JPH08210958A - Breakage monitoring method for piping and pressure vessel - Google Patents

Breakage monitoring method for piping and pressure vessel

Info

Publication number
JPH08210958A
JPH08210958A JP7019500A JP1950095A JPH08210958A JP H08210958 A JPH08210958 A JP H08210958A JP 7019500 A JP7019500 A JP 7019500A JP 1950095 A JP1950095 A JP 1950095A JP H08210958 A JPH08210958 A JP H08210958A
Authority
JP
Japan
Prior art keywords
probability
stress
pressure
distribution
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7019500A
Other languages
Japanese (ja)
Inventor
Kiminobu Hojo
公伸 北条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7019500A priority Critical patent/JPH08210958A/en
Publication of JPH08210958A publication Critical patent/JPH08210958A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE: To measure the breakage probability in the life end of a piping and pressure vessel by combining the thermal stress acting on the vicinity of an evaluating point with the internal pressure stress change on an input condition of the cracking length density inversely operated from a material test. CONSTITUTION: A notched round bar tension test piece 27 is broken by a tension test, the numerical simulation of a FEM analysis 28 is executed, a Weibull stress analysis 29 is performed by use of the post tape to provide a Weibull distribution 30. A constant (n) 31 for regulating a cracking length probability distribution 16 is calculated from this distribution, and combined with the other probability distribution to prepare a probability variable data base 13. On the other hand, a local thermal stress 3 is evaluated on an input condition of the fluid temperature change 1 by a temperature sensor 10, and an internal pressure stress 5 is also calculated from the pressure change 4 from a pressure measuring point 11 to determine the total stress 12. A fatigue breakage generating probability 23 is calculated 21 from the total stress by use of a base 13, and a crack through probability 24 and a rupture probability 25 are determined by probability fatigue and creep crack progress analysis 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、材料に内在するミクロ
き裂長さの確率密度分布を算出し、配管・圧力容器に働
く応力をリアルタイムで計算して、配管・圧力容器の破
壊確率をオンラインで評価、予測する配管・圧力容器の
破壊モニタリング方法に関するものである。
BACKGROUND OF THE INVENTION The present invention calculates the probability density distribution of the microcrack length inherent in a material, calculates the stress acting on the pipe / pressure vessel in real time, and calculates the fracture probability of the pipe / pressure vessel online. It relates to a method for monitoring the breakdown of pipes and pressure vessels that is evaluated and predicted in.

【0002】[0002]

【従来の技術】従来の配管・圧力容器の破壊モニタリン
グ法は,図2に示すように、予め整備した確率変数デー
タベース13に基づき、評価点近傍の流体温度センサ1
0、圧力変化4からグリーン関数法2により全応力12
を算出し、確率論的疲労損傷計算21、確率論的疲労−
クリープき裂進展解析22を行って、貫通確率24、破
断確率25を求めている。
2. Description of the Related Art A conventional pipe / pressure vessel damage monitoring method is based on a random variable database 13 prepared in advance as shown in FIG.
0, pressure change 4 and total stress 12 by Green's function method 2
And stochastic fatigue damage calculation 21, stochastic fatigue-
A creep crack growth analysis 22 is performed to obtain a penetration probability 24 and a fracture probability 25.

【0003】[0003]

【発明が解決しようとする課題】前記図2に示す従来の
配管・圧力容器の破壊モニタリング法では、き裂深さ確
率分布が通常の材料試験から得られないので、文献から
得られる分布(例えばMarshal(分布)を用いて
データベース化している。しかしながらき裂深さ確率分
布は、破壊確率評価に最も大きく影響を与える変数の1
つであり、実際のき裂の分布と文献値とがくい違ってい
れば、予測結果が大きく異なる可能性があった。
In the conventional fracture monitoring method for pipes and pressure vessels shown in FIG. 2, since the crack depth probability distribution cannot be obtained from ordinary material tests, the distribution obtained from the literature (for example, The database is created by using Marshall (distribution) .However, the crack depth probability distribution is one of the variables that most greatly affects the fracture probability evaluation.
Therefore, if the actual distribution of cracks and the literature values were different, the prediction results could be significantly different.

