JP2003004201A - Method for evaluating lifetime of boiler furnace wall pipe - Google Patents

Method for evaluating lifetime of boiler furnace wall pipe

Info

Publication number
JP2003004201A
JP2003004201A JP2001192732A JP2001192732A JP2003004201A JP 2003004201 A JP2003004201 A JP 2003004201A JP 2001192732 A JP2001192732 A JP 2001192732A JP 2001192732 A JP2001192732 A JP 2001192732A JP 2003004201 A JP2003004201 A JP 2003004201A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
furnace wall
environment
boiler furnace
wall tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001192732A
Other languages
Japanese (ja)
Inventor
Nobuhiko Nishimura
宣彦 西村
Masashi Ozaki
政司 尾崎
Toshiro Matsubara
俊郎 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001192732A priority Critical patent/JP2003004201A/en
Publication of JP2003004201A publication Critical patent/JP2003004201A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly and properly evaluate a lifetime of a furnace wall simply and at a low cost by an analytical method, in a method for evaluating a life of a tube for a boiler furnace wall pipe having a combustor that there is possibility to generate hydrogen sulfide at a combustion process for heavy oil and coal. SOLUTION: By multiplying a low cycle fatigue strength of a material for a boiler furnace wall pipe in the atmospheric air, being an object to be evaluated, by a reduction factor of the fatigue strength of the material in hydrogen sulfide-contained gas, a fatigue curve under hydrogen sulfide environment is determined. From the fatigue curve and a maximum strain range of the material in a relvant portion, the number of cycles until the occurrence of pipe damage, such as groove-form corrosion, is determined. With the numerical value thus obtained, a state of the damage of the pipe is decided and evaluated to perform lifetime evaluation, and this way reduces an inspection cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、重油や石炭など燃
焼過程で硫化水素を生じる可能性がある燃焼器を有する
ボイラ炉壁管などの管材の寿命評価方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a life evaluation method for pipe materials such as boiler furnace wall pipes having a combustor which may generate hydrogen sulfide in the combustion process such as heavy oil and coal.

【0002】[0002]

【従来の技術】燃料として重油や石炭などを用い、燃焼
過程で硫化水素を生じる可能性がある燃焼器を有するボ
イラの火炉壁管などにおいては、使用が進むと溝状腐食
またはエレファントスキンと呼ばれる筋状の腐食等の管
材損傷の発生が認められており、この様な管材損傷が進
行すると前記火炉壁管等を貫通し、内部の高温水が流出
するトラブルが発生していた。
2. Description of the Related Art In a furnace wall tube of a boiler having heavy oil or coal as a fuel and having a possibility of producing hydrogen sulfide in the combustion process, it is called groove corrosion or elephant skin when it is used. Occurrence of damage to the pipe material such as streaky corrosion has been recognized, and when such damage to the pipe material progresses, there is a problem that the high temperature water inside penetrates through the furnace wall pipe and the like.

【0003】[0003]

【発明が解決しようとする課題】この様なトラブルの発
生を避けるために、従来の管理手法としては、前記管材
損傷の生じた対象部を個々に検査し、き裂深度計などで
き裂深さを計測することにより前記トラブルに至らない
ように管理していた。
In order to avoid the occurrence of such troubles, the conventional management method is to individually inspect the target portion where the pipe material is damaged, and use a crack depth meter or the like to measure the crack depth. The above-mentioned trouble was managed by measuring the above.

【0004】すなわち、き裂状況を人為的に目視し、き
裂深度計等の測定具を用いた計測で溝状腐食等の管材損
傷を判定するものであり、解析的な手段で判定して寿命
を評価する手法ではないので、計測に要する手間や時間
が多く必要となり、コスト高になることは避けがたいと
いう問題があった。
That is, the crack condition is artificially visually checked and the damage of the pipe material such as groove corrosion is judged by the measurement using a measuring instrument such as a crack depth meter. Since it is not a method of evaluating the life, there is a problem in that it is unavoidable that the labor and time required for the measurement are long and the cost is high.

【0005】本発明はこの様な従来手法による問題点を
解消し、解析的な手法により簡便かつ低コストで、迅
速、適切に火炉壁管等の寿命を評価するようにしたボイ
ラ炉壁管等の寿命評価方法を提供することを課題とする
ものである。
The present invention solves the problems of the conventional method, and the boiler furnace wall tube, etc., which is designed to evaluate the life of the furnace wall tube, etc. easily and inexpensively, quickly and appropriately by an analytical method. It is an object to provide a life evaluation method of

【0006】[0006]

【課題を解決するための手段】本発明は前記した課題を
解決すべくなされたもので、その第1の手段として、ボ
イラ炉壁管等に使用される材料の大気中での低サイクル
疲労強度に硫化水素含有ガス中での疲労強度の低下係数
を掛けることによって硫化水素環境下での疲労曲線を求
め、同硫化水素環境下での疲労曲線と当該部位における
炉壁管等の最大ひずみ範囲から、溝状腐食等の管材損傷
の発生までの応力繰り返し数を求め、この数値に基づき
前記管材損傷の状況を判定評価するボイラ炉壁管等の寿
命評価方法を提供するものである。
The present invention has been made to solve the above-mentioned problems, and as a first means thereof, low cycle fatigue strength of materials used for boiler furnace wall tubes and the like in the atmosphere. The fatigue curve in a hydrogen sulfide environment was obtained by multiplying the fatigue strength reduction factor in a hydrogen sulfide-containing gas by the following, and the fatigue curve in the hydrogen sulfide environment and the maximum strain range of the furnace wall tube, etc. The present invention provides a method for evaluating the life of a boiler furnace wall tube or the like, in which the number of stress repetitions until the occurrence of tube material damage such as groove corrosion is calculated, and the situation of the tube material damage is judged and evaluated based on this value.

