JP2014228258A - Boiler furnace wall tube sulfide corrosion prediction method - Google Patents

Boiler furnace wall tube sulfide corrosion prediction method Download PDF

Info

Publication number
JP2014228258A
JP2014228258A JP2013111022A JP2013111022A JP2014228258A JP 2014228258 A JP2014228258 A JP 2014228258A JP 2013111022 A JP2013111022 A JP 2013111022A JP 2013111022 A JP2013111022 A JP 2013111022A JP 2014228258 A JP2014228258 A JP 2014228258A
Authority
JP
Japan
Prior art keywords
corrosion
furnace wall
distribution
boiler
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013111022A
Other languages
Japanese (ja)
Other versions
JP5990811B2 (en
Inventor
陽司 田窪
Yoji Takubo
陽司 田窪
海洋 朴
Umihiro Boku
海洋 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013111022A priority Critical patent/JP5990811B2/en
Publication of JP2014228258A publication Critical patent/JP2014228258A/en
Application granted granted Critical
Publication of JP5990811B2 publication Critical patent/JP5990811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To predict a furnace wall tube sulfide corrosion degree using calculation of reaction fluid.SOLUTION: A concentration relational expression between a gas concentration of chemistry element that can be attained through calculation of reaction fluid at a step S4 and a gas concentration of specified chemistry element that cannot be attained through calculation of reaction fluid at the step S4 is obtained using thermodynamics balance calculation at a step S13 (step S14). Then, a gas concentration distribution in an analysis target region of the specified chemistry element that cannot be attained under a calculation of reaction fluid at the step S4 is calculated using the temperature distribution and gas concentration distribution calculated at a step S31 and a concentration relational expression calculated at the step S14 (step S32). Then, a distribution of corrosion amount in a region to be analyzed is calculated using a corrosion rate expression, a furnace wall tube temperature calculated at step S21, and a gas concentration distribution of the specified chemistry element calculated at the step S32 (step S41). Then, a distribution of a furnace wall tube sulfide corrosion in the object region to be analyzed is estimated using the calculated distribution of a corrosion amount (S42).

Description

本発明は、ボイラ炉壁管の硫化腐食を予測するボイラ炉壁管の硫化腐食予測方法に関する。   The present invention relates to a method for predicting sulfide corrosion of a boiler furnace wall tube, which predicts sulfide corrosion of a boiler furnace wall tube.

従来、火力ボイラの炉内に強い還元性雰囲気が形成されることで、炉を構成する炉壁管等の腐食・減肉(以下、これらを単に腐食と称する。)の進行速度が増大するという問題がある。   Conventionally, the formation of a strong reducing atmosphere in the furnace of a thermal boiler increases the rate of progress of corrosion / thinning (hereinafter simply referred to as corrosion) of a furnace wall tube constituting the furnace. There's a problem.

そこで、特許文献1には、ボイラの炉壁管などの腐食と、硫化水素ガスの濃度との関係に基づいて炉壁管の寿命を評価する方法が開示されている。   Therefore, Patent Document 1 discloses a method for evaluating the life of a furnace wall tube based on the relationship between the corrosion of a furnace wall tube of a boiler and the concentration of hydrogen sulfide gas.

しかしながら、火力ボイラを様々な燃焼条件で稼働させる事情があることや、燃料である石炭の種別が多様化していることから、硫化水素(HS)ガスのみを評価基準とすることは必ずしも妥当であるとは言えず、腐食の正確な評価が行えないと考えられる。 However, it is not always appropriate to use only hydrogen sulfide (H 2 S) gas as an evaluation standard because there are circumstances in which thermal boilers are operated under various combustion conditions and the types of coal used as fuel are diversified. However, it cannot be said that accurate evaluation of corrosion cannot be performed.

そこで、特許文献2には、材料の腐食量を酸素ガスの分圧及び硫黄ガスの分圧のみで評価する硫化腐食の評価方法が開示されている。   Therefore, Patent Document 2 discloses a method for evaluating sulfide corrosion in which the amount of corrosion of a material is evaluated only by the partial pressure of oxygen gas and the partial pressure of sulfur gas.

特開2003−4201号公報Japanese Patent Laid-Open No. 2003-4201 特開2011−39011号公報JP 2011-39011 A

ところで、特許文献2に開示されている方法では、H、HO、CO、CO、HSガスの組成(濃度)を実際に測定することで、酸素ガスの分圧及び硫黄ガスの分圧を求めている。そこで、これらのガス濃度を実測ではなく反応流体計算で求めることが考えられる。しかし、計算負荷の都合上、微粉炭の燃焼時に生成される全ての化学種を考慮した反応流体計算には多くの困難が伴う。そこで、多くの場合、計算対象となる化学種を限定して反応流体計算を簡略化した反応モデルが使用される。しかしながら、このような反応モデルには、後に硫化腐食を評価する際に必要となる化学種が組み込まれていないものが多い。 By the way, in the method disclosed in Patent Document 2, the partial pressure of oxygen gas and sulfur gas are measured by actually measuring the composition (concentration) of H 2 , H 2 O, CO, CO 2 , and H 2 S gas. Seeking the partial pressure. Therefore, it is conceivable to obtain these gas concentrations not by actual measurement but by reaction fluid calculation. However, due to the computational load, many difficulties are involved in the reaction fluid calculation considering all chemical species generated during the combustion of pulverized coal. Therefore, in many cases, a reaction model in which reaction fluid calculation is simplified by limiting chemical species to be calculated is used. However, many of these reaction models do not incorporate chemical species that will be required later when evaluating sulfide corrosion.

本発明の目的は、反応流体計算を用いて炉壁管の硫化腐食度合いを予測することが可能なボイラ炉壁管の硫化腐食予測方法を提供することである。   An object of the present invention is to provide a method for predicting sulfidation corrosion of a boiler wall tube, which can predict the degree of sulfidation corrosion of the furnace wall tube using reaction fluid calculation.

本発明におけるボイラ炉壁管の硫化腐食予測方法は、微粉炭を燃料とするボイラの炉壁管の腐食量を用いて前記炉壁管の硫化腐食度合いを予測するボイラ炉壁管の硫化腐食予測方法において、前記ボイラ内に前記ボイラの炉壁に沿って設けた解析対象領域において、前記微粉炭の燃焼時に生成される全ての化学種の中から計算対象となる化学種を限定して、反応流体計算を行う反応流体計算ステップと、熱力学平衡計算により、前記反応流体計算で得ることが可能な化学種のガス濃度と、前記腐食量を算出するのに必要であって、前記反応流体計算では得ることができない特定化学種のガス濃度との濃度関係式を求める濃度関係式導出ステップと、前記炉壁管を形成する金属材料の高温腐食試験により、前記炉壁管の温度と、前記特定化学種のガス濃度と、経過時間との関係式である腐食速度式を求める腐食速度式導出ステップと、前記反応流体計算の結果に基づいて、前記解析対象領域における温度分布、および、前記反応流体計算で得られた化学種の前記解析対象領域におけるガス濃度分布を算出する温度・濃度算出ステップと、前記温度・濃度算出ステップで算出した温度分布およびガス濃度分布と、前記濃度関係式とを用いて、前記解析対象領域における前記特定化学種のガス濃度分布を算出する濃度算出ステップと、前記腐食速度式と、前記炉壁管の温度と、前記濃度算出ステップで算出した前記特定化学種のガス濃度分布とを用いて、前記解析対象領域における前記腐食量の分布を算出する腐食量算出ステップと、前記腐食量算出ステップで算出した前記腐食量の分布を用いて、前記解析対象領域における前記炉壁管の硫化腐食度合いの分布を予測する予測ステップと、を有することを特徴とする。   The method for predicting sulfidation corrosion of a boiler furnace wall pipe according to the present invention predicts the degree of sulfidation corrosion of a boiler furnace wall pipe that predicts the degree of sulfidation corrosion of the furnace wall pipe using the amount of corrosion of the furnace wall pipe of a boiler fueled with pulverized coal. In the method, in the analysis target region provided along the furnace wall of the boiler in the boiler, the chemical species to be calculated are limited from all the chemical species generated during the combustion of the pulverized coal, and the reaction A reaction fluid calculation step for performing a fluid calculation, a gas concentration of a chemical species that can be obtained by the reaction fluid calculation by a thermodynamic equilibrium calculation, and the amount of corrosion necessary to calculate the reaction fluid calculation. The concentration relational expression derivation step for obtaining the concentration relational expression with the gas concentration of the specific chemical species that cannot be obtained by the above, and the high temperature corrosion test of the metal material forming the furnace wall pipe, the temperature of the furnace wall pipe, and the specific Chemical species Based on the result of the reaction fluid calculation based on the corrosion rate equation derivation step for obtaining the corrosion rate equation that is a relational expression between the gas concentration and the elapsed time, the temperature distribution in the analysis target region and the reaction fluid calculation are obtained. Using the temperature / concentration calculation step for calculating the gas concentration distribution in the analysis target region of the chemical species obtained, the temperature distribution and gas concentration distribution calculated in the temperature / concentration calculation step, and the concentration relational expression, A concentration calculating step for calculating a gas concentration distribution of the specific chemical species in the analysis target region, the corrosion rate equation, a temperature of the furnace wall tube, and a gas concentration distribution of the specific chemical species calculated in the concentration calculating step Corrosion amount calculation step for calculating the distribution of the corrosion amount in the analysis target region, and the distribution of the corrosion amount calculated in the corrosion amount calculation step Used, and having a prediction step of predicting the distribution of the sulfidation corrosion degree of the furnace wall tubes in the analysis target area.

