transistor, 6 is a thick insulating layer for separating wirings or elements, and 7 is an impurity diffusion layer of the same conductivity type as the semiconductor substrate for element isolation.

【0005】この従来例において、容量素子は図5
(b)に示す溝領域dの内部の導電層3とその下の酸化
膜と半導体基板とで形成される平行平板容量として溝の
側面及び底面に構成される。このように構成される容量
素子は半導体基板表面に占める素子領域の面積が、同一
の容量値をもつ容量素子を平面状の半導体基板表面に形
成する場合よりはるかに小さい。
In this conventional example, the capacitive element is shown in FIG.
As shown in (b), the conductive layer 3 inside the groove region d, the oxide film below the conductive layer 3 and the semiconductor substrate are formed as parallel plate capacitors on the side and bottom surfaces of the groove. The area of the element region occupied on the surface of the semiconductor substrate of the capacitive element thus configured is much smaller than that of the case where the capacitive element having the same capacitance value is formed on the surface of the planar semiconductor substrate.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の記憶セ
ルでは半導体基板表面に占める面積を縮小したのは容量
素子のみである。MOSトランジスタについては、図5
(b)に示す様に、ゲートチャンネル領域5の長さy、
データの入出力部分となる不純物拡散層1aでx/2
(不純物拡散層1aは隣の記憶セルのMOSトランジス
タと共有しているため)、容量素子の一端に接続される
不純物拡散層1cとしてZ、合計で(x/2)+y+z
の長さが必要になっている。図5に示した従来の記憶セ
ルの構造では、この長さよりMOSトランジスタ領域を
縮小できず、記憶セル領域の半導体基板表面に占める面
積の縮小に限界があるという欠点があった。
In the conventional memory cell described above, only the capacitance element has reduced the area occupied on the surface of the semiconductor substrate. For the MOS transistor, see FIG.
As shown in (b), the length y of the gate channel region 5 is
X / 2 in the impurity diffusion layer 1a which becomes the data input / output portion
(Because the impurity diffusion layer 1a is shared with the MOS transistor of the adjacent memory cell), Z is the impurity diffusion layer 1c connected to one end of the capacitive element, which is (x / 2) + y + z in total.
Is needed. The conventional memory cell structure shown in FIG. 5 has a drawback that the MOS transistor region cannot be reduced due to this length, and there is a limit to the reduction of the area occupied by the memory cell region on the surface of the semiconductor substrate.

【0007】[0007]

【課題を解決するための手段】本発明による半導体記憶
装置は、スイッチング素子及び容量素子が接続されて構
成される半導体記憶装置において、半導体基板上に設け
られた溝にスイッチング素子及び容量素子が垂直方向に
形成され、スイッチング素子の電流経路が溝の一側面に
のみ形成されることを特徴とする。具体的には、溝が突
起部と当該突起部の一側面方向に所定の間隔を離間して
形成された深い溝で構成され、この溝を有する一導電型
の半導体基板と、半導体基板の表面及び深い溝内の表面
に形成された絶縁層と、突起部である半導体基板の表面
及び突起部と深い溝との間の半導体基板の表面に形成さ
れた、半導体基板と逆導電型の第1及び第2の不純物拡
散層と、第2の不純物拡散層の上部の絶縁層上に形成さ
れた第1の導電層と、深い溝内の絶縁層上にこの深い溝
を埋めるように形成された第2の導電層とを有し、第1
の導電層、第1及び第2の不純物領域及び突起部の一側
面で構成されたスイッチング素子と、第2の導電層と深
い溝内の表面の絶縁層と半導体基板とで構成された容量
素子により形成された一つの半導体記憶装置であって、
スイッチング素子の電流経路が突起部の一側面にのみ形
成されることを特徴とする。
A semiconductor memory device according to the present invention is a semiconductor memory device in which a switching element and a capacitive element are connected to each other, and the switching element and the capacitive element are perpendicular to a groove provided on a semiconductor substrate. And a current path of the switching element is formed only on one side surface of the groove. Specifically, the groove is composed of a protrusion and a deep groove formed at a predetermined distance in the direction of one side surface of the protrusion, the semiconductor substrate of one conductivity type having the groove, and the surface of the semiconductor substrate. And an insulating layer formed on the surface in the deep groove, a surface of the semiconductor substrate that is the protrusion and a surface of the semiconductor substrate between the protrusion and the deep groove, the first conductivity type opposite to the semiconductor substrate. And the second impurity diffusion layer, the first conductive layer formed on the insulating layer above the second impurity diffusion layer, and the insulating layer in the deep groove so as to fill the deep groove. A second conductive layer, the first
Element, a switching element formed by one side surface of the first and second impurity regions, and the protrusion, and a capacitive element formed by the second conductive layer, an insulating layer on the surface in the deep groove, and the semiconductor substrate. A semiconductor memory device formed by
The current path of the switching element is formed only on one side surface of the protrusion.

