JPH08213017A - Lithium primary battery - Google Patents

Lithium primary battery

Info

Publication number
JPH08213017A
JPH08213017A JP7039241A JP3924195A JPH08213017A JP H08213017 A JPH08213017 A JP H08213017A JP 7039241 A JP7039241 A JP 7039241A JP 3924195 A JP3924195 A JP 3924195A JP H08213017 A JPH08213017 A JP H08213017A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
manganese dioxide
primary battery
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7039241A
Other languages
Japanese (ja)
Inventor
Mayumi Uehara
真弓 上原
Yoshihiro Shoji
良浩 小路
Atsushi Yanai
敦志 柳井
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7039241A priority Critical patent/JPH08213017A/en
Publication of JPH08213017A publication Critical patent/JPH08213017A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a lithium primary battery with high capacity by using powder obtained by heat-treating a mixture of lithium-containing metal chalcogenide and manganese dioxide having a specific mixing ratio, then crushing, for a positive electrode material. CONSTITUTION: A mixture of chalcogenide of Mo, Ta, Ti, Zr, W, Nb, V, Mn, Co, or Ni, containing lithium, and manganese dioxide, having an atomic ratio of Li:Mn of 1:99-30:70 is heat-treated, then crushed to obtain powder, and the powder is used as positive electrode material of a lithium primary battery. The atomic ratio of Li:Mn is preferable to be 10:90-22:78 and more preferable to be 12:88-17:83. Heat-treatment temperature is preferably 300-430 deg.C, and heat- treatment time is preferably 15-25 hours.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム一次電池に係
わり、詳しくは高容量なリチウム一次電池を得ることを
目的とした、正極材料の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium primary battery, and more particularly to improvement of a positive electrode material for the purpose of obtaining a high capacity lithium primary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム一次電池が、水の分解電圧を考慮する必要がな
く、正極活物質を適宜選定することにより高電圧化が可
能であることから、注目されつつある。
2. Description of the Related Art In recent years,
Attention is being given to lithium primary batteries because it is not necessary to consider the decomposition voltage of water and higher voltage can be achieved by appropriately selecting the positive electrode active material.

【0003】この種の電池の代表的な正極材料は金属酸
化物である。なかでも、二酸化マンガンは、マンガンが
自然界に豊富に存在し、安価なことから、最も実用性の
高い正極材料の一つである。
A typical positive electrode material for this type of battery is a metal oxide. Among them, manganese dioxide is one of the most practical cathode materials because manganese is abundant in nature and is inexpensive.

【0004】しかしながら、二酸化マンガンを正極材料
として使用したリチウム一次電池には、容量が小さいと
いう問題がある。
However, a lithium primary battery using manganese dioxide as a positive electrode material has a problem of small capacity.

【0005】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、高容量なリ
チウム一次電池を提供するにある。
The present invention has been made to solve this problem, and an object thereof is to provide a high-capacity lithium primary battery.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム一次電池は、リチウムを含有す
る、Mo、Ta、Ti、Zr、W、Nb、V、Mn、C
o又はNiのカルコゲン化物と二酸化マンガンとのL
i:Mnの原子比が1:99〜30:70の混合物を熱
処理し、粉砕してなる粉末を正極材料とする。
Means for Solving the Problems A lithium primary battery according to the present invention for achieving the above object contains lithium, Mo, Ta, Ti, Zr, W, Nb, V, Mn and C.
L of o or Ni chalcogenide and manganese dioxide
A powder obtained by heat-treating and pulverizing a mixture having an atomic ratio of i: Mn of 1:99 to 30:70 is used as a positive electrode material.

【0007】リチウムを含有する、Mo、Ta、Ti、
Zr、W、Nb、V、Mn、Co又はNiのカルコゲン
化物(以下、「リチウム含有金属カルコゲン化物」と称
することがある。)と二酸化マンガンとの混合割合が、
Li:Mnの原子比で1:99〜30:70の範囲に規
制されるのは、この範囲を外れると容量が低下するから
である。好適な両者の混合割合はLi:Mnの原子比で
10:90〜22:78であり、より好適な混合割合は
Li:Mnの原子比で12:88〜17:83である。
Mo, Ta, Ti, containing lithium,
The mixing ratio of the chalcogenide of Zr, W, Nb, V, Mn, Co, or Ni (hereinafter sometimes referred to as “lithium-containing metal chalcogenide”) and manganese dioxide is
The atomic ratio of Li: Mn is regulated within the range of 1:99 to 30:70 because the capacity decreases if the atomic ratio is outside this range. A preferable mixing ratio of both is 10:90 to 22:78 in an atomic ratio of Li: Mn, and a more preferable mixing ratio is 12:88 to 17:83 in an atomic ratio of Li: Mn.

