JP3458271B2 - Heat transfer tube remaining life evaluation device - Google Patents

Heat transfer tube remaining life evaluation device

Info

Publication number
JP3458271B2
JP3458271B2 JP28402199A JP28402199A JP3458271B2 JP 3458271 B2 JP3458271 B2 JP 3458271B2 JP 28402199 A JP28402199 A JP 28402199A JP 28402199 A JP28402199 A JP 28402199A JP 3458271 B2 JP3458271 B2 JP 3458271B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
remaining life
time
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28402199A
Other languages
Japanese (ja)
Other versions
JP2001108669A (en
Inventor
健司 服部
雄二 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP28402199A priority Critical patent/JP3458271B2/en
Publication of JP2001108669A publication Critical patent/JP2001108669A/en
Application granted granted Critical
Publication of JP3458271B2 publication Critical patent/JP3458271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電設備のボ
イラの過熱器や再熱器等に使用される伝熱管の余寿命
を、管内のスケール厚さ、内部応力などから算出し、評
価する伝熱管の余寿命評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention calculates and evaluates the remaining life of a heat transfer tube used in a superheater or reheater of a boiler of a thermal power plant, from the scale thickness in the tube, internal stress, etc. The present invention relates to a heat transfer tube residual life evaluation device.

【0002】[0002]

【従来の技術】例えば、火力発電設備のボイラにおける
火炉内の管については、減肉の観点から、多くのものが
比較的早い時期に更新されるが、過熱器や再熱器の管寄
せへの継ぎ手管を構成する伝熱管は、フェライト系耐熱
鋼のCr-Mo 管を使用し、比較的厳しい温度条件を与えて
設計され、比較的長期にわたり使用される。しかしなが
ら、この種のボイラの伝熱管の内面には、通常、使用温
度と時間に比例した水蒸気酸化スケールが生成され、水
蒸気酸化スケールが管の外面腐食と共に生成されるため
に、管の減肉量がスケール厚さと共に増大し、内圧発生
応力の増加や材質の劣化により、クリープ損傷等の経年
劣化損傷が生じてくる。このため、ボイラを健全に使用
するためには、その伝熱管の的確な余寿命診断が必要と
される。そのため、従来では、実機から抜き取った管で
試験片を作り、実験室で破壊試験を行ない、或は顕微鏡
による組織観察を行なってクリープ損傷等を実測し、管
の余寿命の診断を行なっていた。
2. Description of the Related Art For example, as for tubes in a furnace of a boiler of a thermal power generation facility, many of them are renewed at a relatively early stage from the viewpoint of wall thinning. The heat transfer tube that composes the joint tube is made of ferritic heat-resistant steel, Cr-Mo, and is designed under relatively strict temperature conditions, and is used for a relatively long period of time. However, on the inner surface of the heat transfer tube of this type of boiler, steam oxidation scale is generally generated in proportion to the operating temperature and time, and steam oxidation scale is generated along with the outer surface corrosion of the tube. Increases with the thickness of the scale, and due to an increase in stress generated by internal pressure and deterioration of material, aged deterioration damage such as creep damage occurs. Therefore, in order to use the boiler soundly, it is necessary to accurately diagnose the remaining life of the heat transfer tube. Therefore, in the past, a test piece was made from a pipe extracted from an actual machine, a destructive test was performed in a laboratory, or a microstructure was observed by a microscope to measure creep damage, etc. to diagnose the remaining life of the pipe. .

【0003】[0003]

【発明が解決しようとする課題】しかし、このような実
機からの抜き取り検査は、ごく一部の管について余寿命
の評価を行なうに過ぎないこと、及び過熱器、再熱器に
は通常、数百本の伝熱管が配設されているが、接続され
る各伝熱管の接続位置によりメタル温度の違いが大き
く、各伝熱管に生じる材質の劣化や減肉量にかなりのば
らつきが発生していること等から、一部の管についての
破壊試験によって、全体の伝熱管の余寿命を正確に判断
することができない問題があった。
However, such a sampling inspection from an actual machine only evaluates the remaining life of a small number of pipes, and it is usually a few times for superheaters and reheaters. Hundreds of heat transfer tubes are provided, but there is a large difference in metal temperature depending on the connection position of each heat transfer tube to be connected, and there is considerable variation in the material deterioration and amount of wall thinning that occur in each heat transfer tube. Therefore, there is a problem that the remaining life of the entire heat transfer tube cannot be accurately determined by the destructive test for some tubes.