上記の構成によれば、熱力学平衡計算により、反応流体計算で得ることが可能な化学種のガス濃度と、反応流体計算では得ることができない特定化学種のガス濃度との濃度関係式を求めることで、算出した温度分布およびガス濃度分布と濃度関係式とを用いて、反応流体計算では得ることができない特定化学種の解析対象領域におけるガス濃度分布を算出することができる。これにより、腐食速度式と、炉壁管の温度と、特定化学種のガス濃度分布とを用いて、解析対象領域における腐食量の分布を算出することができて、解析対象領域における炉壁管の硫化腐食度合いの分布を予測することができる。具体的には、解析対象領域のどの辺りに、いつごろ、どのくらい、腐食が生じるのかを予測することができる。このように、熱力学平衡計算により求めた濃度関係式を用いて、反応流体計算では得ることができない特定化学種のガス濃度を補間してやることにより、反応流体計算を用いて炉壁管の硫化腐食度合いを予測することができる。   According to the above configuration, the concentration relational expression between the gas concentration of the chemical species that can be obtained by the reaction fluid calculation and the gas concentration of the specific chemical species that cannot be obtained by the reaction fluid calculation is obtained by thermodynamic equilibrium calculation. By using the calculated temperature distribution, gas concentration distribution, and concentration relational expression, the gas concentration distribution in the analysis target region of the specific chemical species that cannot be obtained by the reaction fluid calculation can be calculated. As a result, the corrosion rate distribution in the analysis target region can be calculated using the corrosion rate equation, the temperature of the furnace wall tube, and the gas concentration distribution of the specific chemical species. The distribution of the degree of sulfidation corrosion can be predicted. Specifically, it is possible to predict where and how much corrosion will occur in which region of the analysis target region. In this way, by interpolating the gas concentration of a specific chemical species that cannot be obtained by reaction fluid calculation using the concentration relational equation obtained by thermodynamic equilibrium calculation, sulfidation corrosion of the furnace wall tube using reaction fluid calculation The degree can be predicted.

また、本発明におけるボイラ炉壁管の硫化腐食予測方法において、前記解析対象領域は前記ボイラの炉壁近傍に設けられて、複数のブロックに区切られており、前記温度・濃度算出ステップは、前記ブロック毎に、温度の平均値、および、前記反応流体計算で得られた化学種のガス濃度の平均値を算出することで、前記ボイラの炉壁近傍における温度分布およびガス濃度分布を算出し、前記濃度算出ステップは、前記ブロック毎に、前記特定化学種のガス濃度を算出することで、前記ボイラの炉壁近傍における前記特定化学種のガス濃度分布を算出し、前記腐食量算出ステップは、前記ブロック毎に、前記腐食量を算出することで、前記ボイラの炉壁近傍における前記腐食量の分布を算出し、前記予測ステップは、経過時間毎、前記ブロック毎に、前記炉壁管の硫化腐食度合いを予測することで、前記ボイラの炉壁近傍における前記炉壁管の硫化腐食度合いの分布を予測してよい。上記の構成によれば、解析対象領域を複数のブロックに区切り、ブロック毎に温度およびガス濃度の平均値を算出することで、ボイラの炉壁近傍における温度分布およびガス濃度分布を算出する。そして、ブロック毎に、特定化学種のガス濃度、腐食量を求めて、経過時間毎、ブロック毎に、炉壁管の硫化腐食度合いを予測することで、評価を行い易くすることができる。   Moreover, in the sulfide corrosion prediction method for a boiler furnace wall tube according to the present invention, the analysis target region is provided in the vicinity of the furnace wall of the boiler, and is divided into a plurality of blocks. For each block, by calculating the average value of the temperature and the average value of the gas concentration of the chemical species obtained by the reaction fluid calculation, the temperature distribution and gas concentration distribution in the vicinity of the furnace wall of the boiler are calculated, The concentration calculating step calculates the gas concentration distribution of the specific chemical species in the vicinity of the boiler wall of the boiler by calculating the gas concentration of the specific chemical species for each block, and the corrosion amount calculating step includes: By calculating the amount of corrosion for each block, the distribution of the amount of corrosion in the vicinity of the furnace wall of the boiler is calculated. To, to predict the sulfidation corrosion degree of the furnace wall tube, or to predict the distribution of sulfidation corrosion degree of the furnace wall tubes in the furnace wall near the boiler. According to the above configuration, the temperature distribution and the gas concentration distribution in the vicinity of the boiler wall of the boiler are calculated by dividing the analysis target region into a plurality of blocks and calculating an average value of the temperature and the gas concentration for each block. And it can make evaluation easy by calculating | requiring the gas density | concentration and corrosion amount of specific chemical species for every block, and estimating the sulfurization corrosion degree of a furnace wall pipe for every elapsed time and every block.

また、本発明におけるボイラ炉壁管の硫化腐食予測方法において、前記反応流体計算ステップは、前記反応流体計算の結果が実測データに合致するまで、石炭燃焼に関わるパラメータを変えながら前記反応流体計算を繰り返してよい。上記の構成によれば、反応流体計算の結果が実測データに合致するまで、石炭燃焼に関わるパラメータを変えながら反応流体計算を繰り返すことで、実際のボイラでの燃焼に沿った計算結果を得ることができる。これにより、炉壁管の硫化腐食度合いを高精度で予測することができる。   Further, in the sulfide corrosion prediction method for a boiler furnace wall tube according to the present invention, the reaction fluid calculation step performs the reaction fluid calculation while changing parameters related to coal combustion until the result of the reaction fluid calculation matches the actual measurement data. You can repeat it. According to the above configuration, by repeating the reaction fluid calculation while changing the parameters related to coal combustion until the result of the reaction fluid calculation matches the actual measurement data, the calculation result along the combustion in the actual boiler can be obtained. Can do. Thereby, the sulfurization corrosion degree of the furnace wall tube can be predicted with high accuracy.

本発明のボイラ炉壁管の硫化腐食予測方法によると、熱力学平衡計算により求めた濃度関係式を用いて、反応流体計算では得ることができない特定化学種のガス濃度を補間してやることにより、反応流体計算を用いて炉壁管の硫化腐食度合いを予測することができる。   According to the method for predicting sulfidation corrosion of boiler furnace wall pipes of the present invention, by using the concentration relational expression obtained by thermodynamic equilibrium calculation, by interpolating the gas concentration of a specific chemical species that cannot be obtained by reaction fluid calculation, the reaction Fluid calculation can be used to predict the degree of sulfidation corrosion of furnace wall tubes.

ボイラの模式図である。It is a schematic diagram of a boiler. ボイラ炉壁管の硫化腐食予測方法を示すフローチャートである。It is a flowchart which shows the sulfide corrosion prediction method of a boiler furnace wall pipe. ボイラの透過斜視図である。It is a permeation | transmission perspective view of a boiler. COのガス濃度とHSのガス濃度との関係式を示す図である。It is a diagram showing the relationship between the gas concentration and the gas concentration of H 2 S in the CO. 高温ガス腐食試験の試験結果を示す図である。It is a figure which shows the test result of a high temperature gas corrosion test. 腐食速度を決めるパラメータとHS濃度との関係を示す図である。It is a diagram showing the relationship between the parameters and the concentration of H 2 S to determine the corrosion rate. 腐食予測結果をマッピングした図である。It is the figure which mapped the corrosion prediction result.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(ボイラの構成)
本実施形態によるボイラ炉壁管の硫化腐食予測方法(硫化腐食予測方法)は、ボイラ1に対して行われる。ボイラ1は、図1に示すように、粉砕機5から供給された微粉炭を、バーナ3等で燃焼させて熱を発生させる火炉2と、火炉2の上方から下流にわたって配置され、内部に燃焼ガスを流動させて熱交換を行う伝熱管群6と、を備えており、ボイラ1で発生した燃焼ガスは煙突から排出されるようになっている。また、伝熱管群6は、火炉2の上方に所定の間隔で並列配置された二次過熱器、三次過熱器、最終過熱器、二次再熱器を備える上部伝熱部と、火炉2の後部に配置された一次過熱器、一次再熱器、節炭器を備える後部伝熱部と、を有している。
(Boiler configuration)
The boiler furnace wall pipe sulfide corrosion prediction method (sulfide corrosion prediction method) according to this embodiment is performed on the boiler 1. As shown in FIG. 1, the boiler 1 is disposed from the upper side to the lower side of the furnace 2 in which the pulverized coal supplied from the pulverizer 5 is burned by the burner 3 or the like to generate heat, and burns inside. And a heat transfer tube group 6 that exchanges heat by flowing gas, and the combustion gas generated in the boiler 1 is discharged from the chimney. The heat transfer tube group 6 includes an upper heat transfer section including a secondary superheater, a tertiary superheater, a final superheater, and a secondary reheater arranged in parallel at a predetermined interval above the furnace 2, And a rear heat transfer section including a primary superheater, a primary reheater, and a economizer disposed at the rear.