【0008】熱処理時間は15〜25時間、熱処理温度
は300〜430°Cが好適である。熱処理温度が30
0°C未満の場合は焼成が不充分となり、一方熱処理温
度が430°Cを越えた場合は二酸化マンガンが分解
し、いずれの場合も容量の低下を招く。
The heat treatment time is preferably 15 to 25 hours, and the heat treatment temperature is preferably 300 to 430 ° C. Heat treatment temperature is 30
If the temperature is lower than 0 ° C, firing becomes insufficient, while if the heat treatment temperature exceeds 430 ° C, manganese dioxide is decomposed, and in any case, the capacity is lowered.

【0009】リチウム含有金属カルコゲン化物(酸化
物、硫化物、セレン化物、テルル化物、ポロニウム化
物)の具体例としては、LiMeO2 (但し、MeはM
o、Ta、Ti、Zr、W、Nb、V、Mn、Co又は
Niである。以下のMeも同義である。)、LiMeS
2 、LiMeSe2 、LiMeTe2 、LiMeP
2 、LiMn2 4 、Li2 MnO3 が挙げられる。
これらのリチウム含有金属カルコゲン化物は、一種単独
を使用してもよく、必要に応じて二種以上を併用しても
よい。
Specific examples of lithium-containing metal chalcogenides (oxides, sulfides, selenides, tellurides, polonides) include LiMeO 2 (where Me is M).
o, Ta, Ti, Zr, W, Nb, V, Mn, Co or Ni. The following Me has the same meaning. ), LiMeS
2 , LiMeSe 2 , LiMeTe 2 , LiMeP
Examples include o 2 , LiMn 2 O 4 , and Li 2 MnO 3 .
These lithium-containing metal chalcogenides may be used alone or in combination of two or more as required.

【0010】本発明の特徴は、二酸化マンガンを正極活
物質とするリチウム一次電池の高容量化を図るべく、二
酸化マンガンとリチウム含有金属カルコゲン化物との所
定割合の混合物を熱処理し、粉砕してなる粉末を正極材
料として使用した点にある。それゆえ、非水電解液な
ど、電池を構成する他の部材については、従来リチウム
一次電池用として提案され、或いは実用されている種々
の材料を特に制限なく用いることが可能である。
A feature of the present invention is that a mixture of manganese dioxide and a lithium-containing metal chalcogenide in a predetermined ratio is heat-treated and pulverized in order to increase the capacity of a lithium primary battery using manganese dioxide as a positive electrode active material. The point is that the powder was used as a positive electrode material. Therefore, for other members constituting the battery such as the non-aqueous electrolyte, various materials conventionally proposed or put into practical use for lithium primary batteries can be used without particular limitation.

【0011】例えば、本発明電池の非水電解液の溶媒と
しては、エチレンカーボネート、ブチレンカーボネー
ト、プロピレンカーボネート、ビニレンカーボネート、
1,2−ジメトキシエタン、テトラヒドロフラン、1,
3−ジオキソラン、ジメチルカーボネート、ジエチルカ
ーボネート及びこれらの混合溶媒が、同溶質としては、
LiPF6 、LiClO4 、LiCF3 SO3 、LiN
(CF3 SO2 2 、LiBF4 、LiAsF6 が、そ
れぞれ例示される。
For example, as the solvent of the non-aqueous electrolyte of the battery of the present invention, ethylene carbonate, butylene carbonate, propylene carbonate, vinylene carbonate,
1,2-dimethoxyethane, tetrahydrofuran, 1,
3-dioxolane, dimethyl carbonate, diethyl carbonate and a mixed solvent thereof are the same solute,
LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN
Examples are (CF 3 SO 2 ) 2 , LiBF 4 , and LiAsF 6 .

