JPH08211031A - Method and apparatus for measuring heat insulating power of vacuum heat insulating structure - Google Patents

Method and apparatus for measuring heat insulating power of vacuum heat insulating structure

Info

Publication number
JPH08211031A
JPH08211031A JP7015027A JP1502795A JPH08211031A JP H08211031 A JPH08211031 A JP H08211031A JP 7015027 A JP7015027 A JP 7015027A JP 1502795 A JP1502795 A JP 1502795A JP H08211031 A JPH08211031 A JP H08211031A
Authority
JP
Japan
Prior art keywords
sound wave
vacuum
heat insulating
bottle
insulating structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7015027A
Other languages
Japanese (ja)
Inventor
Kazuo Nagoshi
一雄 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zojirushi Corp
Original Assignee
Zojirushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zojirushi Corp filed Critical Zojirushi Corp
Priority to JP7015027A priority Critical patent/JPH08211031A/en
Publication of JPH08211031A publication Critical patent/JPH08211031A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To shorten a measuring time and to achieve the incorporation to a production line by emitting sonic waves from the outside of a vacuum heat insulating structure and judging heat insulating power from the attenuation rate of receiving sonic waves. CONSTITUTION: A sound transmitter consisting of a sound source 6 and a speaker 8 is opposed to a vacuum bottle 1 successively produced along a production line and a cock element 10 is attached to the bottle 1 to insert a microphone 12 in the interior of the bottle 1. When the sound waves of the sound source 6 are emitted to the bottle 1 through the speaker 8, sonic waves propagate through an imperfect vacuum space S to reach the microphone 12. At this time, the level of the sonic waves propagating through the space S attenuates corresponding to the vacuum degree of the space S. The receiving sonic waves of the microphone 12 are inputted to a comparator 15 and, when an input sonic wave signal level is higher than a predetermined threshold value, a signal is outputted to a display device 16 and a sprayer 17 to display a judge result on the display device 16. At the same time, an inferior product display mark is applied to the outer surface of the bottle 1 by the sprayer 17. When the input sonic wave signal level is lower than the threshold value, a product is judged to be good and no signal is outputted to the display device 16 and the sprayer 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は魔法瓶、真空二重パイプ
等の真空断熱構造体の保温力測定方法及びその装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the heat retaining force of a vacuum insulating structure such as a thermos or a vacuum double pipe.

【0002】[0002]

【従来の技術】従来、内筒と外筒の間を真空排気処理し
た魔法瓶や真空二重パイプ等の真空断熱構造体の良否を
判定するために、その保温力を測定することが行われて
いる。このような保温力の測定方法として、内部に入れ
た熱湯の所定時間後の温度を測定することが一般的であ
るが、熱湯の準備が必要であるし、測定に長時間を要す
るので、これに代わる種々の方法が提案されている。
2. Description of the Related Art Conventionally, in order to determine the quality of a vacuum heat insulating structure such as a thermos bottle or a vacuum double pipe in which an inner tube and an outer tube are vacuum-exhausted, its heat retention is measured. There is. As a method of measuring such heat retention, it is common to measure the temperature of the hot water put inside after a predetermined time, but it is necessary to prepare hot water and it takes a long time to measure, so this Various alternatives have been proposed.

【0003】例えば、特公昭42−19871号公報に
は、内部にサーミスタを挿入して密閉した真空断熱びん
体を加熱炉内に入れて加熱し、びん体の内部の温度変化
をサーミスタによって検知することによってびん体の保
温効率を測定する方法が開示されている。
For example, in Japanese Examined Patent Publication (Kokoku) No. 42-19871 (1987), a vacuum heat-insulated bottle body, in which a thermistor is inserted and sealed, is placed in a heating furnace and heated, and a temperature change inside the bottle body is detected by the thermistor. A method for measuring the heat retention efficiency of the bottle body is disclosed.