本実施形態において、火炉2の下部には、複数のバーナ3が上下3段に分かれて接続されている。また、火炉2の上部であってバーナ3の上方には、火炉2内に二段燃焼用空気を供給する複数の二段燃焼用空気ポート4が、上下2段に分かれて接続されている。なお、図1においては、火炉2の図中左側の側壁に接続されたバーナ3および二段燃焼用空気ポート4のみを図示しているが、火炉2の図中正面の側壁や図中背面の側壁、図中右側の側壁にもバーナ3および二段燃焼用空気ポート4が複数接続されている。また、バーナ3や二段燃焼用空気ポート4の配置は、図示されたものに限定されない。火炉2内において、バーナ3から噴射される微粉炭と燃焼用空気とは混合されて燃焼され、さらに、二段燃焼用空気ポート4から吹き出される二段燃焼用空気によって二段燃焼が行われる。このようにして発生した高温の燃焼ガスは、火炉2から伝熱管群6へ導かれて、熱交換されることとなる。   In the present embodiment, a plurality of burners 3 are connected to the lower part of the furnace 2 in three upper and lower stages. A plurality of two-stage combustion air ports 4 that supply the two-stage combustion air into the furnace 2 are connected to the upper part of the furnace 2 and above the burner 3 in two stages. In FIG. 1, only the burner 3 and the two-stage combustion air port 4 connected to the left side wall of the furnace 2 are illustrated, but the front wall of the furnace 2 and the rear side of the figure are illustrated. A plurality of burners 3 and two-stage combustion air ports 4 are also connected to the side wall, the right side wall in the figure. Further, the arrangement of the burner 3 and the two-stage combustion air port 4 is not limited to the illustrated one. In the furnace 2, the pulverized coal injected from the burner 3 and the combustion air are mixed and burned, and further, two-stage combustion is performed by the two-stage combustion air blown out from the two-stage combustion air port 4. . The high-temperature combustion gas generated in this way is guided from the furnace 2 to the heat transfer tube group 6 and is subjected to heat exchange.

火炉2の内壁面には、垂直方向を長手方向とした多数の炉壁管(図示せず)が、内壁面に沿って水平方向に並んで配置されている。各炉壁管内では蒸気が循環されており、火炉2内での燃焼による熱で各炉壁管内の蒸気圧が高められるように構成されている。   On the inner wall surface of the furnace 2, a large number of furnace wall tubes (not shown) whose longitudinal direction is the vertical direction are arranged along the inner wall surface in the horizontal direction. Steam is circulated in each furnace wall tube, and the steam pressure in each furnace wall tube is increased by heat generated by combustion in the furnace 2.

(硫化腐食予測方法)
次に、本実施形態の硫化腐食予測方法について、図2に示すフローチャートを参照しながら説明する。本実施形態の硫化腐食予測方法は、微粉炭を燃料とするボイラ1の炉壁管の腐食量を用いて炉壁管の硫化腐食度合いを予測するものであり、石炭燃焼モデルを組み込んだ反応流体計算を行うステップと、熱力学平衡計算による燃焼排ガス組成計算を行うステップと、高温腐食試験により腐食速度式を求めるステップと、温度分布およびガス濃度分布を算出するステップと、硫化腐食環境評価を行うステップと、を有している。
(Sulfuric corrosion prediction method)
Next, the sulfide corrosion prediction method of this embodiment will be described with reference to the flowchart shown in FIG. The sulfide corrosion prediction method of this embodiment predicts the degree of sulfide corrosion of a furnace wall tube using the amount of corrosion of the furnace wall tube of the boiler 1 using pulverized coal as a fuel, and a reaction fluid incorporating a coal combustion model. A step of calculating, a step of calculating a flue gas composition by thermodynamic equilibrium calculation, a step of obtaining a corrosion rate equation by a high temperature corrosion test, a step of calculating a temperature distribution and a gas concentration distribution, and an evaluation of sulfide corrosion environment And steps.

(石炭燃焼モデルを組み込んだ反応流体計算)
石炭燃焼モデルを組み込んだ反応流体計算を行うステップ(以下、反応流体計算ステップという。)は、微粉炭の燃焼時に生成される全ての化学種の中から計算対象となる化学種を限定して反応流体計算を行うステップである。
(Reaction fluid calculation incorporating a coal combustion model)
The step of calculating the reaction fluid incorporating the coal combustion model (hereinafter referred to as the reaction fluid calculation step) is performed by limiting the chemical species to be calculated from all the chemical species generated during the combustion of pulverized coal. This is a step of performing fluid calculation.

微粉炭燃焼を数値解析する場合、固気二相流として連続相(流体)と分散相(微粉炭粒子)とに分けて考え、各支配方程式とともにこれらの相互作用も解く、という方法が用いられることが多い。連続相の支配方程式は、一般に、非圧縮・粘性流体として、連続の式、運動量保存式、エネルギー保存式、および、化学種保存式から構成される。また、分散相の支配方程式は、一般に、運動方程式、エネルギー保存式、および、化学種保存式から構成される。   When numerically analyzing pulverized coal combustion, a method is considered in which the solid-gas two-phase flow is divided into a continuous phase (fluid) and a dispersed phase (pulverized coal particles) and these interactions are solved together with the governing equations. There are many cases. The governing equation of the continuous phase is generally composed of a continuous equation, a momentum conservation equation, an energy conservation equation, and a chemical species conservation equation as an incompressible / viscous fluid. Further, the governing equation of the dispersed phase is generally composed of an equation of motion, an energy conservation equation, and a chemical species conservation equation.

また、石炭燃焼モデルとして、揮発分が放出され、それが気体燃焼しながら固定炭素分が表面反応する、というモデルが広く使用される。揮発分の放出速度や固体炭素分の反応速度にはアレニウス型の反応速度式やその改良式が用いられることが多い。下記に一例を示す。   As a coal combustion model, a model is widely used in which volatile components are released and fixed carbon components undergo a surface reaction while being gas-combusted. An Arrhenius type reaction rate equation or its improved equation is often used for the release rate of volatile matter and the reaction rate of solid carbon. An example is shown below.

(A)揮発分の放出速度

Figure 2014228258
(A) Release rate of volatile matter
Figure 2014228258

ここで、V:揮発量、k:反応速度定数、A:頻度因子、T:粒子温度、R:気体定数、E:活性化エネルギー、V:急速揮発分量、Q:急速昇温時の揮発化係数、VIA:工業分析での揮発分量、である。 Here, V: volatile loss, k V: reaction rate constant, A V: frequency factor, T p: particle temperature, R: gas constant, E V: activation energy, V *: rapid volatile content, Q: rapid temperature Volatilization coefficient when warm, V IA : volatile content in industrial analysis.

(B)固定炭素分の反応速度

Figure 2014228258
(B) Reaction rate of fixed carbon content
Figure 2014228258

ここで、C:拡散速度、c:拡散速度係数、T:粒子温度、T:流体温度、d:粒子径、C:表面反応速度、c:頻度因子、E:活性化エネルギー、R:気体定数、C:固定炭素量、A:粒子表面積、po2:酸素分圧、である。 Here, C 1 : diffusion rate, c 1 : diffusion rate coefficient, T p : particle temperature, T : fluid temperature, d p : particle diameter, C 2 : surface reaction rate, c 2 : frequency factor, E c : Activation energy, R: gas constant, C: fixed carbon content, A p : particle surface area, p o2 : oxygen partial pressure.

しかし、計算負荷の都合上、微粉炭の燃焼時に生成される全ての化学種を考慮した反応流体計算には多くの困難が伴う。そこで、計算対象となる化学種を限定し、反応流体計算を簡略化した反応モデルが多用される。以下に、本実施形態で使用する反応モデルを示す。   However, due to the computational load, many difficulties are involved in the reaction fluid calculation considering all chemical species generated during the combustion of pulverized coal. Therefore, a reaction model in which chemical species to be calculated are limited and reaction fluid calculation is simplified is often used. The reaction model used in the present embodiment is shown below.