【0012】[0012]

【作用】本発明電池においては、二酸化マンガンとリチ
ウム含有金属カルコゲン化物との所定割合の混合物を熱
処理し、粉砕してなる粉末が、正極材料として使用され
ているので、正極容量が増大する。これは、熱処理時に
リチウムが二酸化マンガンの結晶格子の一部に入り込ん
で、二酸化マンガンの結晶格子が大きくなるためと考え
られる。
In the battery of the present invention, a powder obtained by heat-treating and pulverizing a mixture of manganese dioxide and a lithium-containing metal chalcogenide in a predetermined ratio is used as the positive electrode material, so that the positive electrode capacity is increased. It is considered that this is because lithium enters a part of the crystal lattice of manganese dioxide during the heat treatment and the crystal lattice of manganese dioxide becomes large.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0014】〔正極の作製〕表1又は表2に示す各リチ
ウム含有金属カルコゲナイドと、二酸化マンガンとを、
Li:Mnの原子比15:85で秤取し、らいかいミキ
サーにて2時間混合し、空気中にて350°Cで20時
間熱処理した後、粉砕して、平均粒径約25μmの各種
の粉末状の正極材料を得た。
[Preparation of Positive Electrode] Each of the lithium-containing metal chalcogenides shown in Table 1 or 2 and manganese dioxide were added.
Li: Mn atomic ratio of 15:85 was weighed, mixed for 2 hours with a Raikai mixer, heat-treated in air at 350 ° C. for 20 hours, and then pulverized to obtain various particles having an average particle size of about 25 μm. A powdery positive electrode material was obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】これらの各正極材料と、導電剤としての炭
素粉末と、結着剤としてのフッ素樹脂粉末とを、重量比
85:10:5で混合して正極合剤を調製し、この正極
合剤を円板状に加圧成形した後、250°Cで熱処理し
て、正極材料のみが異なる種々の正極を作製した。ま
た、比較のために、正極材料として平均粒径約25μm
の二酸化マンガンを使用して同様に正極を作製した。
Each of these positive electrode materials, carbon powder as a conductive agent, and fluororesin powder as a binder are mixed at a weight ratio of 85: 10: 5 to prepare a positive electrode mixture. After pressing the agent into a disk shape, it was heat-treated at 250 ° C. to prepare various positive electrodes having different positive electrode materials. For comparison, the positive electrode material has an average particle size of about 25 μm.
A positive electrode was prepared in the same manner using manganese dioxide of.

【0018】〔負極の作製〕金属リチウムの圧延板を円
板状に打ち抜いて、負極を作製した。
[Preparation of Negative Electrode] A rolled plate of metallic lithium was punched into a disk shape to prepare a negative electrode.

【0019】〔非水電解液の調製〕プロピレンカーボネ
ートと1,2−ジメトキシエタンとの体積比1:1の混
合溶媒に、LiCF3 SO3 を1モル/リットル溶かし
て非水電解液を調製した。
[Preparation of Non-Aqueous Electrolyte] LiCF 3 SO 3 was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 to prepare a non-aqueous electrolyte. .

【0020】〔電池の組立〕以上の正負両極及び非水電
解液を用いて正極支配の扁平形のリチウム一次電池を組
み立てた(電池寸法:直径20.0mm、厚さ2.5m
m)。なお、セパレータとしては、ポリプロピレン製の
微多孔膜を使用し、これに非水電解液を含浸させた。
[Battery Assembly] A flat lithium primary battery dominated by the positive electrode was assembled using the positive and negative electrodes and the non-aqueous electrolyte described above (battery size: diameter 20.0 mm, thickness 2.5 m).
m). As the separator, a polypropylene microporous film was used and impregnated with the non-aqueous electrolyte.

【0021】図1は、作製したリチウム一次電池の模式
的断面図であり、図示のリチウム一次電池Aは、正極
1、負極2、これら両電極1,2を互いに離間するセパ
レータ3、正極缶4、負極缶5、正極集電体6、負極集
電体7及びポリプロピレン製の絶縁パッキング8などか
らなる。
FIG. 1 is a schematic cross-sectional view of the manufactured lithium primary battery. The illustrated lithium primary battery A includes a positive electrode 1, a negative electrode 2, a separator 3 and a positive electrode can 4 that separate these electrodes 1 and 2 from each other. , A negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.

【0022】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other with a separator 3 impregnated with a non-aqueous electrolytic solution interposed therebetween. The positive electrode 1 is a positive electrode current collector. 6 to the positive electrode can 4 and the negative electrode 2 to the negative electrode current collector 7
It is connected to the negative electrode can 5 via the so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0023】〔放電容量〕各リチウム一次電池を25°
Cにて6mAで終止電圧2.0Vまで放電して、それぞ
れの放電容量を求めた。結果を先の表1及び表2に示
す。
[Discharge Capacity] Each lithium primary battery was set at 25 °
The battery was discharged at 6 mA at C to a final voltage of 2.0 V, and the respective discharge capacities were obtained. The results are shown in Tables 1 and 2 above.