【0008】[0008]

【発明の実施の形態】次に、本発明について図面を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0009】図1は本発明の第1の実施の形態を表わし
たもので、同図(a)は平面図、同図(b)は同図
(a)のA−A′断面図、同図(c)は同図(a)のB
−B′断面図である。半導体基板には溝領域bと溝領域
cとを有している。半導体基板表面にはこの半導体基板
と反対導電型の不純物拡散層1aを有し、溝領域bの底
面にはやはり半導体基板とは反対導電型の不純物拡散層
1bを有している。不純物拡散層1b上には絶縁膜を介
して第1の導電層2が形成されており、この第1の導電
層2は不純物拡散層1aと1bとの段部の半導体基板と
も薄い絶縁膜を介して接している。不純物拡散層1aと
1bとはこれらの間の段部の半導体基板表面をチャンネ
ル領域5とし、第1の導電層2をゲート電極としてMO
Sトランジスタを構成している。第2の導電層3は溝領
域cの内部に絶縁膜を介して形成され、溝領域cの側面
及び底面にあたる半導体基板を対向電極とする平行平板
型容量素子を構成している。配線層4は第2の導電層3
に固定電位を与える配線で、配線層4′は第1の導電層
2に配線されたワード線である。6は素子あるいは配線
を分離する厚い絶縁層であり、7は素子分離用の半導体
基板と同導電型の不純物拡散層である。aは素子間(記
憶セル間)の分離をする為の領域である。かかる記憶セ
ルの構造によれば、MOSトランジスタのチャンネル領
域5(長さy)が溝側面にあり、半導体基板表面に対し
て垂直になっているため平面上の面積はいらない。この
ため、半導体基板表面から見た場合、データの入出力部
分となる不純物拡散層1aのための長さx/2(隣の記
憶セルと共有しているため)と溝領域bの底面にある容
量素子の一端に接続される不純物拡散層1bのための長
さzとの合計の(x/z)+zの長さをMOSトランジ
スタは必要とするだけであり、従来例に比し、チャンネ
ル長yの部分だけMOSトランジスタ領域が縮小され
る。
FIG. 1 shows a first embodiment of the present invention. FIG. 1 (a) is a plan view, FIG. 1 (b) is a sectional view taken along the line A--A 'of FIG. Figure (c) shows B in Figure (a).
It is a -B 'sectional view. The semiconductor substrate has a groove region b and a groove region c. An impurity diffusion layer 1a having a conductivity type opposite to that of the semiconductor substrate is provided on the surface of the semiconductor substrate, and an impurity diffusion layer 1b having a conductivity type opposite to that of the semiconductor substrate is also provided at the bottom of the groove region b. A first conductive layer 2 is formed on the impurity diffusion layer 1b via an insulating film, and the first conductive layer 2 is formed of a thin insulating film on both the semiconductor substrate at the step between the impurity diffusion layers 1a and 1b. Through. In the impurity diffusion layers 1a and 1b, the surface of the semiconductor substrate in the step portion between them serves as the channel region 5, and the first conductive layer 2 serves as the gate electrode.
It constitutes an S-transistor. The second conductive layer 3 is formed inside the groove region c via an insulating film, and constitutes a parallel plate type capacitive element using the semiconductor substrate corresponding to the side surface and the bottom surface of the groove region c as the counter electrode. The wiring layer 4 is the second conductive layer 3
The wiring layer 4 ′ is a word line that is wired to the first conductive layer 2 and is a wiring that applies a fixed potential to the first conductive layer 2. Reference numeral 6 is a thick insulating layer for separating elements or wirings, and 7 is an impurity diffusion layer of the same conductivity type as the semiconductor substrate for element separation. a is a region for separating elements (between memory cells). According to such a memory cell structure, the channel area 5 (length y) of the MOS transistor is on the side surface of the groove and is perpendicular to the surface of the semiconductor substrate, so that the area on the plane is not required. Therefore, when viewed from the surface of the semiconductor substrate, the length is x / 2 (because it is shared with the adjacent memory cell) for the impurity diffusion layer 1a which is the input / output portion of data, and it is on the bottom surface of the groove region b. The MOS transistor only needs a total length of (x / z) + z including the length z for the impurity diffusion layer 1b connected to one end of the capacitive element, which is longer than the conventional example. The MOS transistor region is reduced by the y portion.