【0004】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、配管・圧力容器の寿命末
期相当などの着目時点での破損確率を予測できて、プラ
ントのオペレーションの改善、機器の取替え時期の判断
に利用できる配管・圧力容器の破壊モニタリング法を提
供しようとする点にある。
The present invention is proposed in view of the above-mentioned problems, and the purpose thereof is to predict the probability of breakage at the point of interest such as the end of life of pipes and pressure vessels and to predict the operation of the plant. The point is to provide a method for monitoring the destruction of pipes and pressure vessels that can be used to improve and determine when to replace equipment.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の配管・圧力容器の破壊モニタリング法
は、材料試験からき裂長さ密度を逆算しこれを入力条件
として、評価点近傍に取付けた流体温度センサからグリ
ーン関数法により配管・圧力容器に働く熱応力をリアル
タイムで評価し、これに圧力センサのデータに基づく内
圧応力変化を組み合わせ、予め整備した疲労き裂進展、
脆性破壊に関する材料データの確率密度分布関数を用い
て確率論的破壊力学解析を行って、配管・圧力容器の破
壊確率を予測、モニタすることを特徴としている。
In order to achieve the above object, the pipe / pressure vessel fracture monitoring method according to the present invention calculates the crack length density backward from a material test, and uses this as an input condition to obtain a value near an evaluation point. The thermal stress acting on the pipe / pressure vessel is evaluated in real time from the attached fluid temperature sensor by the Green's function method, and the internal pressure stress change based on the data of the pressure sensor is combined with this to evaluate the fatigue crack growth prepared in advance,
The probabilistic fracture mechanics analysis is performed using the probability density distribution function of material data for brittle fracture, and the feature is that the fracture probability of pipes and pressure vessels is predicted and monitored.

【0006】[0006]

【作用】本発明の配管・圧力容器の破壊モニタリング法
は前記のように材料試験からき裂長さ密度を逆算しこれ
を入力条件として、評価点近傍に取付けた流体温度セン
サからグリーン関数法により配管・圧力容器に働く熱応
力をリアルタイムで評価し、これに圧力センサのデータ
に基づく内圧応力変化を組み合わせ、予め整備した疲労
き裂進展、脆性破壊に関する材料データの確率密度分布
関数を用いて確率論的破壊力学解析を行って、配管・圧
力容器の破壊確率を予測、モニタする。
The pipe / pressure vessel fracture monitoring method according to the present invention uses the Green's function method to calculate the crack length density from the material test and calculate the crack length density as an input condition from the fluid temperature sensor near the evaluation point. The thermal stress acting on the pressure vessel is evaluated in real time, the internal pressure stress change based on the data of the pressure sensor is combined with this, and the probability density distribution function of the material data on fatigue crack growth and brittle fracture prepared in advance is used for stochastic analysis. Fracture mechanics analysis is performed to predict and monitor the failure probability of pipes and pressure vessels.

【0007】[0007]

【実施例】次に本発明の配管・圧力容器の破壊モニタリ
ング法を図1に示す一実施例により説明する。ノッチ付
丸棒引張試験片27を引張試験により破壊させ、FEM
解析28の数値シミュレーションを実施した後、そのポ
ストテープを用いてワイブル応力解析29を実施する。
EXAMPLES Next, the method for monitoring the breakdown of a pipe / pressure vessel of the present invention will be described with reference to an example shown in FIG. Fracture the notched round bar tensile test piece 27 by a tensile test, and
After performing the numerical simulation of the analysis 28, the Weibull stress analysis 29 is performed using the post tape.