【0004】そこで、従来、この種の伝熱管の余寿命を
所謂スケール法により評価する方法が提案されている
(例えば特開平6−331622号公報等)。このスケ
ール法による伝熱管の余寿命評価は、超音波発振計測装
置を用いて管内の水蒸気酸化スケールの厚さを測定し、
水蒸気酸化スケールの生成が熱活性化過程であり、その
厚さの対数と温度・時間パラメータを直線で表すことが
でき、この温度・時間パラメータからメタル温度を算出
し、さらに、管の内圧等から管内に作用する作用応力を
演算し、メタル温度、作用応力、及びクリープ破断強度
のデータベースとから、伝熱管の余寿命を算出する。
Therefore, conventionally, a method of evaluating the remaining life of this type of heat transfer tube by a so-called scale method has been proposed (for example, Japanese Patent Laid-Open No. 6-331622). To evaluate the remaining life of the heat transfer tube by this scale method, measure the thickness of the steam oxidation scale in the tube using an ultrasonic oscillation measuring device,
The generation of steam oxidation scale is a thermal activation process, and the logarithm of its thickness and the temperature / time parameter can be represented by a straight line. From this temperature / time parameter, the metal temperature is calculated, and from the internal pressure of the pipe, etc. The stress acting on the pipe is calculated, and the remaining life of the heat transfer pipe is calculated from the database of metal temperature, stress and creep rupture strength.

【0005】しかしながら、従来知られているこの種の
スケール法による余寿命の評価法は、実機材によるクリ
ープ破断強度のデータベースの作成が難しいために、実
験室内で伝熱管の運転状態を作り水蒸気酸化スケールの
厚さの経年変化を測定することになるが、数十万時間と
いう長期間のデータを採取することが難しく、実際に使
用可能なシステムの構築が難しいという問題があった。
However, in the conventional method of evaluating the remaining life by the scale method of this kind, it is difficult to prepare a database of creep rupture strength by actual equipment, so that the operating state of the heat transfer tube is created in the laboratory and steam oxidation is performed. Although it will be necessary to measure the secular change in the thickness of the scale, there is a problem that it is difficult to collect long-term data of several hundreds of thousands of hours, and it is difficult to construct an actually usable system.

【0006】また、従来のスケール法による余寿命評価
装置では、管群全体の余寿命を一括表示できるものはな
く、余寿命の算出値を見ただけでは、何れの位置の伝熱
管がどの程度の余寿命になっているかを、迅速に把握す
ることが難しいという問題があった。
[0006] Further, there is no conventional remaining life evaluation apparatus based on the scale method capable of displaying the remaining life of the entire tube group at once, and the extent to which the heat transfer tube at any position can be determined only by looking at the calculated remaining life. There was a problem that it was difficult to quickly grasp if the remaining life of the