【0007】すなわち、同第1の手段によれば、評価対
象となるボイラ炉壁管等の材料の、大気中における低サ
イクル疲労強度に、同材料の硫化水素含有ガス中での疲
労強度の低下係数を掛け算して硫化水素環境下での疲労
曲線を求め、この疲労曲線と当該部位における前記材料
の最大ひずみ範囲から溝状腐食等の管材損傷の発生まで
の応力繰り返し数を求め、この数値を以て前記管材損傷
の状況を判定評価し、寿命評価を行う様にしたので、従
来のように足場を架設して目視によって検査するという
大掛かりな対応から脱却し、検査費の低減を図る様にし
たものである。
That is, according to the first means, the low cycle fatigue strength of the material such as the boiler furnace wall tube to be evaluated in the atmosphere and the decrease in the fatigue strength of the material in the hydrogen sulfide-containing gas. Obtain a fatigue curve in a hydrogen sulfide environment by multiplying the coefficient, and calculate the stress repetition number from the maximum strain range of the material in the fatigue curve and the relevant part to the occurrence of tube material damage such as groove corrosion, and by using this number Since the condition of damage to the pipe material is judged and evaluated, and the life is evaluated, it is possible to reduce the inspection cost by avoiding the large-scale response of constructing a scaffold and inspecting visually as in the past. Is.

【0008】また、本発明は第2の手段として、ボイラ
炉壁管等に使用される材料の大気中での低サイクル疲労
強度に硫化水素含有ガス中での疲労強度の低下係数を掛
けることによって標準硫化水素環境下での疲労曲線を求
め、同標準硫化水素環境下での疲労曲線と当該部位にお
ける炉壁管等の最大ひずみ範囲から、標準硫化水素環境
下での溝状腐食等の管材損傷の発生までの破壊繰り返し
数を求め、あらかじめ求めた硫化水素ガス濃度と破壊繰
り返し数低下率との関係及び実機の硫化水素ガス濃度か
ら当該実機における硫化水素環境下での破壊繰り返し数
低下率を求め、同破壊繰り返し数低下率を前記標準硫化
水素環境下での溝状腐食等の管材損傷の発生までの破壊
繰り返し数に乗算して実機における硫化水素環境下での
破壊繰り返し数を求め、この数値に基づき前記管材損傷
の状況を判定評価するボイラ炉壁管等の寿命評価方法を
提供するものである。
As a second means of the present invention, the low cycle fatigue strength of the material used for the boiler furnace wall tube and the like in the atmosphere is multiplied by the reduction coefficient of the fatigue strength in the gas containing hydrogen sulfide. Obtain a fatigue curve in a standard hydrogen sulfide environment, and from the fatigue curve in the same standard hydrogen sulfide environment and the maximum strain range of the furnace wall tube, etc., in the standard hydrogen sulfide environment, pipe damage such as groove corrosion in a standard hydrogen sulfide environment The number of repetitions of fracture until the occurrence of is determined, and the relationship between the hydrogen sulfide gas concentration and the rate of decrease in the number of fracture repetitions obtained in advance and the rate of decrease in the number of fracture repetitions in the actual machine in the hydrogen sulfide environment are determined from the hydrogen sulfide gas concentration The same as the above, the rate of decrease in the number of repeated fractures is multiplied by the number of repeated fractures until the occurrence of pipe material damage such as groove corrosion in the standard hydrogen sulfide environment to obtain the number of repeated fractures in the actual hydrogen sulfide environment. Because, there is provided a life evaluation method of the boiler furnace wall tubes or the like for determining evaluate the status of the tubing damage on the basis of this value.

【0009】すなわち、同第2の手段によれば、前記第
1の手段に準じ、評価対象となるボイラ炉壁管等の材料
の、大気中における低サイクル疲労強度に、同材料の硫
化水素含有ガス中での疲労強度の低下係数を掛け算して
標準硫化水素環境下での疲労曲線を求め、この疲労曲線
と当該部位における前記材料の最大ひずみ範囲から溝状
腐食等の管材損傷の発生までの破壊繰り返し数を求め、
更に、予め求めた硫化水素ガス濃度と破壊繰り返し数低
下率等から実機の硫化水素環境下での破壊繰り返し数低
下率を求め、これを先に求めた標準硫化水素環境下での
破壊繰り返し数に乗算することにより実機における硫化
水素環境下での破壊繰り返し数を求め、この数値を以て
前記管材損傷の状況を判定評価し、寿命評価を行う様に
したので、従来のように足場を架設して目視によって検
査するという大掛かりな対応から脱却し、検査費の低減
を図る様にしたものである。
That is, according to the second means, in accordance with the first means, the material such as the boiler furnace wall tube to be evaluated has a low cycle fatigue strength in the atmosphere and has a high hydrogen sulfide content. Obtain a fatigue curve in a standard hydrogen sulfide environment by multiplying the fatigue strength reduction factor in gas, from this fatigue curve and the maximum strain range of the material in the relevant part to the occurrence of tube material damage such as groove corrosion Find the number of repetitions of destruction,
Furthermore, from the previously determined hydrogen sulfide gas concentration and the rate of reduction in the number of fracture repetitions, the rate of reduction in the number of fracture repetitions in the actual hydrogen sulfide environment was calculated, and this was used as the previously obtained number of fracture repetitions in the standard hydrogen sulfide environment. By multiplying the number of repeated fractures in the hydrogen sulfide environment in the actual machine by multiplying, the situation of the damage of the pipe material was judged and evaluated based on this number, and the life was evaluated. It is intended to reduce the inspection cost by moving away from the large-scale response of inspecting.

【0010】[0010]

【発明の実施の形態】本発明の実施の第1形態について
図1に基づいて説明する。図1は本実施の形態のボイラ
炉壁管等の寿命評価方法において、炉壁管を構成する素
材の低サイクル疲労曲線を示す説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram showing a low cycle fatigue curve of a material forming the furnace wall tube in the life evaluation method for a boiler furnace wall tube according to the present embodiment.

【0011】ボイラの炉壁管として、使用される主要材
料の一つに、2.25Cr−1Mo鋼があり、本実施の
形態においてはこの材料を用いたボイラ炉壁管を対象と
して考察を進めることとする。
2.25Cr-1Mo steel is one of the main materials used as the furnace wall tube of a boiler. In the present embodiment, consideration will be given to the boiler furnace wall tube using this material. I will.