+nO→αCO+βHO+δSO+εN・・・(7)
C+1/2O→CO・・・(8)
CO+1/2O→CO・・・(9)
C a H b O c S d N e + nO 2 → αCO + βH 2 O + δSO 2 + εN 2 ··· (7)
C + 1 / 2O 2 → CO (8)
CO + 1 / 2O 2 → CO 2 (9)

ここで、式(7)の左辺第1項は、元素分析・急速揮発分量から決定される揮発化成分を模擬した化学種である。   Here, the first term on the left side of the formula (7) is a chemical species that simulates a volatile component determined from elemental analysis and rapid volatile content.

ここから本計算の具体的な手順を示す。まず、この計算で必要となる情報は下記の4つである。
(a)ボイラ幾何情報(ボイラ1の形状、バーナ3の位置、二段燃焼用空気ポート4の位置など)、
(b)燃焼空気条件(全空気比、各二段燃焼用空気ポート4での燃焼空気流量・温度・組成)、
(c)石炭性状(工業分析[水分、灰分、揮発分・固定炭素分]、元素分析[C、H、N、O、S])、
(d)石炭供給量(各バーナ3からの石炭供給量)。
The specific procedure of this calculation is shown here. First, the following four pieces of information are necessary for this calculation.
(A) Boiler geometric information (the shape of the boiler 1, the position of the burner 3, the position of the air port 4 for two-stage combustion, etc.),
(B) Combustion air conditions (total air ratio, combustion air flow rate / temperature / composition at each two-stage combustion air port 4),
(C) Coal properties (industrial analysis [water, ash, volatile matter / fixed carbon content], elemental analysis [C, H, N, O, S]),
(D) Coal supply amount (coal supply amount from each burner 3).

まず、ボイラ1の透過斜視図である図3に示すように、ボイラ幾何情報をもとに、ボイラ1の内部にボイラ1の炉壁に沿って解析対象領域11を設ける(ステップS1、以下、単にS1という。他も同じ)。ここで、解析対象領域11をボイラ1の炉壁面上に設けるよりも、解析対象領域11をボイラ1の炉壁近傍に設けた方が、計算結果の精度が良くなる。そこで、本実施形態においては、解析対象領域11をボイラ1の炉壁近傍に設けている。なお、ボイラ1の炉壁には、バーナ3が接続されるバーナ接続部3a、および、二段燃焼用空気ポート4が接続される二段燃焼用空気ポート接続部4aがそれぞれ設けられている。   First, as shown in FIG. 3, which is a transparent perspective view of the boiler 1, an analysis target region 11 is provided along the furnace wall of the boiler 1 based on the boiler geometric information (step S <b> 1, hereinafter, It is simply called S1. Here, rather than providing the analysis target region 11 on the furnace wall surface of the boiler 1, the accuracy of the calculation result is improved when the analysis target region 11 is provided near the furnace wall of the boiler 1. Therefore, in the present embodiment, the analysis target region 11 is provided in the vicinity of the furnace wall of the boiler 1. The furnace wall of the boiler 1 is provided with a burner connection portion 3a to which the burner 3 is connected and a two-stage combustion air port connection portion 4a to which the two-stage combustion air port 4 is connected.

そして、バーナ3および二段燃焼用空気ポート4毎に燃焼条件(石炭供給量、燃焼空気流量・温度・組成)、および、その他の境界条件を設定する(S2)。次に、石炭燃焼に関わるパラメータ(固定炭素の反応速度定数、急速揮発分量など)を設定する(S3)。   Then, the combustion conditions (coal supply amount, combustion air flow rate / temperature / composition) and other boundary conditions are set for each burner 3 and two-stage combustion air port 4 (S2). Next, parameters related to coal combustion (reaction rate constant of fixed carbon, rapid volatile content, etc.) are set (S3).

その後、解析対象領域11において、設定した燃焼条件、境界条件、石炭燃焼に関わるパラメータを用いて、反応流体計算を実施する(S4)。これにより、O、CO、HO、SO、N、COのガス濃度および温度が算出される。この計算結果をボイラ1の実測データ(火炉出口での未燃率や火炉内ガス・温度実測結果など)と比較する(S5)。そして、計算結果がボイラ1の実測データに合致するか否かを判定する(S6)。 Thereafter, in the analysis target region 11, reaction fluid calculation is performed using the set combustion conditions, boundary conditions, and parameters relating to coal combustion (S4). Thus, O 2, CO, H 2 O, SO 2, N 2, gas concentration and temperature of CO 2 is calculated. This calculation result is compared with the actual measurement data of the boiler 1 (such as the unburned rate at the furnace outlet and the actual measurement result of gas and temperature in the furnace) (S5). And it is determined whether a calculation result corresponds with the measurement data of the boiler 1 (S6).

計算結果がボイラ1の実測データに合致しないと判定した場合には(S6,NO)、ステップS3に戻って石炭燃焼に関わるパラメータを設定し直す。即ち、反応流体計算の結果が実測データに合致するまで、石炭燃焼に関わるパラメータを変えながら反応流体計算を繰り返す。これにより、実際のボイラ1での燃焼に沿った計算結果を得ることができる。一方、計算結果がボイラ1の実測データに合致すると判定した場合には(S6,YES)、ステップS31に進む。   If it is determined that the calculation result does not match the actual measurement data of the boiler 1 (S6, NO), the process returns to step S3 to reset the parameters relating to coal combustion. That is, the reaction fluid calculation is repeated while changing the parameters related to coal combustion until the result of the reaction fluid calculation matches the actually measured data. Thereby, the calculation result along combustion in the actual boiler 1 can be obtained. On the other hand, when it is determined that the calculation result matches the actual measurement data of the boiler 1 (S6, YES), the process proceeds to step S31.

(熱力学平衡計算による燃焼排ガス組成計算)
熱力学平衡計算による燃焼排ガス組成計算を行うステップ(以下、燃焼排ガス組成計算ステップという。)は、熱力学平衡計算により、上記の反応流体計算ステップで得ることが可能な化学種のガス濃度と、後述する硫化腐食環境評価ステップで必要であって、上記の反応流体計算ステップでは得ることができない特定化学種のガス濃度との濃度関係式を求めるステップ(濃度関係式導出ステップ)であり、反応流体計算ステップと並行して行われる。
(Combustion exhaust gas composition calculation by thermodynamic equilibrium calculation)
The step of calculating the flue gas composition by the thermodynamic equilibrium calculation (hereinafter referred to as the flue gas composition calculation step) includes the gas concentration of the chemical species that can be obtained in the reaction fluid calculation step by the thermodynamic equilibrium calculation, It is a step (concentration relation derivation step) for obtaining a concentration relational expression with a gas concentration of a specific chemical species that is necessary in the sulfide corrosion environment evaluation step described later and cannot be obtained in the reaction fluid calculation step described above. Performed in parallel with the calculation step.

上述したように、反応流体計算ステップにおいては、計算対象となる化学種を限定して反応計算を簡略化した反応モデルが多用される。しかしながら、このような反応モデルには、後述する硫化腐食環境評価ステップで必要となる特定化学種が組み込まれていないものが多い。そういった場合には、ステップS4で得られた反応流体計算結果に対して、特定化学種のガス濃度を補間してやる必要がある。本実施形態においては、硫化腐食環境評価ステップで必要となるHSのガス濃度を補間してやる必要がある。 As described above, in the reaction fluid calculation step, a reaction model in which reaction calculation is simplified by limiting chemical species to be calculated is frequently used. However, many of these reaction models do not incorporate a specific chemical species required in the sulfide corrosion environment evaluation step described later. In such a case, it is necessary to interpolate the gas concentration of the specific chemical species with respect to the reaction fluid calculation result obtained in step S4. In the present embodiment, it is necessary to interpolate the gas concentration of H 2 S required in the sulfide corrosion environment evaluation step.

そこで、熱力学平衡計算により燃焼排ガス組成を計算することで、本実施形態の反応流体計算で得ることが可能な化学種のガス濃度と、硫化腐食環境評価ステップで必要となるが、本実施形態の反応流体計算では得ることができない特定化学種のガス濃度との濃度関係式を導出する。具体的には、本実施形態の反応流体計算で得ることが可能なCOのガス濃度と、本実施形態の反応流体計算では得ることができないHSのガス濃度との濃度関係式を導出する。ここで、熱力学平衡計算とは、石炭性状と石炭の燃焼条件とに基づいて、ギブズ自由エネルギーが最小化される平衡組成を最適化手法により算出する手法である。 Therefore, by calculating the combustion exhaust gas composition by thermodynamic equilibrium calculation, it is necessary in the gas concentration of chemical species that can be obtained by the reaction fluid calculation of this embodiment and the sulfide corrosion environment evaluation step. A concentration relational expression with a gas concentration of a specific chemical species that cannot be obtained by the reaction fluid calculation is derived. Specifically, a concentration relational expression between the CO gas concentration that can be obtained by the reaction fluid calculation of the present embodiment and the H 2 S gas concentration that cannot be obtained by the reaction fluid calculation of the present embodiment is derived. . Here, the thermodynamic equilibrium calculation is a method of calculating an equilibrium composition that minimizes the Gibbs free energy based on the coal properties and the combustion conditions of the coal using an optimization method.