【0007】本発明は、上記の点に鑑みてなされたもの
で、伝熱管の余寿命を正確に算出することができると共
に、多数の伝熱管の余寿命を的確且つ迅速に把握するこ
とができる伝熱管の余寿命評価装置を提供することを目
的とする。
The present invention has been made in view of the above points, and it is possible to accurately calculate the remaining life of a heat transfer tube and to accurately and quickly grasp the remaining life of a large number of heat transfer tubes. An object of the present invention is to provide a device for evaluating the remaining life of a heat transfer tube.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の余寿命評価装置は、図1の構成
図に示すように、伝熱管の外周面から超音波を入射しそ
の反射波を計測することより、伝熱管のスケール厚さと
管肉厚を計測するスケール厚さ・管肉厚測定手段10
と、スケール厚さ・管肉厚測定手段10で計測された管
肉厚、伝熱管の内圧、及び管外径から内圧応力を算出す
る応力算出手段20と、予め実機の伝熱管において計測
したメタル温度、スケール厚さ、及び運転時間のデータ
から水蒸気酸化速度定数の関係式を求めて記憶し、該関
係式と評価しようとする伝熱管の運転時間とスケール厚
さから該伝熱管のメタル温度を算出するメタル温度算出
手段30と、予め実機の伝熱管について計測したスケー
ル厚さとクリープ破断強度を、該伝熱管の内圧応力に対
応したスケール厚さ別のクリープ破断強度データとして
記憶する記憶手段25と、前記計測されたスケール厚さ
と該記憶手段25に書き込まれたスケール厚さ別クリー
プ破断強度データと内圧応力を用いてクリープ破断強度
を算出するクリープ破断強度算出手段40と、該クリー
プ破断強度算出手段40が算出したクリープ破断強度と
前記メタル温度算出手段30で算出したメタル温度とを
用いて伝熱管の残存寿命時間を算出する残存寿命時間算
出手段45と、伝熱管の運転時間の経過と管肉厚の減少
から減肉率を求め、単位運転時間毎に該減肉率に応じて
減少する管肉厚の内圧応力を算出し、該内圧応力と前記
残存寿命時間算出手段45を使用して減肉時の残存寿命
時間を算出し、単位運転時間に対する寿命消費率を算出
すると共に、該寿命消費率を累積して累積寿命消費率を
算出し、該累積寿命消費率が1を越えた時の単位運転時
間の累積値を伝熱管の余寿命時間とする余寿命算出手段
50と、を備えたことを特徴とする。
In order to achieve the above object, the remaining life evaluation apparatus according to claim 1 of the present invention, as shown in the configuration diagram of FIG. 1, injects ultrasonic waves from the outer peripheral surface of the heat transfer tube. Then, the scale thickness / tube thickness measuring means 10 for measuring the scale thickness and the tube wall thickness of the heat transfer tube by measuring the reflected wave
And a stress calculating means 20 for calculating an internal pressure stress from the pipe wall thickness measured by the scale thickness / tube wall thickness measuring means 10, the inner pressure of the heat transfer tube, and the outer diameter of the tube, and the metal previously measured in the heat transfer tube of the actual machine. The relational expression of the steam oxidation rate constant is obtained and stored from the data of temperature, scale thickness, and operating time, and the metal temperature of the heat transfer tube is calculated from the operating time and scale thickness of the heat transfer tube to be evaluated with the relational expression. A metal temperature calculating means 30 for calculating, and a storage means 25 for storing the scale thickness and the creep rupture strength measured in advance for the heat transfer tube of the actual machine as the creep rupture strength data for each scale thickness corresponding to the internal pressure stress of the heat transfer tube. A creep rupture strength is calculated using the measured scale thickness, the creep rupture strength data for each scale thickness written in the storage means 25, and the internal pressure stress. Fracture strength calculation means 40, and remaining life time calculation means for calculating the remaining life time of the heat transfer tube using the creep rupture strength calculated by the creep rupture strength calculation means 40 and the metal temperature calculated by the metal temperature calculation means 30. 45, the thinning rate is calculated from the elapsed operating time of the heat transfer tube and the decrease in the tubular thickness, and the internal pressure stress of the tubular wall thickness that decreases according to the thinning rate is calculated for each unit operating time. Using the remaining life time calculating means 45, the remaining life time at the time of thinning is calculated, the life consumption rate per unit operating time is calculated, and the life consumption rate is accumulated to calculate the cumulative life consumption rate. And a remaining life calculation means 50 for setting the cumulative value of the unit operating time when the cumulative life consumption rate exceeds 1 as the remaining life time of the heat transfer tube.

【0009】[0009]

【作用】上記構成の余寿命評価装置では、予め実機の伝
熱管について、スケール厚さとクリープ破断強度を測定
し、伝熱管の内圧応力に対応したスケール厚さ別のクリ
ープ破断強度データとして記憶手段25に記憶する。ま
た、予め実機の伝熱管において計測したメタル温度、ス
ケール厚さ、及び運転時間のデータから水蒸気酸化速度
定数の関係式を求め、それを記憶する。
In the residual life evaluation apparatus having the above-described structure, the scale thickness and the creep rupture strength of the heat transfer tube of the actual machine are measured in advance, and the storage means 25 stores the creep rupture strength data for each scale thickness corresponding to the internal pressure stress of the heat transfer tube. Remember. Further, the relational expression of the steam oxidation rate constant is obtained from the data of the metal temperature, the scale thickness, and the operation time which are measured in advance in the heat transfer tube of the actual machine, and the relational expression is stored.