【0010】図2(a)〜(e)は第1の実施の形態の
製造方法を工程順に示す図である。まず、図2(a)に
示す様に、素子形成領域を形成する為にフォトレジスト
11を形成し、第1の溝領域aをエッチングにより形成
する。その後、素子分離のため基板と同導電型の不純物
拡散層7を溝領域aの底面に選択的に形成する。フォト
レジスト11を除去後、溝領域aの中に選択的に絶縁層
6を形成する。次に図2(b)に示す様に、半導体基板
の絶縁層6上に選択的にフォトレジスト11を形成し、
後にMOSトランジスタを形成する溝領域bとなる溝領
域aより浅い溝領域b′を形成する。その際、絶縁層6
と半導体基板とのエッチング速度の違いを利用し、溝領
域a上の絶縁層6をエッチングしない様にする。フォト
レジスト11を除去後、次に図2(c)に示すように、
MOSトランジスタのソース、ドレインを形成する半導
体基板と反対導電型の不純物拡散層1a及び1bを半導
体基板表面及び溝領域b′の底面に形成する。その後、
絶縁層6による薄膜を溝領域b′に形成し、溝領域b′
に選択的に第1の導電層2を形成する。続いて、図2
(d)に示すように、容量素子を形成する為の溝領域c
を形成する。この工程は、フォトレジスト11を溝領域
b′の一部と半導体基板表面とをおおう様に形成し、第
1の導電層2、薄い絶縁層6、不純物拡散層1b、およ
び半導体基板をエッチングする。この際、エッチング速
度の違いを利用して溝領域aの絶縁層6を残す。溝領域
b′上の絶縁層は溝領域aの絶縁層に比べて充分薄い為
溝領域a上の絶縁層6にほとんど影響は無い。続いて図
2(e)に示すように、溝領域cの内部に薄い絶縁層6
を形成し、溝領域cの内部に選択的に第2の導電層3を
形成し全体を絶縁層6でおおう。その後、溝領域aによ
って分離されている、隣接する素子領域に形成された導
電層2,3を接続するコンタクト用開孔を絶縁層6にあ
け、後にコンタクト配線としての導電層4,4′を形成
して第1図に示したメモリセルを得る。
2A to 2E are views showing the manufacturing method of the first embodiment in the order of steps. First, as shown in FIG. 2A, a photoresist 11 is formed to form an element forming region, and a first groove region a is formed by etching. After that, an impurity diffusion layer 7 having the same conductivity type as the substrate is selectively formed on the bottom surface of the groove region a for element isolation. After removing the photoresist 11, the insulating layer 6 is selectively formed in the groove region a. Next, as shown in FIG. 2B, a photoresist 11 is selectively formed on the insulating layer 6 of the semiconductor substrate,
A groove region b'which is shallower than the groove region a which will be a groove region b for forming a MOS transistor later is formed. At that time, the insulating layer 6
By utilizing the difference in etching rate between the semiconductor substrate and the semiconductor substrate, the insulating layer 6 on the groove region a is not etched. After removing the photoresist 11, next, as shown in FIG.
Impurity diffusion layers 1a and 1b of the opposite conductivity type to the semiconductor substrate forming the source and drain of the MOS transistor are formed on the semiconductor substrate surface and the bottom surface of the groove region b '. afterwards,
A thin film made of the insulating layer 6 is formed in the groove region b'and the groove region b '
Then, the first conductive layer 2 is selectively formed. Then, FIG.
As shown in (d), a groove region c for forming a capacitive element
To form. In this step, the photoresist 11 is formed so as to cover a part of the groove region b ′ and the surface of the semiconductor substrate, and the first conductive layer 2, the thin insulating layer 6, the impurity diffusion layer 1b, and the semiconductor substrate are etched. . At this time, the insulating layer 6 in the groove region a is left by utilizing the difference in etching rate. Since the insulating layer on the groove region b'is sufficiently thinner than the insulating layer on the groove region a, the insulating layer 6 on the groove region a is hardly affected. Then, as shown in FIG. 2E, a thin insulating layer 6 is formed inside the groove region c.
Is formed, the second conductive layer 3 is selectively formed inside the groove region c, and the whole is covered with the insulating layer 6. After that, contact holes are formed in the insulating layer 6 to connect the conductive layers 2 and 3 formed in the adjacent element regions, which are separated by the groove regions a, and the conductive layers 4 and 4 ′ serving as contact wiring are formed later. Formed to obtain the memory cell shown in FIG.