まず、石炭性状(元素分析)から理論空気量を算出する(S11)。そして、空気比(理論空気量に対する実際空気量の割合)をパラメータとして燃焼条件を設定する(S12)。次に、設定した燃焼条件において熱力学平衡計算を実施し、各温度でのガス組成を抽出する(S13)。   First, the theoretical air amount is calculated from the coal properties (elemental analysis) (S11). Then, the combustion condition is set using the air ratio (the ratio of the actual air amount to the theoretical air amount) as a parameter (S12). Next, thermodynamic equilibrium calculation is performed under the set combustion conditions, and the gas composition at each temperature is extracted (S13).

次に、パラメータの数を増やして上記の計算を実行し、本実施形態の反応流体計算で得ることが可能な化学種(CO)のガス濃度と、硫化腐食環境評価ステップで必要となる特定化学種(HS)のガス濃度との濃度関係式を求める(S14)。COのガス濃度とHSのガス濃度との濃度関係式を温度別に整理したものを図4に示す。 Next, the above calculation is executed by increasing the number of parameters, and the gas concentration of the chemical species (CO) that can be obtained by the reaction fluid calculation of this embodiment and the specific chemistry required in the sulfide corrosion environment evaluation step. A concentration relational expression with the gas concentration of the seed (H 2 S) is obtained (S14). FIG. 4 shows a concentration relational expression between the CO gas concentration and the H 2 S gas concentration for each temperature.

(高温腐食試験による腐食速度式の算出)
高温腐食試験により腐食速度式を求めるステップ(以下、腐食速度式算出ステップという。)は、炉壁管を形成する金属材料の高温腐食試験により、炉壁管の温度と、特定化学種(HS)のガス濃度と、経過時間との関係式である腐食速度式を求めるステップ(腐食速度式導出ステップ)であり、反応流体計算ステップおよび燃焼排ガス組成計算ステップと並行して行われる。
(Calculation of corrosion rate equation by high temperature corrosion test)
The step of obtaining the corrosion rate equation by the high-temperature corrosion test (hereinafter referred to as the corrosion rate equation calculating step) includes the temperature of the furnace wall tube and the specific chemical species (H 2) by the high temperature corrosion test of the metal material forming the furnace wall tube. S) is a step for obtaining a corrosion rate equation (corrosion rate equation deriving step) which is a relational expression between the gas concentration and the elapsed time, and is performed in parallel with the reaction fluid calculation step and the combustion exhaust gas composition calculation step.

腐食速度式算出ステップでは、腐食速度式を算出する(S21)。ここで、腐食速度とは、単位時間当たりの腐食量(腐食減量)であり、単位面積当たりの質量減少量(例えばmg/(m・year))や厚み減少量(例えばmm/year)で表現される。腐食速度の数値は、腐食減量を直接測定したり、電気化学的手法で腐食電流密度を測定したりすることで推定される。一般に、腐食速度は全面腐食や均一腐食が発生する場合の指標として用いられ、通常、0.1mm/year以下の腐食速度であれば耐食材料とされるが、局部腐食が発生する場合も多く、注意を要する。 In the corrosion rate equation calculating step, a corrosion rate equation is calculated (S21). Here, the corrosion rate is a corrosion amount per unit time (corrosion loss), and is a mass reduction amount (for example, mg / (m 2 · year)) or a thickness reduction amount (for example, mm / year) per unit area. Expressed. The numerical value of the corrosion rate is estimated by directly measuring the corrosion weight loss or measuring the corrosion current density by an electrochemical method. Generally, the corrosion rate is used as an index when general corrosion or uniform corrosion occurs, and is usually a corrosion-resistant material if the corrosion rate is 0.1 mm / year or less, but local corrosion often occurs. Need attention.

腐食速度式を求めるに当たり、まず、JIS Z2291で制定された高温ガス腐食試験を行い、炉壁管を形成する金属材料の腐食による重量変化と腐食厚みを測定した。このとき、炉壁管の表面温度と、HSのガス濃度と、灰の有無とをパラメータとした。試験結果を図5に示す。 In obtaining the corrosion rate equation, first, a high temperature gas corrosion test established in JIS Z2291 was performed, and the weight change and corrosion thickness due to corrosion of the metal material forming the furnace wall tube were measured. At this time, the surface temperature of the furnace wall tube, the gas concentration of H 2 S, and the presence or absence of ash were used as parameters. The test results are shown in FIG.

ここで、腐食生成物による被膜の成長速度式は、膜厚により異なるものの、一般に式(10)で表わされる。   Here, the growth rate equation of the coating film due to the corrosion product is generally expressed by equation (10), although it varies depending on the film thickness.

δ=kδ ・・・(10) δ = k δ t n (10)

ここで、δは腐食による減肉長さ[μm]であり、kδはアレニウス型の反応速度式で決まる係数であり、tは経過時間[hr]であり、nは腐食指数(腐食速度を示す指数)である。 Here, δ is a thickness reduction [μm] due to corrosion, k δ is a coefficient determined by an Arrhenius type reaction rate equation, t is an elapsed time [hr], and n is a corrosion index (corrosion rate). Index).

また、腐食による重量変化量に対しても、膜厚の場合と同様に、式(11)で表わされる。   Also, the amount of change in weight due to corrosion is expressed by equation (11), as in the case of film thickness.

ΔW=k ・・・(11) ΔW = k W t n (11)

ここで、ΔWは腐食による重量変化[mg/cm]であり、kは定数である。式(10)もしくは式(11)のどちらを用いた場合でも、腐食指数nは、経過時間を横軸に、重量変化ΔWを縦軸にとった両対数グラフに試験結果をプロットすることで求めることができる。 Here, [Delta] W is the weight change due to corrosion [mg / cm 2], k W is a constant. Regardless of which equation (10) or equation (11) is used, the corrosion index n is obtained by plotting the test result on a log-log graph with elapsed time on the horizontal axis and weight change ΔW on the vertical axis. be able to.

また、ある温度での化学反応速度を予測する式として、式(12)で表わされるアレニウス型の反応速度式を用いる。   In addition, as an equation for predicting the chemical reaction rate at a certain temperature, the Arrhenius type reaction rate equation represented by the equation (12) is used.

Figure 2014228258
Figure 2014228258

ここで、Aは頻度因子であり、Eは活性化エネルギであり、Rはガス定数である。各指標の数値は試験結果をアレニウスプロットにのせることで求めることができる。 Here, A is a frequency factor, E a is activation energy, and R is a gas constant. The numerical value of each index can be obtained by placing the test result on an Arrhenius plot.

なお、今回の事例では、腐食による減肉長さδ[mm]を、式(13)から算出した。   In this case, the thickness reduction length δ [mm] due to corrosion was calculated from the equation (13).

δ[mm]=ΔW[mg/cm]÷密度[g/cm]×10 ・・・(13) δ [mm] = ΔW [mg / cm 2 ] ÷ Density [g / cm 3 ] × 10 2 (13)

ここで、密度とは腐食によってできた被膜の密度を指す。本実施形態においては、別途調査した結果、密度を0.4[g/cm]として腐食による減肉長さδを計算した。 Here, the density refers to the density of the coating formed by corrosion. In the present embodiment, as a result of separate investigation, the thickness reduction length δ due to corrosion was calculated with a density of 0.4 [g / cm 3 ].

硫化腐食の場合、重要となる腐食量は厚み減少量であり、この厚み減少量と、時間、温度、および、HS濃度との関係式を求めることが重要である。即ち、厚み減少量δと、時間t、温度T、および、HS濃度xとの関係式は、式(14)となる。 In the case of sulfidation corrosion, an important corrosion amount is a thickness reduction amount, and it is important to obtain a relational expression between the thickness reduction amount, time, temperature, and H 2 S concentration. That is, the relational expression between the thickness reduction amount δ, the time t, the temperature T, and the H 2 S concentration x is Expression (14).

δ=f(t,T,x) ・・・(14)   δ = f (t, T, x) (14)

厚み減少量δは式(10)で表わせるから、式(10)に式(12)を代入すると、式(15)となる。   Since the thickness reduction amount δ can be expressed by equation (10), when equation (12) is substituted into equation (10), equation (15) is obtained.

Figure 2014228258
Figure 2014228258

ここで、腐食指数n、頻度因子A、活性化エネルギEと、HS濃度xとの関係をそれぞれ整理すると、図6に示すようになる。図6から、腐食指数n、頻度因子A、活性化エネルギEと、HS濃度xとの関係式がそれぞれ導出される。そこで、腐食指数n、頻度因子A、活性化エネルギEがそれぞれHS濃度xに関連するものとすると、式(15)は式(16)となる。 Here, corrosion index n, frequency factor A, and the activation energy E a, and rearranging respective relationships between the concentration of H 2 S x, as shown in FIG. 6, corrosion index n, frequency factor A, and the activation energy E a, relationship between the concentration of H 2 S x is derived, respectively. Therefore, assuming that the corrosion index n, the frequency factor A, and the activation energy E a are related to the H 2 S concentration x, Equation (15) becomes Equation (16).