【0004】また、特開平5−332870号公報に
は、断熱空間を形成する内筒又は外筒の何れか一方の底
部に所定の真空度に達したときに他方に当接するスペー
サを設けるとともに、内筒又は外筒のいずれか一方のス
ペーサ対応部分に超音波発信器を他方のスペーサ対応部
分に超音波受信器を設けて、超音波発信器から発信され
た超音波が超音波受信器に受信されるまでの時間によっ
て目的の真空度に達したことを判定する方法が開示され
ている。
Further, in Japanese Patent Laid-Open No. 5-332870, a spacer is provided at the bottom of either the inner cylinder or the outer cylinder forming the heat insulating space, and the spacer comes into contact with the other when a predetermined degree of vacuum is reached. An ultrasonic transmitter is installed in the spacer corresponding part of either the inner cylinder or the outer cylinder, and an ultrasonic receiver is installed in the other spacer corresponding part, and the ultrasonic wave transmitted from the ultrasonic transmitter is received by the ultrasonic receiver. There is disclosed a method of determining that a target degree of vacuum has been reached according to the time until it is performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前者で
は、加熱炉が必要であるため、設備が大型化し、生産ラ
インに組み込めない。また、後者では、内筒の熱がスペ
ーサを介して外筒に伝わるので保温力が低下するうえ、
測定対象が平底型容器に限定されて適用範囲が狭いとい
う問題がある。
However, in the former case, since the heating furnace is required, the equipment becomes large and it cannot be incorporated in the production line. Also, in the latter case, the heat of the inner cylinder is transferred to the outer cylinder via the spacers, so that the heat retaining ability is reduced and
There is a problem that the measurement target is limited to the flat-bottom container and the applicable range is narrow.

【0006】本発明はかかる問題点に鑑みてなされたも
ので、短時間で測定でき、生産ラインにも簡単に組込む
ことができるうえ、容器や二重パイプ等の種々の型式の
断熱容器にも適用することができる真空断熱構造体の保
温力測定方法及びその装置を提供することを目的とす
る。
The present invention has been made in view of the above problems, can be measured in a short time, can be easily incorporated in a production line, and can be used in various types of heat insulating containers such as containers and double pipes. It is an object of the present invention to provide a method and apparatus for measuring the heat retention capacity of a vacuum heat insulating structure that can be applied.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、本発明にかかる保温力測定方法は、真空断熱構造体
を挟んで互いに対向するように音波発信器と音波受信器
を配設して、前記音波発信器から発信される音波を音波
受信器で受信し、当該音波の減衰率によって保温力を判
定する。ここで、前記音波受信器で受信した音波のレベ
ルと所定のしきい値とを比較することによって保温力を
判定するのが好ましい。また、本発明にかかる保温力測
定装置は、所定の周波数の音波を真空断熱構造体に向か
って発信する音波発信器と、真空断熱構造体を挾んで前
記音波発信器に対向するように配設される音波受信器と
からなり、前記音波発信器から発信される音波を音波受
信器で受信し、当該音波の減衰率によって保温力を判定
するようにしたものである。
In order to achieve the above object, a method for measuring heat retention according to the present invention comprises a sound wave transmitter and a sound wave receiver arranged so as to face each other with a vacuum heat insulating structure interposed therebetween. The sound wave transmitted from the sound wave transmitter is received by the sound wave receiver, and the heat retention is determined by the attenuation rate of the sound wave. Here, it is preferable to determine the heat retaining power by comparing the level of the sound wave received by the sound wave receiver with a predetermined threshold value. In addition, the heat retention measuring device according to the present invention is provided with a sound wave transmitter that emits a sound wave of a predetermined frequency toward the vacuum heat insulating structure, and a vacuum heat insulating structure that is disposed so as to face the sound wave transmitter. The sound wave receiver is configured to receive the sound wave transmitted from the sound wave transmitter, and determine the heat retaining power based on the attenuation rate of the sound wave.

【0008】[0008]

【作用】前記発明の構成によれば、音波発信器から発信
された音波は、真空断熱構造体の真空空間を通過する間
に減衰して音波受信器に到達する。この音波受信器への
音波の減衰率は真空断熱構造体の真空空間の真空度、す
なわち保温力に応じて変化するので、その減衰率によっ
て保温力を測定することができる。
According to the structure of the above invention, the sound wave emitted from the sound wave transmitter is attenuated and reaches the sound wave receiver while passing through the vacuum space of the vacuum heat insulating structure. Since the attenuation rate of the sound waves to the acoustic wave receiver changes according to the degree of vacuum of the vacuum space of the vacuum heat insulating structure, that is, the heat retention force, the heat retention force can be measured by the attenuation rate.