【0010】評価しようとする伝熱管について、スケー
ル厚さ・管肉厚測定手段10により、管の外周面から超
音波を入射しその反射波を計測することより、伝熱管の
スケール厚さと管肉厚を計測する。そして、応力算出手
段20が、スケール厚さ・管肉厚測定手段10で計測さ
れた管肉厚、伝熱管の内圧、及び管外径から内圧応力を
算出する。また、メタル温度算出手段30が、前記水蒸
気酸化速度定数の関係式を使用して、伝熱管の運転時間
とスケール厚さから該伝熱管のメタル温度を算出する。
With respect to the heat transfer tube to be evaluated, the scale thickness and tube wall thickness measuring means 10 injects an ultrasonic wave from the outer peripheral surface of the tube and measures the reflected wave to determine the scale thickness and the tube wall thickness of the heat transfer tube. Measure the thickness. Then, the stress calculating unit 20 calculates the internal pressure stress from the pipe wall thickness measured by the scale thickness / pipe wall thickness measuring unit 10, the internal pressure of the heat transfer pipe, and the pipe outer diameter. Further, the metal temperature calculating means 30 uses the relational expression of the steam oxidation rate constant to calculate the metal temperature of the heat transfer tube from the operating time of the heat transfer tube and the scale thickness.

【0011】さらに、クリープ破断強度算出手段40
が、計測されたスケール厚さと記憶手段25に書き込ま
れたスケール厚さ別クリープ破断強度データと内圧応力
を用いてクリープ破断強度を算出し、残存寿命時間算出
手段45が、クリープ破断強度算出手段40が算出した
クリープ破断強度とメタル温度算出手段30で算出した
メタル温度とを用いて伝熱管の残存寿命時間を算出す
る。そして、余寿命算出手段50が、伝熱管の運転時間
の経過と管肉厚の減少から減肉率を求め、単位運転時間
毎に減肉率に応じて減少する管肉厚の内圧応力を算出
し、内圧応力と残存寿命時間算出手段45を使用して減
肉時の残存寿命時間を算出し、単位運転時間に対する寿
命消費率を算出する。余寿命算出手段50は、単位運転
時間が経過する毎に、上記内圧応力、残存寿命時間、及
び寿命消費率を算出し、寿命消費率を累積して累積寿命
消費率を算出する。そして、累積寿命消費率が1を越え
た時の単位運転時間の累積値が伝熱管の余寿命時間とな
る。
Further, the creep rupture strength calculating means 40
Calculates the creep rupture strength using the measured scale thickness, the creep rupture strength data for each scale thickness written in the storage means 25, and the internal pressure stress, and the remaining life time calculation means 45 calculates the creep rupture strength calculation means 40. The remaining life time of the heat transfer tube is calculated by using the creep rupture strength calculated by and the metal temperature calculated by the metal temperature calculating means 30. Then, the remaining life calculation means 50 obtains the wall-thickness reduction rate from the elapsed operating time of the heat transfer tube and the decrease in the wall-thickness, and calculates the internal pressure stress of the tube wall-thickness that decreases according to the wall-thickness reduction per unit operating time. Then, the internal pressure stress and the remaining life time calculating means 45 are used to calculate the remaining life time at the time of thinning, and the life consumption rate per unit operating time is calculated. The remaining life calculation means 50 calculates the internal pressure stress, the remaining life time, and the life consumption rate each time a unit operation time elapses, and accumulates the life consumption rate to calculate a cumulative life consumption rate. Then, the cumulative value of the unit operation time when the cumulative life consumption rate exceeds 1 becomes the remaining life time of the heat transfer tube.

【0012】このように、予め実機の伝熱管について、
スケール厚さとクリープ破断強度を測定し、伝熱管の内
圧応力に対応したスケール厚さ別のクリープ破断強度デ
ータとして記憶し、また、同様の伝熱管において計測し
たメタル温度、スケール厚さ、及び運転時間のデータか
ら水蒸気酸化速度定数の関係式を求めて記憶し、それら
のデータを演算式等として使用して伝熱管の余寿命を算
出するから、実際の過熱器や再熱器の伝熱管の余寿命を
正確に算出することができる。
In this way, regarding the heat transfer tube of the actual machine,
The scale thickness and creep rupture strength were measured and stored as creep rupture strength data for each scale thickness corresponding to the internal pressure stress of the heat transfer tube, and the metal temperature, scale thickness, and operating time measured in the same heat transfer tube were also stored. The relational expression of the steam oxidation rate constant is calculated from the data in Table 1 and stored, and the remaining life of the heat transfer tube is calculated using these data as an arithmetic expression etc. The life can be accurately calculated.