Figure 2014228258
Figure 2014228258

このようにして得られた式(16)が、炉壁管の温度Tと、特定化学種(HS)のガス濃度xと、経過時間tとの関係式である腐食速度式である。 The equation (16) thus obtained is a corrosion rate equation that is a relational expression between the temperature T of the furnace wall tube, the gas concentration x of the specific chemical species (H 2 S), and the elapsed time t.

(温度分布およびガス濃度分布の算出)
温度分布およびガス濃度分布を算出するステップ(以下、算出ステップという。)は、反応流体計算ステップでの結果に基づいて、解析対象領域11における温度分布、および、反応流体計算で得られた化学種の解析対象領域11におけるガス濃度分布を算出するステップ(温度・濃度算出ステップ)と、算出した温度分布およびガス濃度分布と、燃焼排ガス組成計算ステップで求めた濃度関係式とを用いて、解析対象領域11における特定化学種のガス濃度分布を算出するステップ(濃度算出ステップ)と、を有している。
(Calculation of temperature distribution and gas concentration distribution)
The step of calculating the temperature distribution and the gas concentration distribution (hereinafter referred to as the calculation step) is based on the result of the reaction fluid calculation step and the chemical species obtained by the temperature distribution in the analysis target region 11 and the reaction fluid calculation. Using the step (temperature / concentration calculation step) of calculating the gas concentration distribution in the analysis target region 11 of the gas, the calculated temperature distribution and gas concentration distribution, and the concentration relational expression obtained in the combustion exhaust gas composition calculating step. And a step of calculating a gas concentration distribution of the specific chemical species in the region 11 (concentration calculating step).

ここで、後述の硫化腐食環境評価ステップを考慮した場合、解析対象領域11をある程度の広さのブロックに区切って、ブロック毎に平均値を算出すると評価しやすくなる。そこで、本実施形態では、図3に示すように、解析対象領域11をおよそ1m角のブロック11aに区切って、ブロック11a毎に平均値を算出することで、解析対象領域11における温度分布およびガス濃度分布を算出している。   Here, when the sulfide corrosion environment evaluation step described later is taken into consideration, it becomes easier to evaluate by dividing the analysis target region 11 into blocks of a certain size and calculating an average value for each block. Therefore, in the present embodiment, as shown in FIG. 3, the analysis target region 11 is divided into approximately 1 m square blocks 11a, and the average value is calculated for each block 11a, whereby the temperature distribution and gas in the analysis target region 11 are calculated. The concentration distribution is calculated.

図2のステップS6において、反応流体計算の結果がボイラ1の実測データに合致すると判定した場合には(S6,YES)、反応流体計算の結果に基づいて、解析対象領域11における温度分布、および、反応流体計算で得られた化学種の解析対象領域11におけるガス濃度分布を算出する(S31)。具体的には、ブロック11a毎に、温度の平均値、および、反応流体計算で得られた化学種のガス濃度の平均値を算出することで、ボイラ1の炉壁近傍における温度分布およびガス濃度分布を算出する。   In step S6 of FIG. 2, when it is determined that the result of the reaction fluid calculation matches the actual measurement data of the boiler 1 (S6, YES), the temperature distribution in the analysis target region 11 based on the result of the reaction fluid calculation, and The gas concentration distribution in the analysis target region 11 of the chemical species obtained by the reaction fluid calculation is calculated (S31). Specifically, the temperature distribution and gas concentration in the vicinity of the furnace wall of the boiler 1 are calculated for each block 11a by calculating the average value of the temperature and the average value of the gas concentration of the chemical species obtained by the reaction fluid calculation. Calculate the distribution.

次に、ステップS31で算出した温度分布およびガス濃度分布と、ステップS14で求めた濃度関係式とを用いて、解析対象領域11における特定化学種のガス濃度分布を算出する(S32)。具体的には、ブロック11a毎に、特定化学種のガス濃度を算出することで、ボイラ1の炉壁近傍における特定化学種のガス濃度分布を算出する。より具体的には、図4に示すCOのガス濃度とHSのガス濃度との関係式と、ステップS31で算出した温度分布およびCOのガス濃度分布とを用いて、ボイラ1の炉壁近傍におけるHSのガス濃度分布を算出する。このようにして、反応流体計算では得ることができない特定化学種(HS)の解析対象領域11におけるガス濃度分布が補間されることとなる。その後、ステップS41に進む。 Next, the gas concentration distribution of the specific chemical species in the analysis target region 11 is calculated using the temperature distribution and gas concentration distribution calculated in step S31 and the concentration relational expression obtained in step S14 (S32). Specifically, the gas concentration distribution of the specific chemical species in the vicinity of the furnace wall of the boiler 1 is calculated for each block 11a by calculating the gas concentration of the specific chemical species. More specifically, using the relational expression between the CO gas concentration and the H 2 S gas concentration shown in FIG. 4 and the temperature distribution and CO gas concentration distribution calculated in step S31, the furnace wall of the boiler 1 is used. A gas concentration distribution of H 2 S in the vicinity is calculated. In this way, the gas concentration distribution in the analysis target region 11 of the specific chemical species (H 2 S) that cannot be obtained by the reaction fluid calculation is interpolated. Thereafter, the process proceeds to step S41.

(硫化腐食環境評価)
硫化腐食環境評価を行うステップ(以下、硫化腐食環境評価ステップという。)は、腐食速度式算出ステップで算出した腐食速度式と、炉壁管の温度と、算出ステップで算出した特定化学種のガス濃度分布とを用いて、解析対象領域11における腐食量の分布を算出するステップ(腐食量算出ステップ)と、算出した腐食量の分布を用いて、解析対象領域11における炉壁管の硫化腐食度合いの分布を予測するステップ(予測ステップ)と、を有している。
(Sulfurized corrosion environment evaluation)
The step of evaluating the sulfide corrosion environment (hereinafter referred to as the sulfide corrosion environment evaluation step) includes the corrosion rate equation calculated in the corrosion rate equation calculation step, the temperature of the furnace wall tube, and the gas of the specific chemical species calculated in the calculation step. Using the concentration distribution, the step of calculating the corrosion amount distribution in the analysis target region 11 (corrosion amount calculating step) and the degree of sulfurization corrosion of the furnace wall tube in the analysis target region 11 using the calculated distribution of corrosion amount A step of predicting the distribution of (prediction step).

まず、図2のステップS21で算出した腐食速度式と、炉壁管の温度と、ステップS32で算出した特定化学種のガス濃度分布とを用いて、解析対象領域11における腐食量の分布を算出する(S41)。具体的には、経過時間tと、炉壁管の温度Tと、特定化学種(HS)のガス濃度xとを腐食速度式に代入して、ブロック11a毎に腐食量を算出することで、ボイラ1の炉壁近傍における腐食量の分布を算出する。 First, the corrosion amount distribution in the analysis target region 11 is calculated using the corrosion rate equation calculated in step S21 of FIG. 2, the temperature of the furnace wall tube, and the gas concentration distribution of the specific chemical species calculated in step S32. (S41). Specifically, the amount of corrosion is calculated for each block 11a by substituting the elapsed time t, the temperature T of the furnace wall tube, and the gas concentration x of the specific chemical species (H 2 S) into the corrosion rate equation. Thus, the distribution of the corrosion amount in the vicinity of the furnace wall of the boiler 1 is calculated.

そして、算出した腐食量の分布を用いて、解析対象領域11における炉壁管の硫化腐食度合いの分布を予測する(S42)。具体的には、経過時間毎、ブロック11a毎に、炉壁管の硫化腐食度合いを予測することで、ボイラ1の炉壁近傍における炉壁管の硫化腐食度合いの分布を予測する。その後、腐食予測結果をマッピングする(S43)。経過時間tをそれぞれ1年後、5年後、7年後としたときの結果を図7に示す。なお、バーナ接続部3aまたは二段燃焼用空気ポート接続部4a(図3参照)を含むブロック11aにおいては、腐食予測を行っていない。経過時間tが7年後の腐食予測結果は、実際に運転開始から7年経過したボイラの炉壁管の腐食量の測定結果と十分合っていた。   Then, using the calculated distribution of corrosion amount, the distribution of the degree of sulfide corrosion of the furnace wall tube in the analysis target region 11 is predicted (S42). Specifically, the distribution of the degree of sulfidation corrosion of the furnace wall tube in the vicinity of the furnace wall of the boiler 1 is predicted by predicting the degree of sulfidation corrosion of the furnace wall pipe for each elapsed time and for each block 11a. Thereafter, the corrosion prediction result is mapped (S43). FIG. 7 shows the results when the elapsed time t is 1 year, 5 years, and 7 years, respectively. In addition, corrosion prediction is not performed in the block 11a including the burner connection part 3a or the two-stage combustion air port connection part 4a (see FIG. 3). The corrosion prediction result after the elapsed time t of 7 years was in good agreement with the measurement result of the corrosion amount of the boiler wall tube of the boiler after 7 years from the start of operation.