【0009】[0009]

【実施例】次に、本発明の実施例を添付図面に従って説
明する。図1は、魔法瓶1の保温力を測定する方法及び
その装置を示す。魔法瓶1は、内瓶2と外瓶3の口部
4,5を接合して、それらの間に真空空間Sを設けた公
知の真空断熱構造を有するものである。この魔法瓶1の
外側には、例えば19.5KHzの音波を発生する音源
6と、該音波を増幅する増幅器7と、該増幅器7で増幅
した音波を魔法瓶1に向かって発射するスピーカ8とか
らなる音波発信器9が設けられている。
Next, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a method and an apparatus for measuring the heat retaining power of a thermos bottle 1. The thermos bottle 1 has a known vacuum heat insulation structure in which the mouth portions 4 and 5 of the inner bottle 2 and the outer bottle 3 are joined and a vacuum space S is provided between them. On the outside of the thermos bottle 1, for example, a sound source 6 for generating a sound wave of 19.5 KHz, an amplifier 7 for amplifying the sound wave, and a speaker 8 for emitting the sound wave amplified by the amplifier 7 toward the thermos bottle 1 are provided. A sound wave transmitter 9 is provided.

【0010】また、魔法瓶1の口部4,5を密封する栓
体10を貫通して設けた支持管11の先端には、前記ス
ピーカ8と真空空間Sを介して対向するようにマイクロ
フォン12が設けられている。魔法瓶1の外側には、増
幅器13、フィルタ14、比較器15、表示器16及び
スプレー装置17が設けられている。増幅器13は、前
記マイクロフォン12からの出力信号を増幅するもので
あり、マイクロフォン12とともに音波受信器18を構
成している。フィルタ14は、前記増幅器13で増幅さ
れた信号のうち目的の周波数以外の周波数を除去するも
のである。比較器15は、前記マイクロフォン12より
増幅器13及びフィルタ14を介して受信した音波の振
幅レベルと、あらかじめ設定したしきい値とを比較して
保温力の良否を判定するものである。表示器16は、比
較器15における比較判定結果を適宜表示するものであ
る。スプレー装置17は魔法瓶1に向かってカラースプ
レーを噴出してマークを付すものである。
A microphone 12 is provided at the tip of a support tube 11 provided through a stopper 10 for sealing the mouths 4 and 5 of the thermos bottle 1 so as to face the speaker 8 via a vacuum space S. It is provided. An amplifier 13, a filter 14, a comparator 15, a display 16 and a spray device 17 are provided outside the thermos bottle 1. The amplifier 13 amplifies the output signal from the microphone 12, and constitutes a sound wave receiver 18 together with the microphone 12. The filter 14 removes frequencies other than the target frequency from the signal amplified by the amplifier 13. The comparator 15 compares the amplitude level of the sound wave received from the microphone 12 via the amplifier 13 and the filter 14 with a preset threshold value to determine whether the heat retaining power is good or bad. The display unit 16 appropriately displays the comparison determination result of the comparator 15. The spray device 17 ejects a color spray toward the thermos bottle 1 to add a mark.