【0012】本出願の発明者らは、実機での溝状腐食の
発生領域および発生した溝状腐食の金属学的調査を実施
した結果、ボイラ内の硫化水素濃度ならびにボイラ炉壁
管に加えられる応力の繰り返し(灰除去装置の定期的な
運用による熱負荷の変化によって生じる熱応力の繰り返
し)と、溝状腐食の発生との間にはそれぞれ一定の相関
があることを見出した。
The inventors of the present application conducted a metallurgical investigation of the area where groove corrosion occurred and the groove corrosion that occurred in the actual equipment, and as a result, the hydrogen sulfide concentration in the boiler and the boiler furnace wall tube were added. It has been found that there is a certain correlation between repeated stress (repeated thermal stress caused by changes in heat load due to regular operation of the ash removal device) and occurrence of groove corrosion.

【0013】そこで、実機における溝状腐食を再現する
ものとして、温度を変動できる環境で、種々の燃焼ガス
を模擬したガス環境により低サイクル疲労試験が行える
試験装置を用いて更に究明を行った。
Therefore, as a reproduction of groove corrosion in an actual machine, further investigation was performed using a test apparatus capable of performing a low cycle fatigue test in a gas environment simulating various combustion gases in an environment where the temperature can be changed.

【0014】その結果、硫化水素含有環境下では材料の
低サイクル疲労強度が低下することを確認し、ボイラ炉
壁管等で使用される主要材料(2.25Cr−1Mo
鋼)について大気中における低サイクル疲労強度に対す
る硫化水素ガス環境での低サイクル疲労強度の低下比率
を求め、これを活用することを見出した。
As a result, it was confirmed that the low cycle fatigue strength of the material was lowered in the environment containing hydrogen sulfide, and the main material (2.25Cr-1Mo) used for the boiler furnace wall tube etc.
Steel), the reduction ratio of the low cycle fatigue strength in the hydrogen sulfide gas environment to the low cycle fatigue strength in the atmosphere was determined, and it was found to be utilized.

【0015】すなわち本実施の形態においては、まず、
ボイラ炉壁管等に使用される材料(ここでは2.25C
r−1Mo鋼を採用)の大気中での低サイクル疲労強度
を求め、図1に示す様に大気中の疲労曲線Aを得た。
That is, in the present embodiment, first,
Materials used for boiler furnace wall tubes, etc. (here, 2.25C
The low cycle fatigue strength in the atmosphere (using r-1Mo steel) was obtained, and the fatigue curve A in the atmosphere was obtained as shown in FIG.

【0016】この材料のひずみ範囲(%)、すなわち、
前記材料の試片の一定長さLにおける、{(Lの最大ひ
ずみ−Lの最小ひずみ)/L}×100を計算で求める
と、その最大値が概ね0.3%であることを知った上、
この材料の硫化水素含有ガス中での疲労強度の低下係数
を求めた。
The strain range (%) of this material, that is,
When {(maximum strain of L-minimum strain of L) / L} × 100 in a constant length L of the material sample was calculated, it was found that the maximum value was approximately 0.3%. Up,
The reduction coefficient of the fatigue strength of this material in the gas containing hydrogen sulfide was determined.

【0017】この疲労強度の低下係数は、(ひずみ範囲
0.3%での硫化水素環境での破壊繰り返し数)/(ひ
ずみ範囲0.3%での大気中の破壊繰り返し数)、とし
て求められ、本実施の形態においては概ね1/5であっ
た。
The reduction coefficient of this fatigue strength is obtained as (the number of repeated fractures in a hydrogen sulfide environment in a strain range of 0.3%) / (the number of repeated fractures in the atmosphere in a strain range of 0.3%). In the present embodiment, it was about 1/5.

【0018】次いで前記した大気中で求めた疲労曲線A
に前記した疲労強度の低下係数の1/5を掛け算して、
図1に示すように硫化水素環境下での疲労曲線Hを得
た。
Next, the fatigue curve A obtained in the atmosphere described above
Multiply by 1/5 of the above-mentioned fatigue strength reduction coefficient,
As shown in FIG. 1, a fatigue curve H in a hydrogen sulfide environment was obtained.

【0019】他方、既に運転時間が10万時間に達する
石炭焚き火力ボイラにおいて、使用される燃料と空燃比
から炉内の硫化水素ガス濃度を求め、これが100pp
mを越える領域を硫化水素濃度発生領域とした。
On the other hand, in a coal-fired thermal power boiler that has already reached an operating time of 100,000 hours, the hydrogen sulfide gas concentration in the furnace was determined from the fuel used and the air-fuel ratio, and this was 100 pp.
A region exceeding m was defined as a hydrogen sulfide concentration generation region.

【0020】さらに、前記ボイラにおいて炉壁に集積す
るスラグを除去する炉壁のデスラッガの運用状況から、
デスラッガ運用による発生熱ひずみを計算によって求め
た。その結果最大ひずみ範囲は0.3%であった。
Further, from the operating condition of the deslagger on the furnace wall for removing the slag accumulated on the furnace wall in the boiler,
The thermal strain generated by the operation of Deslugger was calculated. As a result, the maximum strain range was 0.3%.

【0021】図1に示す様に、本実施の形態で用いた材
料によれば、ひずみ範囲0.3%での大気中の破断繰り
返し数は1×105 回であったが、硫化水素含有ガス中
ではこれが繰り返し数で1/5に低下し、同硫化水素含
有ガス雰囲気ではひずみ範囲0.3%での破断繰り返し
数は2×104 回である。
As shown in FIG. 1, according to the material used in the present embodiment, the number of repeated fractures in the atmosphere in the strain range of 0.3% was 1 × 10 5 , but hydrogen sulfide was contained. In gas, this decreases to 1/5 in the number of repetitions, and in the same hydrogen sulfide-containing gas atmosphere, the number of repetitions of fracture in the strain range of 0.3% is 2 × 10 4 .