腐食予測結果のマッピングにより、解析対象領域11のどの辺りに、いつごろ、どのくらい、腐食が生じるのかをブロック11a単位で予測することが可能となる。この結果を踏まえて、硫化腐食が発生すると予測される領域に溶射を施すことで、硫化腐食の発生を抑制することができる。   By mapping the corrosion prediction result, it is possible to predict in which area of the analysis target region 11 when and how much corrosion will occur in block 11a units. Based on this result, the occurrence of sulfide corrosion can be suppressed by performing thermal spraying on a region where sulfide corrosion is expected to occur.

(効果)
以上に述べたように、本実施形態に係る硫化腐食予測方法によると、熱力学平衡計算により、反応流体計算で得ることが可能な化学種のガス濃度と、反応流体計算では得ることができない特定化学種のガス濃度との濃度関係式を求めることで、算出した温度分布およびガス濃度分布と濃度関係式とを用いて、反応流体計算では得ることができない特定化学種の解析対象領域11におけるガス濃度分布を算出することができる。これにより、腐食速度式と、炉壁管の温度と、特定化学種のガス濃度分布とを用いて、解析対象領域11における腐食量の分布を算出することができて、解析対象領域11における炉壁管の硫化腐食度合いの分布を予測することができる。具体的には、解析対象領域11のどの辺りに、いつごろ、どのくらい、腐食が生じるのかを予測することができる。このように、熱力学平衡計算により求めた濃度関係式を用いて、反応流体計算では得ることができない特定化学種のガス濃度を補間してやることにより、反応流体計算を用いて炉壁管の硫化腐食度合いを予測することができる。
(effect)
As described above, according to the sulfide corrosion prediction method according to this embodiment, the gas concentration of the chemical species that can be obtained by the reaction fluid calculation and the specification that cannot be obtained by the reaction fluid calculation by the thermodynamic equilibrium calculation. By obtaining the concentration relational expression with the gas concentration of the chemical species, the gas in the analysis target region 11 of the specific chemical species that cannot be obtained by the reaction fluid calculation using the calculated temperature distribution and the gas concentration distribution and the concentration relational expression. The concentration distribution can be calculated. Accordingly, the corrosion amount distribution in the analysis target region 11 can be calculated using the corrosion rate equation, the temperature of the furnace wall tube, and the gas concentration distribution of the specific chemical species, and the furnace in the analysis target region 11 can be calculated. The distribution of sulfidation corrosion degree of the wall pipe can be predicted. Specifically, it is possible to predict where and how much corrosion will occur in which region of the analysis target region 11. In this way, by interpolating the gas concentration of a specific chemical species that cannot be obtained by reaction fluid calculation using the concentration relational equation obtained by thermodynamic equilibrium calculation, sulfidation corrosion of the furnace wall tube using reaction fluid calculation The degree can be predicted.

また、解析対象領域11を複数のブロック11aに区切り、ブロック11a毎に温度およびガス濃度の平均値を算出することで、ボイラ1の炉壁近傍における温度分布およびガス濃度分布を算出する。そして、ブロック11a毎に、特定化学種のガス濃度、腐食量を求めて、経過時間毎、ブロック11a毎に、炉壁管の硫化腐食度合いを予測することで、評価を行い易くすることができる。   Moreover, the temperature distribution and gas concentration distribution in the vicinity of the furnace wall of the boiler 1 are calculated by dividing the analysis target region 11 into a plurality of blocks 11a and calculating average values of temperature and gas concentration for each block 11a. Then, by obtaining the gas concentration and corrosion amount of the specific chemical species for each block 11a, and predicting the degree of sulfidation corrosion of the furnace wall tube for each elapsed time and for each block 11a, the evaluation can be facilitated. .

また、反応流体計算の結果が実測データに合致するまで、石炭燃焼に関わるパラメータを変えながら反応流体計算を繰り返すことで、実際のボイラ1での燃焼に沿った計算結果を得ることができる。これにより、炉壁管の硫化腐食度合いを高精度で予測することができる。   Further, by repeating the reaction fluid calculation while changing the parameters relating to coal combustion until the result of the reaction fluid calculation matches the actual measurement data, the calculation result along the combustion in the actual boiler 1 can be obtained. Thereby, the sulfurization corrosion degree of the furnace wall tube can be predicted with high accuracy.

(本実施形態の変形例)
以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
(Modification of this embodiment)
The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. Further, the actions and effects described in the embodiments of the invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to what was done.

1 ボイラ
2 火炉
3 バーナ
4 二段燃焼用空気ポート
5 粉砕機
6 伝熱管群
11 解析対象領域
11a ブロック
DESCRIPTION OF SYMBOLS 1 Boiler 2 Furnace 3 Burner 4 Two-stage combustion air port 5 Crusher 6 Heat transfer tube group 11 Analysis object area 11a Block

Claims (3)

微粉炭を燃料とするボイラの炉壁管の腐食量を用いて前記炉壁管の硫化腐食度合いを予測するボイラ炉壁管の硫化腐食予測方法において、
前記ボイラ内に前記ボイラの炉壁に沿って設けた解析対象領域において、前記微粉炭の燃焼時に生成される全ての化学種の中から計算対象となる化学種を限定して、反応流体計算を行う反応流体計算ステップと、
熱力学平衡計算により、前記反応流体計算で得ることが可能な化学種のガス濃度と、前記腐食量を算出するのに必要であって、前記反応流体計算では得ることができない特定化学種のガス濃度との濃度関係式を求める濃度関係式導出ステップと、
前記炉壁管を形成する金属材料の高温腐食試験により、前記炉壁管の温度と、前記特定化学種のガス濃度と、経過時間との関係式である腐食速度式を求める腐食速度式導出ステップと、
前記反応流体計算の結果に基づいて、前記解析対象領域における温度分布、および、前記反応流体計算で得られた化学種の前記解析対象領域におけるガス濃度分布を算出する温度・濃度算出ステップと、
前記温度・濃度算出ステップで算出した温度分布およびガス濃度分布と、前記濃度関係式とを用いて、前記解析対象領域における前記特定化学種のガス濃度分布を算出する濃度算出ステップと、
前記腐食速度式と、前記炉壁管の温度と、前記濃度算出ステップで算出した前記特定化学種のガス濃度分布とを用いて、前記解析対象領域における前記腐食量の分布を算出する腐食量算出ステップと、
前記腐食量算出ステップで算出した前記腐食量の分布を用いて、前記解析対象領域における前記炉壁管の硫化腐食度合いの分布を予測する予測ステップと、
を有することを特徴とするボイラ炉壁管の硫化腐食予測方法。
In the method for predicting sulfidation corrosion of a boiler furnace wall tube that predicts the degree of sulfidation corrosion of the furnace wall pipe using the amount of corrosion of the furnace wall pipe of a boiler fueled with pulverized coal,
In the analysis target region provided along the furnace wall of the boiler in the boiler, the reaction fluid calculation is performed by limiting the chemical species to be calculated from all the chemical species generated during the combustion of the pulverized coal. A reaction fluid calculation step to be performed;
Gas of a specific chemical species that is necessary for calculating the gas concentration of the chemical species that can be obtained by the reaction fluid calculation and the amount of corrosion by thermodynamic equilibrium calculation, and that cannot be obtained by the reaction fluid calculation. A concentration relationship deriving step for obtaining a concentration relationship with the concentration;
Corrosion rate equation derivation step for obtaining a corrosion rate equation which is a relational expression of the temperature of the furnace wall tube, the gas concentration of the specific chemical species, and the elapsed time by a high temperature corrosion test of the metal material forming the furnace wall tube. When,
Based on the result of the reaction fluid calculation, a temperature / concentration calculation step for calculating a temperature distribution in the analysis target region and a gas concentration distribution in the analysis target region of the chemical species obtained by the reaction fluid calculation;
Using the temperature distribution and gas concentration distribution calculated in the temperature / concentration calculating step, and the concentration relational expression, a concentration calculating step for calculating the gas concentration distribution of the specific chemical species in the analysis target region;
Using the corrosion rate equation, the temperature of the furnace wall tube, and the gas concentration distribution of the specific chemical species calculated in the concentration calculating step, a corrosion amount calculation that calculates the distribution of the corrosion amount in the analysis target region Steps,
Using the corrosion amount distribution calculated in the corrosion amount calculation step, a prediction step of predicting a distribution of the degree of sulfide corrosion of the furnace wall tube in the analysis target region;
A method for predicting sulfidation corrosion of a boiler furnace wall tube.
前記解析対象領域は前記ボイラの炉壁近傍に設けられて、複数のブロックに区切られており、
前記温度・濃度算出ステップは、前記ブロック毎に、温度の平均値、および、前記反応流体計算で得られた化学種のガス濃度の平均値を算出することで、前記ボイラの炉壁近傍における温度分布およびガス濃度分布を算出し、
前記濃度算出ステップは、前記ブロック毎に、前記特定化学種のガス濃度を算出することで、前記ボイラの炉壁近傍における前記特定化学種のガス濃度分布を算出し、
前記腐食量算出ステップは、前記ブロック毎に、前記腐食量を算出することで、前記ボイラの炉壁近傍における前記腐食量の分布を算出し、
前記予測ステップは、経過時間毎、前記ブロック毎に、前記炉壁管の硫化腐食度合いを予測することで、前記ボイラの炉壁近傍における前記炉壁管の硫化腐食度合いの分布を予測することを特徴とする請求項1に記載のボイラ炉壁管の硫化腐食予測方法。
The analysis target area is provided near the furnace wall of the boiler, and is divided into a plurality of blocks,
The temperature / concentration calculation step calculates the average value of the temperature and the average value of the gas concentration of the chemical species obtained by the reaction fluid calculation for each block, so that the temperature in the vicinity of the furnace wall of the boiler is calculated. Distribution and gas concentration distribution,
The concentration calculation step calculates the gas concentration distribution of the specific chemical species in the vicinity of the furnace wall of the boiler by calculating the gas concentration of the specific chemical species for each of the blocks,
The corrosion amount calculating step calculates the corrosion amount distribution in the vicinity of the furnace wall of the boiler by calculating the corrosion amount for each block.
The predicting step predicts a distribution of the degree of sulfidation corrosion of the furnace wall pipe in the vicinity of the furnace wall of the boiler by predicting the degree of sulfidation corrosion of the furnace wall pipe for each elapsed time and for each block. The method for predicting sulfidation corrosion of a boiler furnace wall pipe according to claim 1, wherein
前記反応流体計算ステップは、前記反応流体計算の結果が実測データに合致するまで、石炭燃焼に関わるパラメータを変えながら前記反応流体計算を繰り返すことを特徴とする請求項1又は2に記載のボイラ炉壁管の硫化腐食予測方法。   3. The boiler furnace according to claim 1, wherein in the reaction fluid calculation step, the reaction fluid calculation is repeated while changing parameters relating to coal combustion until a result of the reaction fluid calculation matches actual measurement data. Method for predicting sulfidation corrosion of wall pipes.
JP2013111022A 2013-05-27 2013-05-27 Method for predicting sulfide corrosion of boiler furnace wall pipes. Active JP5990811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013111022A JP5990811B2 (en) 2013-05-27 2013-05-27 Method for predicting sulfide corrosion of boiler furnace wall pipes.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013111022A JP5990811B2 (en) 2013-05-27 2013-05-27 Method for predicting sulfide corrosion of boiler furnace wall pipes.