【0011】図3は本発明の第2の実施の形態であり、
同図(a)は平面図、同図(b)は同図(a)のA−
A′での断面図、同図(c)は同図(a)のB−B′で
の断面図である。図中の記号は図1,2及び5で使用し
ている記号と同一である。
FIG. 3 shows the second embodiment of the present invention.
The figure (a) is a top view, the figure (b) is A- of the figure (a).
A sectional view taken along line A ', and FIG. 7C is a sectional view taken along line BB' in FIG. The symbols in the figures are the same as the symbols used in FIGS. 1, 2 and 5.

【0012】この第2の実施の形態では、配線となる部
分になる溝領域aの絶縁層6の上面を溝領域bの底面と
同様度か少し浅い位置にしていることにより導電層2及
び3でそのまま配線を形成することができ、図1におけ
る導電層4,4′が必要なくなる利点がある。
In the second embodiment, the upper surface of the insulating layer 6 in the groove area a, which becomes a portion to be the wiring, is located at a position which is as shallow as the bottom surface of the groove area b, so that the conductive layers 2 and 3 are formed. The wiring can be formed as it is, and there is an advantage that the conductive layers 4 and 4'in FIG. 1 are not necessary.

【0013】図4(a)〜(e)はこの第2の実施の形
態の製造方法を示す図であり図2(a)〜(e)に対応
する。図4で図2と異なるのは(b)図の工程であり溝
領域b′を形成する際に、溝領域a上の絶縁層6を溝領
域b′の底面と同程度か少し浅い位置までエッチングす
ることにある。この後、導電層2,3を形成する過程に
おいて自己整合的に配線が形成される。
FIGS. 4A to 4E are views showing a manufacturing method of the second embodiment and correspond to FIGS. 2A to 2E. 4 is different from FIG. 2 in the step shown in FIG. 2B. When the groove region b'is formed, the insulating layer 6 on the groove region a is moved to a position almost equal to or slightly shallower than the bottom surface of the groove region b '. It's about etching. After that, wiring is formed in a self-aligned manner in the process of forming the conductive layers 2 and 3.