【0008】これによりワイブル応力σW が得られるの
で、ワイブル応力σW をワイブル確率紙にプロットし
て、ワイブル分布30を得る。この分布よりパラメータ
mが求められるので、き裂長さ確率分布16を規定する
定数n31を計算する。他の確率分布と合わせて、確率
変数データベース13を整備する。一方、流体温度セン
サ10の温度変化1を入力条件としてグリーン関数法2
により局所熱応力3を評価する。同時に圧力計測点11
からの圧力変化4から内圧応力5を計算して、全応力1
2を求める。
Since the Weibull stress σ W is obtained in this manner, the Weibull stress σ W is plotted on the Weibull probability paper to obtain the Weibull distribution 30. Since the parameter m is obtained from this distribution, the constant n31 that defines the crack length probability distribution 16 is calculated. The random variable database 13 is maintained together with other probability distributions. On the other hand, using the temperature change 1 of the fluid temperature sensor 10 as an input condition, the Green's function method 2
The local thermal stress 3 is evaluated by. At the same time, pressure measurement point 11
Calculate the internal pressure stress 5 from the pressure change 4 from the total stress 1
Ask for 2.

【0009】また確率変数データベース13を用いて疲
労破壊発生確率23を確率論的疲労損傷計算21より求
める。また確率論的疲労−クリープき裂進展解析22に
よりき裂貫通確率24、破断確率25を計算する。得ら
れた確率をスクリーニングクライテリア26と比較し
て、プラントの運転方式の改善またはプラントの停止・
ISIの施工時期判断に利用する。
Further, the probability of fatigue fracture occurrence 23 is calculated from the stochastic fatigue damage calculation 21 using the random variable database 13. Further, the probability of crack penetration 24 and the probability of fracture 25 are calculated by the stochastic fatigue-creep crack growth analysis 22. The obtained probability is compared with the screening criteria 26 to improve the operation method of the plant or stop the plant.
It is used to judge the construction time of ISI.

【0010】本発明は上記のようにデータベース構築の
際に複数のノッチ丸棒の引張試験を実施し、破壊時のワ
イプル応力をFEM数値解析シミュレーションにより求
め、これをワイブル確率紙にプロットする。ローカルア
プローチ法によれば、破壊の起点となるき裂長さaの確
率分布(一般的にf(a) =Aa-nで表される)を規定す
るnとワイブル応力σW のワイブル分布のパラメータm
(後記「数1」参照)との間には、m=2n+1の関係
があるため、引張試験によりnを逆算して求める。そし
て確率分布f(a) =Aa-nをき裂長さ確率密度関数とし
てデータベースに組み込む。
According to the present invention, a plurality of notch round bars are subjected to a tensile test when the database is constructed as described above, the wiper stress at the time of breaking is obtained by FEM numerical analysis simulation, and this is plotted on a Weibull probability paper. According to the local approach method, the parameter of the Weibull distribution of n and Weibull stress σ W that defines the probability distribution of crack length a (generally expressed by f (a) = Aa -n ) that is the starting point of fracture m
Since there is a relationship of m = 2n + 1 with (see "Equation 1" below), n is calculated by back calculation by a tensile test. Then, the probability distribution f (a) = Aa- n is incorporated into the database as a crack length probability density function.

【0011】[0011]

【数1】 [Equation 1]

【0012】[0012]

【発明の効果】本発明の配管・圧力容器の破壊モニタリ
ング法は前記のように材料試験からき裂長さ密度を逆算
しこれを入力条件として、評価点近傍に取付けた流体温
度センサからグリーン関数法により配管・圧力容器に働
く熱応力をリアルタイムで評価し、これに圧力センサの
データに基づく内圧応力変化を組み合わせ、予め整備し
た疲労き裂進展、脆性破壊に関する材料データの確率密
度分布関数を用いて確率論的破壊力学解析を行って、配
管・圧力容器の破壊確率を予測、モニタするので、配管
・圧力容器の寿命末期相当などの着目時点での破損確率
を予測できて、プラントのオペレーションの改善、機器
の取替え時期の判断に利用できる。
As described above, the pipe / pressure vessel failure monitoring method of the present invention uses the Green's function method from the fluid temperature sensor installed near the evaluation point, with the crack length density calculated backward from the material test and using this as the input condition. Evaluate the thermal stress acting on the piping and pressure vessel in real time, combine it with the internal pressure stress change based on the data of the pressure sensor, and use the probability density distribution function of the material data on fatigue crack growth and brittle fracture prepared beforehand to calculate the probability. Theoretical failure mechanics analysis to predict and monitor the failure probability of pipes and pressure vessels, so it is possible to predict the failure probability at the point of interest such as the end of life of the pipes and pressure vessels, improving plant operation, It can be used to determine when to replace equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の配管・圧力容器の破壊モニタリング法
の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a method for monitoring damage of a pipe / pressure vessel according to the present invention.