Publications (2)

Publication Number Publication Date
JP2014228258A true JP2014228258A (en) 2014-12-08
JP5990811B2 JP5990811B2 (en) 2016-09-14

Family

ID=52128256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013111022A Active JP5990811B2 (en) 2013-05-27 2013-05-27 Method for predicting sulfide corrosion of boiler furnace wall pipes.

Country Status (1)

Country Link
JP (1) JP5990811B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151476A (en) * 2015-02-17 2016-08-22 三菱日立パワーシステムズ株式会社 Corrosion evaluation method of boiler
JP2018179781A (en) * 2017-04-14 2018-11-15 一般財団法人電力中央研究所 Method, device and program for estimation of reduction in thickness
CN109187619A (en) * 2018-09-26 2019-01-11 南京工业大学 One kind relating to sulphur petrochemical equipment corrosion spontaneous combustion prediction technique
JP2019158454A (en) * 2018-03-09 2019-09-19 三菱重工業株式会社 Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program
JP6959494B1 (en) * 2021-03-26 2021-11-02 株式会社アールフロー Solid particle combustion analysis method, solid particle combustion analysis device and computer program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257689A (en) * 2001-02-28 2002-09-11 Shinobu Yoshimura System for predicting corrosion phenomenon in vehicle, method used for the same, program used for the same, and computer-readable recording medium with program for the same stored therein
JP2003004201A (en) * 2001-06-26 2003-01-08 Mitsubishi Heavy Ind Ltd Method for evaluating lifetime of boiler furnace wall pipe
JP2009175110A (en) * 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd Method for evaluating lifetime
JP2009204198A (en) * 2008-02-26 2009-09-10 Mitsubishi Heavy Ind Ltd Corrosion speed estimating method of boiler heat transfer tube
JP2011039011A (en) * 2009-08-18 2011-02-24 Central Res Inst Of Electric Power Ind Sulfidation corrosion evaluation method
JP2014044038A (en) * 2012-08-29 2014-03-13 Kobe Steel Ltd Sulfide corrosion prediction method of boiler furnace wall tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257689A (en) * 2001-02-28 2002-09-11 Shinobu Yoshimura System for predicting corrosion phenomenon in vehicle, method used for the same, program used for the same, and computer-readable recording medium with program for the same stored therein
JP2003004201A (en) * 2001-06-26 2003-01-08 Mitsubishi Heavy Ind Ltd Method for evaluating lifetime of boiler furnace wall pipe
JP2009175110A (en) * 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd Method for evaluating lifetime
JP2009204198A (en) * 2008-02-26 2009-09-10 Mitsubishi Heavy Ind Ltd Corrosion speed estimating method of boiler heat transfer tube
JP2011039011A (en) * 2009-08-18 2011-02-24 Central Res Inst Of Electric Power Ind Sulfidation corrosion evaluation method
JP2014044038A (en) * 2012-08-29 2014-03-13 Kobe Steel Ltd Sulfide corrosion prediction method of boiler furnace wall tube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151476A (en) * 2015-02-17 2016-08-22 三菱日立パワーシステムズ株式会社 Corrosion evaluation method of boiler
JP2018179781A (en) * 2017-04-14 2018-11-15 一般財団法人電力中央研究所 Method, device and program for estimation of reduction in thickness
JP2019158454A (en) * 2018-03-09 2019-09-19 三菱重工業株式会社 Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program
JP7011496B2 (en) 2018-03-09 2022-01-26 三菱重工業株式会社 Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program
CN109187619A (en) * 2018-09-26 2019-01-11 南京工业大学 One kind relating to sulphur petrochemical equipment corrosion spontaneous combustion prediction technique
JP6959494B1 (en) * 2021-03-26 2021-11-02 株式会社アールフロー Solid particle combustion analysis method, solid particle combustion analysis device and computer program
JP2022151328A (en) * 2021-03-26 2022-10-07 株式会社アールフロー Solid particle combustion analysis method, solid particle combustion analysis apparatus and computer program

Also Published As

Publication number Publication date
JP5990811B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5990811B2 (en) Method for predicting sulfide corrosion of boiler furnace wall pipes.
Syed et al. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass
Zuo et al. Review of flue gas acid dew-point and related low temperature corrosion
JP5779798B2 (en) Method for predicting sulfide corrosion of boiler furnace wall pipes.
CN111695249B (en) Prediction method for heat efficiency of gas boiler
CN111339716B (en) Boiler high-temperature flue gas flow field online agent model construction method
TW202001462A (en) Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant
JP2011149739A (en) Method for determining fuel property and device for determining fuel property
Donini et al. Numerical simulations of a premixed turbulent confined jet flame using the flamelet generated manifold approach with heat loss inclusion
JP2006010229A (en) Boiler deterioration diagnosing method, device, system and recording medium for recording program
Ovchinnikova et al. Optimizing the temperature stress for the furnace volume of a fire-tube boiler
JP2019158268A (en) Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
Landfahrer et al. Numerical model incorporating different oxidizer in a reheating furnace fired with natural gas
CN104048908A (en) Heat-transfer equipment performance experimental facility
Shim et al. Development of fireside waterwall corrosion correlations using pilot-scale test furnace
Riahi et al. Optimization of combustion efficiency in indirect water bath heaters of Ardabil city gate stations
CN103728055B (en) A kind of real-time estimation method of thermal power unit boiler furnace outlet flue gas energy
Pronobis et al. Kinetics of low NOx corrosion of waterwalls in utility boilers
Eskin et al. Thermodynamic analysis of a FBCC steam power plant
CN114964380B (en) Method, device and system for monitoring high-temperature corrosion state of pipe
Krishnamoorthy et al. Predicting chemical flame lengths and lift-off heights in enclosed, oxy-methane diffusion flames at varying O2/CO2 oxidizer dilution ratios
Morelli et al. Reduced FV modelling based on CFD database and experimental validation for the thermo-fluid dynamic simulation of flue gases in horizontal fire-tubes
Naď et al. Thermal load non-uniformity estimation for superheater tube bundle damage evaluation
Hernik Numerical calculations of the WR-40 boiler with a furnace jet boiler system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160722

R150 Certificate of patent or registration of utility model

Ref document number: 5990811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150