【0014】[0014]

【発明の効果】以上説明したように、本発明による半導
体記憶装置はMOSトランジスタのチャンネル領域を半
導体基板に垂直な溝領域の一側面に形成するので半導体
基板表面に占めるMOSトランジスタ領域の面積を縮小
できる効果がある。また、第2の実施例においては配線
がすべて溝領域の中に形成されるので表面の平担化にも
効果がある。なお、DRAMセルにおけるトランジスタ
はビット線とキャパシタを接続するスイッチ素子とみな
せる。よって、必ずしも高い駆動能力を必要としないた
め、上記のようにチャンネル領域は溝領域の一側面に形
成すれば十分である。
As described above, in the semiconductor memory device according to the present invention, since the channel region of the MOS transistor is formed on one side surface of the groove region perpendicular to the semiconductor substrate, the area of the MOS transistor region on the surface of the semiconductor substrate is reduced. There is an effect that can be done. In addition, in the second embodiment, since the wiring is entirely formed in the groove region, it is effective in flattening the surface. The transistor in the DRAM cell can be regarded as a switch element that connects the bit line and the capacitor. Therefore, since a high driving capability is not always required, it is sufficient to form the channel region on one side surface of the groove region as described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態FIG. 1 is a first embodiment.

【図2】第1の実施の形態の製造工程を示した断面図FIG. 2 is a cross-sectional view showing a manufacturing process of the first embodiment.

【図3】第2の実施の形態FIG. 3 is a second embodiment

【図4】第2の実施の形態の製造工程を示した断面図FIG. 4 is a cross-sectional view showing a manufacturing process of the second embodiment.

【図5】従来のメモリセルFIG. 5: Conventional memory cell

【符号の説明】 1a,1b,1c 基板と反対導電型の不純物拡散層 2 第1の導電層 3 第2の導電層 4,4′ 配線層 5 MOSトランジスタのチャンネル領域 6 絶縁層 7 基板と同導電型の不純物拡散層 11 フォトレジスト a,b,b′,c,d 溝領域[Explanation of symbols] 1a, 1b, 1c Impurity diffusion layer of opposite conductivity type to substrate 2 First conductive layer 3 Second conductive layer 4, 4'Wiring layer 5 MOS transistor channel region 6 Insulating layer 7 Same as substrate Conductive impurity diffusion layer 11 Photoresist a, b, b ', c, d Groove region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スイッチング素子及び容量素子が接続さ
れて構成される半導体記憶装置において、半導体基板上
に設けられた溝に前記スイッチング素子及び前記容量素
子が垂直方向に形成され、前記スイッチング素子の電流
経路が前記溝の一側面にのみ形成されることを特徴とす
る半導体記憶装置。
1. A semiconductor memory device comprising a switching element and a capacitive element connected to each other, wherein the switching element and the capacitive element are vertically formed in a groove provided on a semiconductor substrate, and a current of the switching element is formed. A semiconductor memory device, wherein a path is formed only on one side surface of the groove.
【請求項2】 突起部と当該突起部の一側面方向に所定
の間隔を離間して形成された溝を有する一導電型の半導
体基板と、前記半導体基板の表面及び前記溝内の表面に
形成された絶縁層と、前記突起部である半導体基板の表
面及び前記突起部と前記溝との間の半導体基板の表面に
形成された、前記半導体基板と逆導電型の第1及び第2
の不純物拡散層と、前記第2の不純物拡散層の上部の絶
縁層上に形成された第1の導電層と、前記溝内の絶縁層
上に当該溝を埋めるように形成された第2の導電層とを
有し、前記第1の導電層、前記第1及び第2の不純物領
域及び前記突起部の一側面で構成されたスイッチング素
子と前記第2の導電層と前記溝内の表面の絶縁層と前記
半導体基板とで構成された容量素子により形成された一
つの半導体記憶装置であって、前記スイッチング素子の
電流経路が前記突起部の一側面にのみ形成されることを
特徴とする半導体記憶装置。
2. A semiconductor substrate of one conductivity type having a protrusion and a groove formed at a predetermined distance in one side surface direction of the protrusion, and formed on the surface of the semiconductor substrate and the surface inside the groove. Formed on the surface of the semiconductor substrate that is the protruding portion and between the protruding portion and the groove, and the insulating layer that is formed on the surface of the semiconductor substrate.
Of the impurity diffusion layer, the first conductive layer formed on the insulating layer above the second impurity diffusion layer, and the second conductive layer formed on the insulating layer in the groove so as to fill the groove. A switching element constituted by one side surface of the first conductive layer, the first and second impurity regions, and the protrusion, a second conductive layer, and a surface in the groove. A semiconductor memory device formed by a capacitive element including an insulating layer and the semiconductor substrate, wherein a current path of the switching element is formed only on one side surface of the protrusion. Storage device.
JP7328454A 1995-12-18 1995-12-18 Semiconductor memory device Pending JPH08213570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7328454A JPH08213570A (en) 1995-12-18 1995-12-18 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7328454A JPH08213570A (en) 1995-12-18 1995-12-18 Semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61178218A Division JP2512902B2 (en) 1986-07-28 1986-07-28 Method for manufacturing semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH08213570A true JPH08213570A (en) 1996-08-20