【0022】そして前記ボイラにおいては、デスラッガ
は5hに1回使用されていることから、本ユニットでの
デスラッガ周囲の最大熱応力発生位置での溝状腐食発生
寿命消費率は5×2×104 =1×105 hとなる。
In the boiler, since the deslagger is used once every 5 hours, the groove corrosion occurrence life consumption rate at the maximum thermal stress generation position around the deslugger in this unit is 5 × 2 × 10 4. = 1 × 10 5 h

【0023】前記したようにこのボイラユニットでは、
既に運転時間が10万時間(105h)に達していたこ
とから、定期点検時に最大応力発生位置の目視検査を実
施したところ肉厚6.5mmの管に最大2.8mm深さ
の溝状腐食の発生が検出された。
As described above, in this boiler unit,
Since the operating time had already reached 100,000 hours (10 5 h), a visual inspection of the maximum stress generation position was carried out at the time of periodic inspection, and a pipe with a thickness of 6.5 mm and a groove shape with a maximum depth of 2.8 mm was formed. Occurrence of corrosion was detected.

【0024】すなわち、図1に示すように、大気中で求
めた疲労曲線Aに対して所定の低下係数を考慮して硫化
水素環境下での疲労曲線Hを求めれば、この疲労曲線H
と当該部位における炉壁管等の最大ひずみ範囲から、溝
状腐食の発生までの応力繰り返し数(破壊繰り返し数と
もいう)を求め、この数値に基づき前記溝状腐食の状況
を判定できることが確認された。
That is, as shown in FIG. 1, if a fatigue curve H in a hydrogen sulfide environment is obtained in consideration of a predetermined reduction coefficient with respect to the fatigue curve A obtained in the atmosphere, this fatigue curve H
It was confirmed that the number of stress repetitions (also called the number of fracture repetitions) until the occurrence of groove corrosion was obtained from the maximum strain range of the furnace wall tube, etc. at the relevant part and the situation of the groove corrosion could be determined based on this value. It was

【0025】以上本実施の形態によれば、従来はボイラ
停止中に足場を架設して目視によって検査していた溝状
腐食損傷を、当該ボイラに使用されている燃料の組成、
空燃比から予想される硫化水素ガスの存在領域と、当該
部位に発生する熱応力の繰り返し(応力繰り返し数又は
破壊繰り返し数)から精度良く予測することができるの
で、前記足場の設置、目視による検査等々の工程を不要
とし、検査費の低減に大きく貢献することができたもの
である。
As described above, according to the present embodiment, the groove-shaped corrosion damage, which was conventionally inspected visually by constructing the scaffold while the boiler is stopped, is determined by the composition of the fuel used in the boiler,
Since it is possible to accurately predict from the existence region of hydrogen sulfide gas expected from the air-fuel ratio and the repetition of thermal stress (stress repetition number or fracture repetition number) generated in the relevant part, installation of the scaffold, visual inspection This eliminates the need for various steps and contributes greatly to reducing inspection costs.

【0026】次に本発明の実施の第2形態について、図
2、図3に基づいて説明する。図2は本実施の形態のボ
イラ炉壁管等の寿命評価方法において、2.25Cr−
1Mo鋼の硫化水素含有ガス環境での硫化水素濃度と低
サイクル疲労損傷度との関係を示す模式図、図3は本実
施の形態における溝状腐食発生寿命消費率とき裂深さの
関係を示す説明図である。
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 2 shows a method for evaluating the life of a boiler furnace wall tube, etc.
FIG. 3 is a schematic diagram showing the relationship between the hydrogen sulfide concentration in a hydrogen sulfide-containing gas environment and the low cycle fatigue damage degree of 1Mo steel, and FIG. 3 shows the relationship between the groove corrosion occurrence life consumption rate and the crack depth in the present embodiment. FIG.

【0027】本出願の発明者らは、さらに溝状腐食に関
する実験解析を行った結果、硫化水素含有ガス中での低
サイクル疲労強度には、硫化水素ガス濃度依存性がある
ことを見いだした。すなわち、同じひずみ範囲であって
も硫化水素ガス濃度が高くなるにしたがって破断繰り返
し数は低下するとの知見を得た。
The inventors of the present application further conducted experimental analysis on groove corrosion, and found that the low cycle fatigue strength in the hydrogen sulfide-containing gas depends on the hydrogen sulfide gas concentration. That is, it was found that the number of repeated fractures decreases as the hydrogen sulfide gas concentration increases even within the same strain range.

【0028】従って本実施の形態においては、その前半
の工程として前記実施の第1形態に準じ、ボイラ炉壁管
等に使用される材料の大気中での低サイクル疲労強度を
求め、これに硫化水素含有ガス中での疲労強度の低下係
数を掛け算することによって標準硫化水素ガス濃度下で
の疲労曲線を求め、これと当該部位におけるひずみ範囲
から標準硫化水素ガス濃度下での溝状腐食の発生までの
応力(ひずみ)繰り返し数(破壊繰り返し数)を求め
た。
Therefore, in the present embodiment, as the first half of the process, the low cycle fatigue strength in the atmosphere of the material used for the boiler furnace wall tube and the like is obtained in accordance with the first embodiment and the sulfurization The fatigue curve under the standard hydrogen sulfide gas concentration was obtained by multiplying the fatigue strength reduction coefficient in the hydrogen-containing gas, and the occurrence of groove corrosion under the standard hydrogen sulfide gas concentration was obtained from this and the strain range at the relevant part. The number of repeated stresses (strains) (the number of repeated fractures) was calculated.

【0029】ついで、後半の工程として本実施の形態に
おいて付加された工程に進み、あらかじめ求めた硫化水
素ガス濃度と破壊繰り返し数低下率との関係線図を用い
て計測あるいは計算された実機の硫化水素ガス濃度から
当該硫化水素ガス濃度での破壊繰り返し数低下率を求め
た。
Next, as the latter half of the process, the process added in the present embodiment is proceeded to, and the sulfurization of the actual equipment measured or calculated using the relational diagram of the hydrogen sulfide gas concentration and the reduction rate of the number of repeated repetitions obtained in advance. From the hydrogen gas concentration, the rate of decrease in the number of repeated fractures at the hydrogen sulfide gas concentration was determined.