【0024】表1及び表2より、二酸化マンガンとリチ
ウム含有金属カルコゲン化物との混合物を熱処理し、粉
砕して得た粉末を正極材料として使用した場合、二酸化
マンガンを正極材料としてそのまま使用した場合に比べ
て、放電容量の大きいリチウム一次電池が得られること
が分かる。
From Tables 1 and 2, when a mixture of manganese dioxide and a lithium-containing metal chalcogenide was heat-treated and ground, powder obtained was used as a positive electrode material, and manganese dioxide was used as it was as a positive electrode material. In comparison, it can be seen that a lithium primary battery having a large discharge capacity can be obtained.

【0025】〔リチウム含有金属カルコゲン化物及び二
酸化マンガンの混合割合と放電容量の関係〕二酸化マン
ガンに対するLiNbO2 、LiNbS2 、LiNbS
2 、LiNbTe2 又はLiNbPo2 の混合割合を
種々変えたこと以外は先と同様にして、各種の粉末状の
正極材料を作製し、これらの各正極材料を使用して、扁
平型のリチウム一次電池を組み立てた。
[Relationship Between Mixing Ratio of Lithium-Containing Metal Chalcogenide and Manganese Dioxide and Discharge Capacity] LiNbO 2 , LiNbS 2 , LiNbS with respect to manganese dioxide
e 2 , LiNbTe 2 or LiNbPo 2 was mixed in the same manner as above, except that various mixing ratios of powdery positive electrode materials were prepared, and each of these positive electrode materials was used to produce a flat lithium primary I assembled the battery.

【0026】次いで、これらのリチウム一次電池を先と
同じ条件で放電して放電容量を求め、リチウム含有金属
カルコゲン化物と二酸化マンガンとの混合割合と放電容
量の関係を調べた。結果を図2に示す。図2は、両者の
混合割合と放電容量の関係を、縦軸に放電容量(mA
h)を、また横軸にリチウム含有金属カルコゲン化物の
混合割合〔{Li原子数/(Li原子数+Mn原子
数)}×100(%)〕をとって示したグラフである。
Next, these lithium primary batteries were discharged under the same conditions as above to obtain the discharge capacity, and the relationship between the mixing ratio of the lithium-containing metal chalcogenide and manganese dioxide and the discharge capacity was examined. The results are shown in Figure 2. FIG. 2 shows the relationship between the mixing ratio of the two and the discharge capacity, the vertical axis being the discharge capacity (mA
2 is a graph in which h) is plotted and the horizontal axis represents the mixing ratio of lithium-containing metal chalcogenide [{Li atom number / (Li atom number + Mn atom number)} × 100 (%)].

【0027】図2より、高容量なリチウム一次電池を得
る上で、リチウム含有金属カルコゲン化物と二酸化マン
ガンとの混合割合は、Li:Mnの原子比で、1:99
〜30:70の範囲とする必要があることが分かる。ま
た、両者の混合割合は、Li:Mnの原子比で、10:
90〜22:78の範囲が好ましく、12:88〜1
7:83の範囲がより好ましいことも分かる。
From FIG. 2, in order to obtain a high-capacity lithium primary battery, the mixing ratio of the lithium-containing metal chalcogenide and manganese dioxide is an atomic ratio of Li: Mn of 1:99.
It can be seen that it is necessary to set the range to ˜30: 70. Further, the mixing ratio of both is 10: in the atomic ratio of Li: Mn.
The range of 90 to 22:78 is preferable, and 12:88 to 1
It can also be seen that the range of 7:83 is more preferable.

【0028】上記実施例では、本発明を扁平型電池に適
用する場合を例に挙げて説明したが、本発明は電池形状
に特に制限があるわけではなく、円筒型、角型など、他
の種々の形状のリチウム二次電池に適用し得るものであ
る。
In the above embodiments, the case where the present invention is applied to the flat type battery has been described as an example, but the present invention is not particularly limited in the shape of the battery, and other shapes such as a cylindrical type and a square type are also applicable. It is applicable to various shapes of lithium secondary batteries.

【0029】[0029]

【発明の効果】従来の二酸化マンガンに比べて高容量な
正極材料が使用されているので、本発明電池は容量が大
きい。
Since a positive electrode material having a higher capacity than that of conventional manganese dioxide is used, the battery of the present invention has a large capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で組み立てた扁平型のリチウム一次電池
の断面図である。
FIG. 1 is a cross-sectional view of a flat type lithium primary battery assembled in an example.