【0011】前記構成からなる装置を用いた本発明の保
温力測定方法を説明する。生産ラインに沿って順次製造
される魔法瓶1に音波発信器9を対向させるとともに、
栓体10を装着してマイクロフォン12を魔法瓶1内部
に挿入し、音源6より19.5KHzの音波を発生させ
る。この音源6から発生した音波は、増幅器7で増幅さ
れスピーカ8を介して魔法瓶1に発射される。魔法瓶1
の真空空間Sが完全真空であれば、スピーカ8より発射
される音波は、外瓶3から口部4,5を介して内瓶2に
至る壁面振動による音の伝搬を除き、真空空間Sを通過
して直接内瓶2の内部に伝搬することはない。しかし、
実際には、魔法瓶1の真空空間Sは完全真空ではないか
ら、音波は真空空間Sを伝搬して内側のマイクロフォン
12に到達する。真空空間Sを伝搬する音波のレベルは
その真空空間Sの真空度に応じて減衰する。
A method for measuring heat retention according to the present invention using the apparatus having the above structure will be described. While facing the sound wave generator 9 to the thermos bottle 1 that is sequentially manufactured along the production line,
The stopper 10 is attached, the microphone 12 is inserted into the thermos bottle 1, and the sound source 6 generates a sound wave of 19.5 KHz. The sound wave generated from the sound source 6 is amplified by the amplifier 7 and is emitted to the thermos via the speaker 8. Thermos 1
If the vacuum space S is a complete vacuum, the sound waves emitted from the speaker 8 will be generated in the vacuum space S except the sound propagation due to the wall vibration from the outer bottle 3 to the inner bottle 2 through the mouths 4 and 5. It does not pass through and propagate directly into the inner bottle 2. But,
In reality, since the vacuum space S of the thermos bottle 1 is not a perfect vacuum, the sound wave propagates through the vacuum space S and reaches the microphone 12 inside. The level of the sound wave propagating in the vacuum space S is attenuated according to the degree of vacuum in the vacuum space S.

【0012】マイクロフォン12が受信した音波は増幅
器13で増幅され、フィルタ14を経て比較器15に入
力される。比較器15は、入力音波信号のレベルが所定
のしきい値より高い場合には表示器16及びスプレー装
置17に信号を出力し、表示器16にその判定結果を表
示するとともに、スプレー装置17により魔法瓶1の外
表面にマークを付して不良品であることを表示する。ま
た、入力音波信号のレベルがしきい値をより低い場合に
は、良品であるから、表示器16及びスプレー装置17
には信号を出力しない。
The sound wave received by the microphone 12 is amplified by the amplifier 13, is input to the comparator 15 through the filter 14. When the level of the input sound wave signal is higher than a predetermined threshold value, the comparator 15 outputs a signal to the display device 16 and the spray device 17, displays the determination result on the display device 16, and causes the spray device 17 to operate. A mark is attached to the outer surface of the thermos bottle 1 to indicate that the product is defective. Further, when the level of the input sound wave signal is lower than the threshold value, it is a non-defective product, and therefore the display 16 and the spray device 17 are provided.
No signal is output to.

【0013】図2は、真空二重パイプ21の保温力を測
定する方法及びその装置を示す。真空二重パイプ21
は、内管22と外管23からなり、両端を相互に接合す
るとともに、それらの間を真空空間Sとしたものであ
る。この真空二重パイプ21は両端が開放しているの
で、測定時には栓体10,10aによって密封し、一方
の栓体10に支持管11を介してマイクロフォン12を
設ける。スピーカ8等からなる音波発信器及びマイクロ
フォン12等からなる音波受信器の構成は、前記魔法瓶
1の場合と同様であるので、説明を省略する。
FIG. 2 shows a method and apparatus for measuring the heat retaining power of the vacuum double pipe 21. Vacuum double pipe 21
Consists of an inner tube 22 and an outer tube 23, both ends of which are joined together and a vacuum space S is provided between them. Since the vacuum double pipe 21 is open at both ends, it is sealed by the plugs 10 and 10a at the time of measurement, and the microphone 12 is provided on one of the plugs 10 through the support tube 11. The configurations of the sound wave transmitter including the speaker 8 and the like and the sound wave receiver including the microphone 12 and the like are the same as in the case of the thermos bottle 1, and the description thereof will be omitted.

【0014】一般に、魔法瓶等の保温力は熱湯を24時
間保持した時の温度で表されるが、図3で示すように、
この保温力と音波の減衰率の間には相関関係があること
が発明者により確認されている。したがって、前記本発
明に係る方法及び装置により音波の減衰率を測定すれ
ば、これに対応して保温力を求めることができる。
Generally, the heat-retaining power of a thermos bottle or the like is represented by the temperature when hot water is held for 24 hours, but as shown in FIG.
The inventor has confirmed that there is a correlation between the heat retaining power and the sound wave attenuation rate. Therefore, if the attenuation rate of the sound wave is measured by the method and apparatus according to the present invention, the heat retaining power can be obtained correspondingly.