【図2】従来の配管・圧力容器の破壊モニタリング法を
示すブロック図である。
FIG. 2 is a block diagram showing a conventional pipe / pressure vessel breakdown monitoring method.

【符号の説明】[Explanation of symbols]

1 流体温度変化 2 グリーン関数法 3 局所熱応力 4 圧力変化 5 内圧応力 6 S−Nカーブ 7 疲労損傷計算 8 き裂安定性評価 9 等価熱曲げ応力 10 流体温度センサ 11 圧力計測点 12 全応力 13 確率変数データベース 14 S−Nカーブの確率分布 15 き裂密度確率分布 16 き裂長さ確率分布 17 き裂アスペクト化確率分布 18 疲労・クリープき裂伝播定数確率分布 19 流動応力確率分布 20 破壊靱性確率分布 21 確率論的疲労損傷計算 22 確率論的疲労−クリープき裂進展解析 23 疲労破壊発生確率 24 貫通確率 25 破断確率 26 スクリーニングクライテリア 27 ノッチ付丸棒引張試験片 28 FEM解析 29 ワイブル応力解析 30 ワイブル分布 31 n 1 Fluid temperature change 2 Green's function method 3 Local thermal stress 4 Pressure change 5 Internal pressure stress 6 S-N curve 7 Fatigue damage calculation 8 Crack stability evaluation 9 Equivalent thermal bending stress 10 Fluid temperature sensor 11 Pressure measurement point 12 Total stress 13 Random variable database 14 Probability distribution of SN curve 15 Crack density probability distribution 16 Crack length probability distribution 17 Crack aspect ratio probability distribution 18 Fatigue / creep crack propagation constant probability distribution 19 Flow stress probability distribution 20 Fracture toughness probability distribution 21 Probabilistic Fatigue Damage Calculation 22 Probabilistic Fatigue-Creep Crack Growth Analysis 23 Fatigue Failure Occurrence Probability 24 Penetration Probability 25 Fracture Probability 26 Screening Criteria 27 Notched Round Bar Tensile Specimen 28 FEM Analysis 29 Weibull Stress Analysis 30 Weibull Distribution 31 n

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 材料試験からき裂長さ密度を逆算しこれ
を入力条件として、評価点近傍に取付けた流体温度セン
サからグリーン関数法により配管・圧力容器に働く熱応
力をリアルタイムで評価し、これに圧力センサのデータ
に基づく内圧応力変化を組み合わせ、予め整備した疲労
き裂進展、脆性破壊に関する材料データの確率密度分布
関数を用いて確率論的破壊力学解析を行って、配管・圧
力容器の破壊確率を予測、モニタすることを特徴とした
配管・圧力容器の破壊モニタリング方法。
A thermal stress acting on a pipe / pressure vessel is evaluated in real time by the Green's function method from a fluid temperature sensor installed near the evaluation point, and the crack length density is calculated back from the material test and used as input conditions. Probabilistic fracture mechanics analysis is performed using the probability density distribution function of material data on fatigue crack growth and brittle fracture prepared in advance by combining internal pressure stress changes based on pressure sensor data, and the fracture probability of pipes and pressure vessels. A method for monitoring the breakdown of pipes and pressure vessels, which is characterized by predicting and monitoring
JP7019500A 1995-02-07 1995-02-07 Breakage monitoring method for piping and pressure vessel Withdrawn JPH08210958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7019500A JPH08210958A (en) 1995-02-07 1995-02-07 Breakage monitoring method for piping and pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7019500A JPH08210958A (en) 1995-02-07 1995-02-07 Breakage monitoring method for piping and pressure vessel

Publications (1)

Publication Number Publication Date
JPH08210958A true JPH08210958A (en) 1996-08-20

Family

ID=12001102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7019500A Withdrawn JPH08210958A (en) 1995-02-07 1995-02-07 Breakage monitoring method for piping and pressure vessel