【0030】そしてこの工程から得られる標準硫化水素
ガス濃度下での溝状腐食発生繰り返し数と、実機硫化水
素ガス濃度での破壊繰り返し数低減率とを乗ずることに
よって実機硫化水素ガス濃度での破壊繰り返し数を求
め、この数値に基づいて溝状腐食の状況を判定できる様
にしたものである。
Destruction at the actual hydrogen sulfide gas concentration is obtained by multiplying the number of repetitions of occurrence of groove-like corrosion under the standard hydrogen sulfide gas concentration obtained from this step by the reduction repetition number reduction rate at the actual hydrogen sulfide gas concentration. The number of repetitions is obtained, and the state of groove corrosion can be determined based on this number.

【0031】すなわち、本実施の形態においても、前記
実施の第1形態と同様に、燃料と空燃比から炉内の硫化
水素ガス濃度を求めてこれが100ppmを越える領域
を硫化水素濃度発生領域とし、炉壁のデスラッガの運用
状況から同デスラッガ運用による発生熱ひずみを計算に
よって求め、最大ひずみ範囲は0.3%、材料の破断繰
り返し数は大気中で1×105 回、硫化水素中ではこれ
が繰り返し数で1/5に低下するので標準硫化水素含有
ガス濃度雰囲気(濃度100ppm)で2×104 回で
ある。
That is, also in the present embodiment, as in the first embodiment, the hydrogen sulfide gas concentration in the furnace is determined from the fuel and the air-fuel ratio, and the region where it exceeds 100 ppm is defined as the hydrogen sulfide concentration generation region. The thermal strain generated by the operation of the Deslugger on the furnace wall was calculated and the maximum strain range was 0.3%. The number of repeated fractures of the material was 1 × 10 5 in the atmosphere, and this was repeated in hydrogen sulfide. Since it decreases to ⅕ in terms of number, it is 2 × 10 4 times in a standard hydrogen sulfide-containing gas concentration atmosphere (concentration 100 ppm).

【0032】そして本実施の形態においては、ひずみ範
囲0.3%で種々の硫化水素濃度条件下で実施した低サ
イクル疲労試験から、標準硫化水素ガス濃度での破壊繰
り返し数(2×104 回)を1として、その他の硫化水
素ガス濃度のガス中での破壊繰り返し数の低下係数を求
めて、横軸の硫化水素ガス濃度に対してプロットして第
2図を作成した。
In the present embodiment, from the low cycle fatigue test conducted under various hydrogen sulfide concentration conditions in the strain range of 0.3%, the number of fracture repetitions at the standard hydrogen sulfide gas concentration (2 × 10 4 times) 2) was created by plotting against the hydrogen sulfide gas concentration on the horizontal axis by obtaining the reduction coefficient of the number of repeated fractures in gases having other hydrogen sulfide gas concentrations.

【0033】なお、図2の縦軸は寿命低下率を示してい
るが、硫化水素濃度によって破壊繰り返し数が異なるの
で、硫化水素濃度100ppmのもとでの破壊繰り返し
数に対して、その他の濃度の硫化水素環境でどの程度破
壊繰り返し数が低下するかを示したのが、この寿命低下
率である。
The vertical axis of FIG. 2 represents the life reduction rate. However, since the number of repetitions of destruction differs depending on the concentration of hydrogen sulfide, the number of repetitions of destruction is different from the number of repetitions of destruction at a hydrogen sulfide concentration of 100 ppm. It was this life reduction rate that showed how much the number of repeated fractures decreased in the hydrogen sulfide environment.

【0034】すなわち、寿命低下率を定義すると、寿命
低下率=(硫化水素濃度Xppmのもとでのひずみ範囲
0.3%での破壊繰り返し数)/(硫化水素濃度100
ppmのもとでのひずみ範囲0.3%での破壊繰り返し
数)となる。
That is, when the life reduction rate is defined, the life reduction rate = (the number of repeated fractures in the strain range 0.3% under the hydrogen sulfide concentration Xppm) / (hydrogen sulfide concentration 100
It is the number of repeated fractures in the strain range of 0.3% under ppm).

【0035】通常のボイラにおいては最大硫化水素濃度
は230ppmで、位置によって硫化水素ガス濃度が異
なっていたことから、図2に示した評価線図を用いて各
位置での硫化水素ガス濃度での溝状腐食寿命を実機の運
転時間で割って求めた寿命消費率とその位置で検出され
た溝状腐食の最大き裂深さとの相関を求めた。
In a normal boiler, the maximum hydrogen sulfide concentration was 230 ppm, and since the hydrogen sulfide gas concentration was different depending on the position, the hydrogen sulfide gas concentration at each position was determined using the evaluation diagram shown in FIG. The correlation between the life consumption rate obtained by dividing the groove corrosion life by the operating time of the actual machine and the maximum crack depth of groove corrosion detected at that position was obtained.

【0036】なお、ここで寿命消費率について補足説明
すると次の通りとなる。 各位置の硫化水素濃度計測値から図2を用いて寿命低
下率xを求める。 当該部位の使用温度でのこの材料の大気中で疲労曲線
と当該部位のひずみ範囲計算(または計測)結果から大
気中での繰り返し数Nair を求める。 この温度でのこの材料の疲労強度の低下係数y(大気
中の繰り返し数に対する標準硫化水素濃度100ppm
での破壊繰り返し数の比:本実施の形態では1/5)か
ら標準硫化水素濃度100ppmのもとでの当該部位の
ひずみ範囲での破壊繰り返し数Nair ×yを求める。さ
らに、当該部位の硫化水素濃度での寿命低下率xを掛け
て、当該部位の硫化水素濃度条件下での当該部位のひず
み範囲のもとで破壊繰り返し数Nair ×x×yを求め
る。 さらに当該ボイラのデスラッガの運用条件(Δt:運
用周期で何時間毎に1回でスラッガを運用しているか)
から、破壊に要する時間をNair ×x×y×Δtとして
求める。 そしてこの破壊に要する時間をこれまでの累積運転時
間で割った値が寿命消費率となる。
The life consumption rate will be supplementarily described below. The life reduction rate x is obtained from the measured hydrogen sulfide concentration at each position with reference to FIG. The number of repetitions N air in the atmosphere is obtained from the fatigue curve of the material in the atmosphere at the operating temperature of the site and the strain range calculation (or measurement) result of the site. Fatigue strength decrease coefficient y of this material at this temperature (standard hydrogen sulfide concentration 100 ppm with respect to the number of repetitions in the atmosphere)
The ratio of the number of repeated fractures in this embodiment: 1/5 in the present embodiment), and the number of repeated fractures N air × y in the strain range of the relevant portion under a standard hydrogen sulfide concentration of 100 ppm is obtained. Further, by multiplying the life reduction rate x at the hydrogen sulfide concentration of the site, the fracture repetition number N air × x × y is obtained under the strain range of the site under the hydrogen sulfide concentration condition of the site. In addition, the operating conditions of the deslagger of the boiler (Δt: how many hours in the operating cycle the slugger is operated once)
From this, the time required for destruction is determined as N air × x × y × Δt. The life consumption rate is the value obtained by dividing the time required for this destruction by the cumulative operating time so far.