【図2】リチウム含有金属カルコゲン化物と二酸化マン
ガンとの混合割合と放電容量の関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the discharge capacity and the mixing ratio of lithium-containing metal chalcogenide and manganese dioxide.

【符号の説明】[Explanation of symbols]

A リチウム一次電池 1 正極 2 負極 3 セパレータ A lithium primary battery 1 positive electrode 2 negative electrode 3 separator

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Front page continuation (72) Inventor Koji Nishio 2-5-5 Keihan Hon-dori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-5 Keihan-hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウムを含有する、Mo、Ta、Ti、
Zr、W、Nb、V、Mn、Co又はNiのカルコゲン
化物と二酸化マンガンとのLi:Mnの原子比が1:9
9〜30:70の混合物を熱処理し、粉砕してなる粉末
を正極材料とするリチウム一次電池。
1. A lithium-containing Mo, Ta, Ti,
The atomic ratio of Li: Mn of chalcogenide of Zr, W, Nb, V, Mn, Co or Ni and manganese dioxide is 1: 9.
A lithium primary battery comprising a powder obtained by heat-treating a mixture of 9 to 30:70 and pulverizing it as a positive electrode material.
【請求項2】リチウムを含有する、Mo、Ta、Ti、
Zr、W、Nb、V、Mn、Co又はNiのカルコゲン
化物と二酸化マンガンとのLi:Mnの原子比が10:
90〜22:78の混合物を熱処理し、粉砕してなる粉
末を正極材料とするリチウム一次電池。
2. Mo, Ta, Ti, containing lithium
The atomic ratio of Li: Mn of chalcogenide of Zr, W, Nb, V, Mn, Co or Ni and manganese dioxide is 10 :.
A lithium primary battery in which a powder obtained by heat-treating a mixture of 90 to 22:78 and crushing is used as a positive electrode material.
【請求項3】リチウムを含有する、Mo、Ta、Ti、
Zr、W、Nb、V、Mn、Co又はNiのカルコゲン
化物と二酸化マンガンとのLi:Mnの原子比が12:
88〜17:83の混合物を熱処理し、粉砕してなる粉
末を正極材料とするリチウム一次電池。
3. Mo, Ta, Ti, containing lithium
Li: Mn atomic ratio of chalcogenide of Zr, W, Nb, V, Mn, Co or Ni and manganese dioxide is 12:
A lithium primary battery in which a powder obtained by heat-treating a mixture of 88 to 17:83 and pulverizing the mixture is used as a positive electrode material.
JP7039241A 1995-02-03 1995-02-03 Lithium primary battery Pending JPH08213017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7039241A JPH08213017A (en) 1995-02-03 1995-02-03 Lithium primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7039241A JPH08213017A (en) 1995-02-03 1995-02-03 Lithium primary battery

Publications (1)

Publication Number Publication Date
JPH08213017A true JPH08213017A (en) 1996-08-20

Family

ID=12547643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7039241A Pending JPH08213017A (en) 1995-02-03 1995-02-03 Lithium primary battery

Country Status (1)

Country Link
JP (1) JPH08213017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3600051B2 (en) Lithium secondary battery
JP3244314B2 (en) Non-aqueous battery
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
US6346348B1 (en) Rechargeable lithium battery with a lithium molybdenum oxide electrode
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP3197779B2 (en) Lithium battery
JP3188026B2 (en) Non-aqueous battery
JPH08250119A (en) Lithium secondary battery
US6482546B1 (en) Rechargeable lithium battery
US6391496B1 (en) Lithium secondary battery with orthorhombic molybdenum and niobium oxide electrodes
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH08171936A (en) Lithium secondary battery
JPH08180875A (en) Lithium secondary battery
JPH06275273A (en) Nonaqueous secondary battery
JPH06243869A (en) Nonaqueous secondary battery
JPH08213017A (en) Lithium primary battery
JP3167577B2 (en) Lithium battery
JP2703278B2 (en) Non-aqueous secondary battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JPH08213018A (en) Lithium primary battery
JP3167518B2 (en) Non-aqueous electrolyte secondary battery
JPH11250936A (en) Lithium secondary battery
JPH10228895A (en) Lithium secondary battery
JPH11242959A (en) Lithium secondary battery