Country Status (1)

Country Link
JP (1) JPH08210958A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184657A2 (en) * 2000-08-31 2002-03-06 Kawasaki Steel Corporation Method for evaluating a delayed fracture of a steel member
JP2008298507A (en) * 2007-05-30 2008-12-11 Toshiba Corp Stress analysis method for structure and its device
JP2009236540A (en) * 2008-03-26 2009-10-15 Ihi Corp Fracture performance evaluation method of welded structure, and database apparatus
JP2010082627A (en) * 2008-09-29 2010-04-15 Toyota Central R&D Labs Inc Method for simulation of casting and program used for the same
CN109708966A (en) * 2018-12-04 2019-05-03 中国大唐集团科学技术研究院有限公司火力发电技术研究院 A kind of more defect safety assessment methods of power station high-temperature bearing pipeline welded joint

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184657A2 (en) * 2000-08-31 2002-03-06 Kawasaki Steel Corporation Method for evaluating a delayed fracture of a steel member
US6523416B2 (en) * 2000-08-31 2003-02-25 Kawasaki Steel Corporation Method for setting shape and working stress, and working environment of steel member
EP1184657A3 (en) * 2000-08-31 2003-08-06 Kawasaki Steel Corporation Method for evaluating a delayed fracture of a steel member
JP2008298507A (en) * 2007-05-30 2008-12-11 Toshiba Corp Stress analysis method for structure and its device
JP2009236540A (en) * 2008-03-26 2009-10-15 Ihi Corp Fracture performance evaluation method of welded structure, and database apparatus
JP2010082627A (en) * 2008-09-29 2010-04-15 Toyota Central R&D Labs Inc Method for simulation of casting and program used for the same
CN109708966A (en) * 2018-12-04 2019-05-03 中国大唐集团科学技术研究院有限公司火力发电技术研究院 A kind of more defect safety assessment methods of power station high-temperature bearing pipeline welded joint

Similar Documents

Publication Publication Date Title
Parkins et al. Stress corrosion cracking characteristics of a range of pipeline steels in carbonate-bicarbonate solution
KR20200026877A (en) Life Prediction Method of Reinforced Concrete Bridges under Seasonal Corrosion and Fatigue Bonding
Dean et al. Creep crack growth behaviour of Type 316H steels and proposed modifications to standard testing and analysis methods
JPH06180281A (en) Method and device for predicting deterioration and damage to structural member
CN114878374B (en) Characterization method for short crack and long crack propagation of metal material
Bonagura et al. Artificial neural network (ANN) approach for predicting concrete compressive strength by SonReb
JPH08210958A (en) Breakage monitoring method for piping and pressure vessel
CN112504863A (en) Method for quantitatively evaluating service life of material
JP2003004599A (en) Method for evaluating fatigue damage to structure and for display method of the same
JP4112830B2 (en) Structural material soundness evaluation method and program
JP3458271B2 (en) Heat transfer tube remaining life evaluation device
JPH06222053A (en) Deterioration diagnostic method for ferrite based heat-resistant steel
JPH0712709A (en) Deterioration diagnostic method and device for gas turbine coating vane
JP2003004201A (en) Method for evaluating lifetime of boiler furnace wall pipe
JPH07218409A (en) Predictive apparatus for life time of corrosion or crack of structural member
Riley et al. Prediction and validation of multi-axial stress state effects on creep failure of pre-compressed 316H stainless steel
RU2221231C2 (en) Procedure establishing residual life time of metal of main pipe-line
RU2315971C1 (en) Damage degree of object detecting method
KR100479885B1 (en) Method and apparatus for remote controlling bridge
JP3303944B2 (en) Creep life evaluation method by temperature accelerated test
JPH1038829A (en) Pipeline crack progress quantity predicting device
Baldan et al. Assessment of θ-projection concept and fracture cavitation
Woodford Accelerated high temperature performance evaluation for alloy optimization, embrittlement, and life assessment
JPH07128328A (en) Method for predicting deterioration and residual life of metallic material
AU2002302054B2 (en) Method and equipment for assessing the life of members put under high in-service temperature environment for long period

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507