【0037】前記〜で説明した寿命消費率を横軸に
とり、き裂深さを縦軸にとると、図3に示すように両者
間には良い相関が認められ、精度良く溝状腐食の発生傾
向を把握できることが明らかになった。
When the horizontal consumption rate is taken as the horizontal axis and the crack depth is taken as the vertical axis described in the above-mentioned items, a good correlation is recognized between the two as shown in FIG. It became clear that the trend could be grasped.

【0038】以上により本実施の形態によれば、従来は
ボイラ停止中に足場を架設して目視によって検査してい
た溝状腐食損傷を、当該ボイラに使用されている燃料の
組成、空燃比から予想される硫化水素ガス濃度と当該部
位に発生する熱応力から精度良く予測することができる
ので、前記足場の設置、目視による検査等々の工程を不
要とし、検査費の低減に大きく貢献することができたも
のである。
As described above, according to the present embodiment, the groove corrosion damage, which was conventionally inspected visually by constructing the scaffold while the boiler is stopped, is determined from the composition of the fuel used in the boiler and the air-fuel ratio. Since it is possible to accurately predict the expected hydrogen sulfide gas concentration and the thermal stress generated in the relevant part, the steps such as the installation of the scaffold and the visual inspection are not required, which greatly contributes to the reduction of the inspection cost. It was made.

【0039】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。
Although the present invention has been described above with reference to the illustrated embodiments, the present invention is not limited to such embodiments.
It goes without saying that various modifications may be made to the specific structure within the scope of the present invention.

【0040】例えば、前記実施の第1、第2形態におい
ては、硫化水素環境下での疲労曲線を求めたのち、この
疲労曲線と炉壁管等の最大ひずみ範囲から溝状腐食の発
生までの応力繰り返し数(破壊繰り返し数)を求めてい
るが、ここで炉壁管等の最大ひずみ範囲に代え、当該部
位に作用する温度履歴から求められる応力を採用するこ
ともできるものである。
For example, in the first and second embodiments described above, after obtaining the fatigue curve in a hydrogen sulfide environment, from this fatigue curve and the maximum strain range of the furnace wall tube to the occurrence of groove corrosion. Although the stress repetition number (failure repetition number) is obtained, the stress obtained from the temperature history acting on the site can be adopted instead of the maximum strain range of the furnace wall tube or the like.

【0041】[0041]

【発明の効果】以上、本出願の請求項1に記載の発明に
よれば、ボイラ炉壁管等に使用される材料の大気中での
低サイクル疲労強度に硫化水素含有ガス中での疲労強度
の低下係数を掛けることによって硫化水素環境下での疲
労曲線を求め、同硫化水素環境下での疲労曲線と当該部
位における炉壁管等の最大ひずみ範囲から、溝状腐食等
の管材損傷の発生までの応力繰り返し数を求め、この数
値に基づき前記管材損傷の状況を判定評価するボイラ炉
壁管等の寿命評価方法を構成しているので、このように
して求めたボイラ炉壁管等の材料における、溝状腐食等
の管材損傷の発生までの応力繰り返し数値を以て前記管
材損傷の状況を判定評価し、寿命評価を行う様にしたの
で、従来のように足場を架設して目視によって検査する
という大掛かりな対応の必要はなくなり、検査費の低減
に大きく貢献することができたものである。
As described above, according to the invention described in claim 1 of the present application, the low cycle fatigue strength of the material used for the boiler furnace wall tube and the like in the atmosphere and the fatigue strength in the hydrogen sulfide-containing gas. The fatigue curve in a hydrogen sulfide environment is obtained by multiplying by the reduction coefficient of Since it constitutes the life evaluation method of the boiler furnace wall tube etc. to determine the stress repetition number up to and judge and evaluate the situation of the pipe material damage based on this value, the material of the boiler furnace wall tube etc. obtained in this way In the above, since the condition of the pipe damage is judged and evaluated by the stress repetition value until the occurrence of the pipe damage such as groove corrosion, the life is evaluated. Large-scale You no longer need of response, in which it was possible to greatly contribute to the reduction of inspection costs.