【0015】なお、以上の実施例では、音波発信器を真
空断熱構造体の外側に、音波受信器を内側に設けたが、
それらを逆に配置することも可能である。
In the above embodiments, the sound wave transmitter is provided outside the vacuum heat insulating structure, and the sound wave receiver is provided inside.
It is also possible to arrange them in reverse.

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
によれば、真空構造体を通過する音波の減衰率によって
保温力を判定するので、熱湯や加熱炉を準備する必要が
なく、簡単な装置で短時間に測定を行うことができるう
え、生産組立ラインに組み込むことができる。また、単
に音波を通過させるだけであるので、測定対象が限定さ
れず、魔法瓶や真空二重パイプ等の各種の形状の真空二
重構造体にも適用することができる。
As is apparent from the above description, according to the present invention, since the heat retaining power is determined by the attenuation rate of the sound wave passing through the vacuum structure, there is no need to prepare hot water or a heating furnace, and it is simple. It is possible to measure with a simple device in a short time, and it can be incorporated into a production assembly line. Further, since the sound waves are simply passed therethrough, the measurement target is not limited, and the present invention can be applied to vacuum double structures of various shapes such as thermos bottles and vacuum double pipes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明により魔法瓶の保温力を測定する方法
及び装置を示すブロック図である。
FIG. 1 is a block diagram showing a method and apparatus for measuring the heat retention of a thermos according to the present invention.

【図2】 本発明により真空二重パイプの保温力を測定
する方法及び装置を示す一部省略図である。
FIG. 2 is a partially omitted view showing a method and apparatus for measuring the heat retaining power of a vacuum double pipe according to the present invention.

【図3】 保温力と音波減衰率の関係を示す図である。FIG. 3 is a diagram showing a relationship between a heat retention force and a sound wave attenuation rate.

【符号の説明】[Explanation of symbols]

1…魔法瓶、8…スピーカ、9…音波発信器、12…マ
イクロフォン、15…比較器、18…音波受信器、21
…真空二重パイプ、S…真空空間。
1 ... Thermos bottle, 8 ... Speaker, 9 ... Sound wave transmitter, 12 ... Microphone, 15 ... Comparator, 18 ... Sound wave receiver, 21
... vacuum double pipe, S ... vacuum space.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空断熱構造体を挟んで互いに対向する
ように音波発信器と音波受信器を配設して、前記音波発
信器から発信される音波を音波受信器で受信し、当該音
波の減衰率によって保温力を判定することを特徴とする
真空断熱構造体の保温力測定方法。
1. A sound wave transmitter and a sound wave receiver are arranged so as to face each other with a vacuum heat insulating structure sandwiched therebetween, and a sound wave transmitted from the sound wave transmitter is received by the sound wave receiver, A method for measuring the heat retention capacity of a vacuum heat insulating structure, characterized by determining the heat retention capacity according to a damping rate.
【請求項2】 前記音波受信器で受信した音波のレベル
と所定のしきい値とを比較することによって保温力を判
定することを特徴とする請求項1に真空断熱構造体の保
温力測定方法。
2. The method for measuring heat retention of a vacuum heat insulating structure according to claim 1, wherein the heat retention is determined by comparing a level of a sound wave received by the sound wave receiver with a predetermined threshold value. .
【請求項3】 所定の周波数の音波を真空断熱構造体に
向かって発信する音波発信器と、真空断熱構造体を挾ん
で前記音波発信器に対向するように配設される音波受信
器とからなり、前記音波発信器から発信される音波を音
波受信器で受信し、当該音波の減衰率によって保温力を
判定するようにしたことを特徴とする真空断熱構造体の
保温力測定装置。
3. A sound wave transmitter that emits a sound wave of a predetermined frequency toward a vacuum heat insulating structure, and a sound wave receiver that is arranged so as to face the sound wave transmitter across the vacuum heat insulating structure. According to another aspect of the present invention, a heat insulation force measuring device for a vacuum heat insulation structure is characterized in that a sound wave emitted from the sound wave transmitter is received by a sound wave receiver, and the heat insulation force is determined by an attenuation rate of the sound wave.
JP7015027A 1995-02-01 1995-02-01 Method and apparatus for measuring heat insulating power of vacuum heat insulating structure Pending JPH08211031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7015027A JPH08211031A (en) 1995-02-01 1995-02-01 Method and apparatus for measuring heat insulating power of vacuum heat insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7015027A JPH08211031A (en) 1995-02-01 1995-02-01 Method and apparatus for measuring heat insulating power of vacuum heat insulating structure