Family

ID=18210458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7328454A Pending JPH08213570A (en) 1995-12-18 1995-12-18 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH08213570A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198856A (en) * 1984-03-23 1985-10-08 Nec Corp Manufacture of semiconductor memory element
JPS6273657A (en) * 1985-09-27 1987-04-04 Oki Electric Ind Co Ltd Memory cell and manufacture thereof
JPS62118567A (en) * 1985-11-19 1987-05-29 Oki Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS62274771A (en) * 1986-05-23 1987-11-28 Hitachi Ltd Semiconductor memory
JPS62298156A (en) * 1986-06-18 1987-12-25 Matsushita Electric Ind Co Ltd Semiconductor memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198856A (en) * 1984-03-23 1985-10-08 Nec Corp Manufacture of semiconductor memory element
JPS6273657A (en) * 1985-09-27 1987-04-04 Oki Electric Ind Co Ltd Memory cell and manufacture thereof
JPS62118567A (en) * 1985-11-19 1987-05-29 Oki Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS62274771A (en) * 1986-05-23 1987-11-28 Hitachi Ltd Semiconductor memory
JPS62298156A (en) * 1986-06-18 1987-12-25 Matsushita Electric Ind Co Ltd Semiconductor memory

Similar Documents

Publication Publication Date Title
US5047817A (en) Stacked capacitor for semiconductor memory device
KR930010823B1 (en) Semiconductor memory device
JPH0775247B2 (en) Semiconductor memory device
US5047815A (en) Semiconductor memory device having a trench-stacked capacitor
US4921815A (en) Method of producing a semiconductor memory device having trench capacitors
US5183774A (en) Method of making a semiconductor memory device
JPH07202017A (en) Semiconductor integrated circuit device and its manufacture
US5390144A (en) Semiconductor memory
JPH0279462A (en) Semiconductor memory
JPH01130557A (en) Semiconductor memory and manufacture thereof
JPH08125144A (en) Semiconductor memory and fabrication thereof
JP2512902B2 (en) Method for manufacturing semiconductor memory device
JPH08213570A (en) Semiconductor memory device
JP2715012B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0770618B2 (en) Semiconductor memory device and manufacturing method thereof
US5459685A (en) Semiconductor memory device having memory cells with enhanced capacitor capacity
JP3165693B2 (en) Stacked capacitor type DRAM
KR100473307B1 (en) Semiconductor memory device and method of fabricating the same
JPS62136869A (en) Semiconductor memory device
JP2753092B2 (en) Method for manufacturing semiconductor memory device
JPH05182457A (en) Dynamic semiconductor memory
JPH04125961A (en) Semiconductor device and manufacture thereof
JP2827377B2 (en) Semiconductor integrated circuit
JP2512897B2 (en) Semiconductor memory device
JPH03145159A (en) Semiconductor memory device and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970422