【0042】また、本出願の請求項2に記載の発明によ
れば、ボイラ炉壁管等に使用される材料の大気中での低
サイクル疲労強度に硫化水素含有ガス中での疲労強度の
低下係数を掛けることによって標準硫化水素環境下での
疲労曲線を求め、同標準硫化水素環境下での疲労曲線と
当該部位における炉壁管等の最大ひずみ範囲から、標準
硫化水素環境下での溝状腐食等の管材損傷の発生までの
破壊繰り返し数を求め、あらかじめ求めた硫化水素ガス
濃度と破壊繰り返し数低下率との関係及び実機の硫化水
素ガス濃度から当該実機における硫化水素環境下での破
壊繰り返し数低下率を求め、同破壊繰り返し数低下率を
前記標準硫化水素環境下での溝状腐食等の管材損傷の発
生までの破壊繰り返し数に乗算して実機における硫化水
素環境下での破壊繰り返し数を求め、この数値に基づき
前記管材損傷の状況を判定評価するボイラ炉壁管等の寿
命評価方法を構成しているので、前記請求項1に記載の
発明に準じて求めたボイラ炉壁管等の材料における、溝
状腐食等の管材損傷の発生までの応力繰り返し数に、予
め求めた硫化水素ガス濃度と破壊繰り返し数低下率等か
ら実機の硫化水素環境下での破壊繰り返し数低下率を求
めてこれを掛け算することにより実機における硫化水素
環境下での破壊繰り返し数を求め、この数値を以て前記
管材損傷の状況を判定評価し、寿命評価を行う様にした
ので、従来のように足場を架設して目視によって検査す
るという大掛かりな対応の必要はなくなり、検査費の低
減に大きく貢献することができたものである。
Further, according to the invention of claim 2 of the present application, the low cycle fatigue strength of the material used for the boiler furnace wall tube and the like in the atmosphere and the reduction of the fatigue strength in the hydrogen sulfide-containing gas. The fatigue curve under the standard hydrogen sulfide environment is obtained by multiplying the coefficient, and from the fatigue curve under the standard hydrogen sulfide environment and the maximum strain range of the furnace wall pipe etc. at the relevant part, the groove shape under the standard hydrogen sulfide environment is obtained. Determine the number of repeated fractures until the occurrence of damage such as corrosion, and determine the relationship between the hydrogen sulfide gas concentration obtained in advance and the rate of decrease in the number of repeated fractures, and from the hydrogen sulfide gas concentration of the actual machine, repeat the fracture in the hydrogen sulfide environment of the actual machine. The rate of decrease in the number of repetitions of the same fracture is multiplied by the number of repetitions of fracture until the occurrence of pipe material damage such as groove corrosion in the standard hydrogen sulfide environment, and the rate of decrease in the number of fractures in the actual hydrogen sulfide environment is destroyed. Since the method for evaluating the life of a boiler furnace wall tube or the like, which determines the number of rebounds and judges and evaluates the state of damage to the tube material based on this number, constitutes the boiler furnace, the boiler furnace determined in accordance with the invention of claim 1 Decrease in the number of repeated fractures in the actual hydrogen sulfide environment based on the concentration of hydrogen sulfide gas and the reduction rate of the number of repeated fractures calculated in advance for the number of repeated stresses until the occurrence of pipe material damage such as groove corrosion in materials such as wall pipes. By calculating the rate and multiplying this, the number of repeated fractures in the hydrogen sulfide environment in the actual machine is obtained, and the situation of damage to the pipe material is evaluated and evaluated based on this number, and the life is evaluated. This eliminates the need for the large-scale response of erection of a scaffold and inspecting visually, which contributed greatly to the reduction of inspection cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1形態に係るボイラ炉壁管等
の寿命評価方法において、炉壁管を構成する素材の低サ
イクル疲労曲線を示す説明図である。
FIG. 1 is an explanatory diagram showing a low cycle fatigue curve of a material forming a furnace wall tube in a life evaluation method for a boiler furnace wall tube and the like according to a first embodiment of the present invention.

【図2】本発明の実施の第2形態に係るボイラ炉壁管等
の寿命評価方法において、硫化水素含有ガス環境での硫
化水素濃度と低サイクル疲労損傷度との関係を示す模式
図である。
FIG. 2 is a schematic diagram showing a relationship between hydrogen sulfide concentration and a low cycle fatigue damage degree in a hydrogen sulfide-containing gas environment in a life evaluation method for a boiler furnace wall tube or the like according to a second embodiment of the present invention. .

【図3】前記実施の第2形態における溝状腐食発生寿命
消費率とき裂深さの関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a groove corrosion occurrence lifetime consumption rate and a crack depth in the second embodiment.

【符号の説明】[Explanation of symbols]

A 大気中の疲労曲線 H 硫化水素環境下の疲労曲線 Fatigue curve in the atmosphere Fatigue curve under H hydrogen sulfide environment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松原 俊郎 長崎市深堀町五丁目717番1号 三菱重工 業株式会社長崎研究所内 Fターム(参考) 2G050 AA01 BA05 CA10 DA03 EA10 EC10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiro Matsubara             5-717-1, Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries             Business Nagasaki Institute F-term (reference) 2G050 AA01 BA05 CA10 DA03 EA10                       EC10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ炉壁管等に使用される材料の大気
中での低サイクル疲労強度に硫化水素含有ガス中での疲
労強度の低下係数を掛けることによって硫化水素環境下
での疲労曲線を求め、同硫化水素環境下での疲労曲線と
当該部位における炉壁管等の最大ひずみ範囲から、溝状
腐食等の管材損傷の発生までの応力繰り返し数を求め、
この数値に基づき前記管材損傷の状況を判定評価するこ
とを特徴とするボイラ炉壁管等の寿命評価方法。
1. A fatigue curve in a hydrogen sulfide environment is obtained by multiplying the low cycle fatigue strength of a material used for a boiler furnace wall tube, etc. in the atmosphere by a reduction coefficient of the fatigue strength in a gas containing hydrogen sulfide. Obtained, from the fatigue curve in the same hydrogen sulfide environment and the maximum strain range of the furnace wall tube, etc. at the site, determine the stress repetition number until the occurrence of tube material damage such as groove corrosion,
A life evaluation method for a boiler furnace wall tube or the like, characterized in that the condition of damage to the pipe material is judged and evaluated based on this numerical value.
【請求項2】 ボイラ炉壁管等に使用される材料の大気
中での低サイクル疲労強度に硫化水素含有ガス中での疲
労強度の低下係数を掛けることによって標準硫化水素環
境下での疲労曲線を求め、同標準硫化水素環境下での疲
労曲線と当該部位における炉壁管等の最大ひずみ範囲か
ら、標準硫化水素環境下での溝状腐食等の管材損傷の発
生までの破壊繰り返し数を求め、あらかじめ求めた硫化
水素ガス濃度と破壊繰り返し数低下率との関係及び実機
の硫化水素ガス濃度から当該実機における硫化水素環境
下での破壊繰り返し数低下率を求め、同破壊繰り返し数
低下率を前記標準硫化水素環境下での溝状腐食等の管材
損傷の発生までの破壊繰り返し数に乗算して実機におけ
る硫化水素環境下での破壊繰り返し数を求め、この数値
に基づき前記管材損傷の状況を判定評価することを特徴
とするボイラ炉壁管等の寿命評価方法。
2. A fatigue curve in a standard hydrogen sulfide environment obtained by multiplying the low cycle fatigue strength of a material used for a boiler furnace wall tube, etc. in the atmosphere by a reduction coefficient of the fatigue strength in a gas containing hydrogen sulfide. From the fatigue curve in the same standard hydrogen sulfide environment and the maximum strain range of the furnace wall tube, etc. in the relevant area, find the number of repeated fractures until the occurrence of tube material damage such as groove corrosion in the standard hydrogen sulfide environment. , The relationship between the hydrogen sulfide gas concentration and the fracture repetition rate reduction rate obtained in advance and the fracture repetition rate reduction rate under the hydrogen sulfide environment in the actual machine from the hydrogen sulfide gas concentration of the actual machine, and the fracture repetition rate decrease rate In the standard hydrogen sulfide environment, the number of repetitions of fracture until pipe material damage such as groove corrosion is multiplied to find the number of repetitions of fracture in the actual hydrogen sulfide environment. A life evaluation method for a boiler furnace wall tube or the like, characterized by judging and evaluating the condition of scratches.
JP2001192732A 2001-06-26 2001-06-26 Method for evaluating lifetime of boiler furnace wall pipe Withdrawn JP2003004201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192732A JP2003004201A (en) 2001-06-26 2001-06-26 Method for evaluating lifetime of boiler furnace wall pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192732A JP2003004201A (en) 2001-06-26 2001-06-26 Method for evaluating lifetime of boiler furnace wall pipe