Publications (1)

Publication Number Publication Date
JPH08211031A true JPH08211031A (en) 1996-08-20

Family

ID=11877361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7015027A Pending JPH08211031A (en) 1995-02-01 1995-02-01 Method and apparatus for measuring heat insulating power of vacuum heat insulating structure

Country Status (1)

Country Link
JP (1) JPH08211031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035491A (en) * 2010-10-05 2012-04-16 주식회사 센플러스 Method of monitering vacuum of vacuum insulation material and vacuum insulation material
JP2017503147A (en) * 2013-09-17 2017-01-26 コリア フュエル−テック コーポレーション Vehicle canister inspection system
CN106556495A (en) * 2015-09-24 2017-04-05 现代自动车株式会社 The hole inspection method of vehicle and the system for performing the method
CN114485911A (en) * 2022-01-25 2022-05-13 重庆医科大学 Device and method for measuring sound attenuation coefficient in sound wave guide pipe based on sub-wavelength scale

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035491A (en) * 2010-10-05 2012-04-16 주식회사 센플러스 Method of monitering vacuum of vacuum insulation material and vacuum insulation material
JP2017503147A (en) * 2013-09-17 2017-01-26 コリア フュエル−テック コーポレーション Vehicle canister inspection system
CN106556495A (en) * 2015-09-24 2017-04-05 现代自动车株式会社 The hole inspection method of vehicle and the system for performing the method
CN114485911A (en) * 2022-01-25 2022-05-13 重庆医科大学 Device and method for measuring sound attenuation coefficient in sound wave guide pipe based on sub-wavelength scale
CN114485911B (en) * 2022-01-25 2023-11-24 重庆医科大学 Device and method for measuring acoustic attenuation coefficient in acoustic waveguide tube based on sub-wavelength scale

Similar Documents

Publication Publication Date Title
JP3693350B2 (en) Equipment for measuring gas values
JPH0431064B2 (en)
US6481287B1 (en) Fluid temperature measurement
US20170268950A1 (en) An apparatus and method for measuring the pressure inside a pipe or container
US5271267A (en) Method and apparatus for determining fluid properties from sonic/temperature fluid signature
JP2007517219A (en) Fluid level measurement by ultrasonic wave introduced into the container wall
JPH08211031A (en) Method and apparatus for measuring heat insulating power of vacuum heat insulating structure
JP2002340654A (en) Method and device for detecting liquid level by sound
JP2000241397A (en) Method and apparatus for detecting surface defect
JP4329773B2 (en) Ultrasonic inspection method for fluororesin inspection object
JPH0566172A (en) Method and device for detecting leakage acoustically
US3630307A (en) Mechanism and method for measuring sound absorption
CN101949893B (en) Reduction of temperature influence caused by pressure of sound velocity in gas
US3665379A (en) Pulse-sound transmitting tube for calibrating underwater sound transducers
BG99112A (en) Method and instrument for establishing faulty fuel stems by using acoustic energy frequency attenuation
JP2864429B2 (en) Ultrasonic flaw detector
US5448904A (en) Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors
JP2020056639A (en) Pressure measuring device
SU1668929A1 (en) Method of quality control of cryogenic vacuum vessel heat insulation
WO2020044611A1 (en) Ultrasonic testing device and ultrasonic testing method
JP2012007976A (en) Ultrasonic velocity flowmeter
JP2861513B2 (en) Liquid surface position measuring device in liquefied gas container using ultrasonic waves
JPH0560622A (en) Acoustic temperature measuring method and its apparatus
CN105547413A (en) Gas pipeline effusion monitoring system with acoustic hood and monitoring method thereof
JPH09135508A (en) Method and apparatus for inspecting gas-insulated current-conduction part