Publications (1)

Publication Number Publication Date
JP2003004201A true JP2003004201A (en) 2003-01-08

Family

ID=19031145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192732A Withdrawn JP2003004201A (en) 2001-06-26 2001-06-26 Method for evaluating lifetime of boiler furnace wall pipe

Country Status (1)

Country Link
JP (1) JP2003004201A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378400C (en) * 2006-03-20 2008-04-02 上海发电设备成套设计研究所 High-usability designing method and evaluation for boiler of power plant station
JP2009175110A (en) * 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd Method for evaluating lifetime
KR101049126B1 (en) * 2004-07-20 2011-07-14 엘지전자 주식회사 LED window structure of the control panel
JP2014044038A (en) * 2012-08-29 2014-03-13 Kobe Steel Ltd Sulfide corrosion prediction method of boiler furnace wall tube
JP2014228258A (en) * 2013-05-27 2014-12-08 株式会社神戸製鋼所 Boiler furnace wall tube sulfide corrosion prediction method
JP2019158454A (en) * 2018-03-09 2019-09-19 三菱重工業株式会社 Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program
CN117571739A (en) * 2024-01-16 2024-02-20 中国人民解放军陆军装甲兵学院 Pipe wall ablation abrasion degree assessment method based on intelligent algorithm

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049126B1 (en) * 2004-07-20 2011-07-14 엘지전자 주식회사 LED window structure of the control panel
CN100378400C (en) * 2006-03-20 2008-04-02 上海发电设备成套设计研究所 High-usability designing method and evaluation for boiler of power plant station
JP2009175110A (en) * 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd Method for evaluating lifetime
JP2014044038A (en) * 2012-08-29 2014-03-13 Kobe Steel Ltd Sulfide corrosion prediction method of boiler furnace wall tube
JP2014228258A (en) * 2013-05-27 2014-12-08 株式会社神戸製鋼所 Boiler furnace wall tube sulfide corrosion prediction method
JP2019158454A (en) * 2018-03-09 2019-09-19 三菱重工業株式会社 Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program
JP7011496B2 (en) 2018-03-09 2022-01-26 三菱重工業株式会社 Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program
CN117571739A (en) * 2024-01-16 2024-02-20 中国人民解放军陆军装甲兵学院 Pipe wall ablation abrasion degree assessment method based on intelligent algorithm
CN117571739B (en) * 2024-01-16 2024-03-12 中国人民解放军陆军装甲兵学院 Pipe wall ablation abrasion degree assessment method based on intelligent algorithm

Similar Documents

Publication Publication Date Title
WO2016092869A1 (en) Method for evaluating state of member
Cheng et al. An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels
Xiang et al. Ductile cracking simulation of uncracked high strength steel using an energy approach
JP2003004201A (en) Method for evaluating lifetime of boiler furnace wall pipe
CN110907475A (en) Method for evaluating residual life of martensite heat-resistant steel
JP2005024371A (en) Hydrogen embrittlement cracking determination method for material used under high-temperature high-pressure hydrogen environment
Yan et al. Prediction of fatigue life and its probability distribution of notched friction welded joints under variable-amplitude loading
CN108828069A (en) A kind of key component fatigue life based on ultrasonic quantitative data determines longevity method
JPH1114782A (en) Method and device for evaluating deterioration of piping
JP3652418B2 (en) Corrosion fatigue damage diagnosis prediction method for boiler water wall pipe
Liaw et al. Estimating remaining life of elevated-temperature steam pipes—Part II. Fracture mechanics analyses
CN112504863A (en) Method for quantitatively evaluating service life of material
JPH05297181A (en) Method for estimating stress corrosive cracking life of structure, and test device therefor
JP2007333638A (en) Stability evaluation method of brittle structure, stability evaluating device, and stability evaluation program
JP2010071748A (en) Method for detecting damage of concrete pole
JP4464548B2 (en) Method for analyzing surface crack depth of metal members
KR100971898B1 (en) Estimating superannuation method of facilities
JP2000234986A (en) System and method for evaluating crack development
JP2008032480A (en) Damage evaluation method of heat-resistant steel, and damage evaluation device thereof
JP2008051513A (en) Evaluation method of stress corrosion crack developing speed
JPH11294708A (en) Life judging method of heat transfer tube
Schmiedt et al. Influence of condensate corrosion on tensile and fatigue properties of brazed stainless steel joints AISI 304L/BNi‐2 for automotive exhaust systems: Einfluss von Kondensatkorrosion auf die Zug‐und Ermüdungseigenschaften der Edelstahllötverbindungen 1.4307/Ni 620 für Automobilabgassysteme
Farrell et al. Crack growth monitoring on industrial plant using established electrical resistance scanner technology
JP2004085347A (en) Method for evaluating life of heat-resistant steel
JP2012108051A (en) Method of predicting damage in heat-resistant steel weld zone

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902