【0013】また、余寿命算出手段は、単位運転時間が
経過する毎に、内圧応力、残存寿命時間、及び寿命消費
率を算出し、寿命消費率を累積して累積寿命消費率を算
出し、累積寿命消費率が1を越えた時の単位運転時間の
累積値を伝熱管の余寿命時間とするから、運転時間の経
過と共に、伝熱管の管肉厚が減少し、それに伴い増大す
る内圧応力の変化に応じた正確な余寿命を算出すること
ができる。
Further, the remaining life calculation means calculates the internal pressure stress, the remaining life time, and the life consumption rate each time a unit operation time elapses, and accumulates the life consumption rates to calculate a cumulative life consumption rate, Since the cumulative value of the unit operating time when the cumulative life consumption rate exceeds 1 is used as the remaining life of the heat transfer tube, the wall thickness of the heat transfer tube decreases as the operation time elapses, and the internal pressure stress increases accordingly. It is possible to accurately calculate the remaining life according to the change of.

【0014】さらに、請求項2の発明のように、余寿命
分布グラフ表示手段を設け、過熱器又は再熱器に使用さ
れた複数の伝熱管について、余寿命算出手段が算出した
余寿命時間を、複数の伝熱管の管列又は段数に対するグ
ラフとして表示するように構成すれば、多数の伝熱管が
列状又は段状に配設される過熱器又は再熱器であって
も、実際の伝熱管の位置と余寿命の関係を迅速に把握す
ることができる。
Further, as in the second aspect of the present invention, the remaining life distribution graph display means is provided, and the remaining life time calculated by the remaining life calculation means is calculated for the plurality of heat transfer tubes used in the superheater or the reheater. If it is configured so that it is displayed as a graph for the row or the number of stages of a plurality of heat transfer tubes, even if a large number of heat transfer tubes are arranged in rows or steps, the actual heat transfer or reheater It is possible to quickly grasp the relationship between the position of the heat pipe and the remaining life.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図2は余寿命評価装置の構成図を
示している。1は超音波発振計測装置であり、例えば2
0MHz程度の周波数の超音波を発振し、その反射波を
検出する探触子2を備える。この超音波発振計測装置1
は、計測時、伝熱管3の外周面に当てた探触子2から超
音波を発振出力し、伝熱管3の母材層とスケール層から
反射される超音波の反射波を検出し、その反射波レベル
から管3の管肉厚とスケール厚さを計測し、その計測デ
ータを出力する。図3はその反射波の波形図を示し、横
軸は時間、縦軸は波の検出レベルである。波形図におい
て、THが管の母材の厚さ(管肉厚)、Sがスケール厚
さに対応し、スケール中を進む超音波の音速とその横軸
の時間幅から、管肉厚THとスケール厚さSが算出さ
れ、計測データとして出力される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a configuration diagram of the remaining life evaluation apparatus. 1 is an ultrasonic oscillation measuring device, for example, 2
The probe 2 that oscillates an ultrasonic wave having a frequency of about 0 MHz and detects a reflected wave thereof is provided. This ultrasonic oscillation measuring device 1
At the time of measurement, the ultrasonic wave is oscillated and output from the probe 2 applied to the outer peripheral surface of the heat transfer tube 3, and the reflected wave of the ultrasonic wave reflected from the base material layer and the scale layer of the heat transfer tube 3 is detected. The wall thickness and scale thickness of the pipe 3 are measured from the reflected wave level, and the measured data is output. FIG. 3 shows a waveform diagram of the reflected wave, in which the horizontal axis represents time and the vertical axis represents the wave detection level. In the waveform diagram, TH corresponds to the thickness of the base metal of the tube (tube thickness), S corresponds to the scale thickness, and from the sound velocity of the ultrasonic wave traveling in the scale and the time width of its horizontal axis, The scale thickness S is calculated and output as measurement data.

【0016】被計測物となる伝熱管3は、図7に示すよ
うに、過熱器或は再熱器の出口管寄せ4に接続される管
であり、各伝熱管3には管列番号(例えば1〜74)と
段数(例えばA〜J)が付けられ、これらの管の計測デ
ータには、その管列番号と段数が付され、識別される。
As shown in FIG. 7, the heat transfer tube 3 to be measured is a tube connected to the outlet port 4 of the superheater or the reheater, and each heat transfer tube 3 has a row number ( For example, 1 to 74) and the number of stages (for example, A to J) are attached, and the measurement data of these pipes are identified by attaching the pipe row number and the number of stages.

【0017】5はパーソナルコンピュータ等から構成さ
れる演算処理装置であり、上記超音波発振計測装置1か
らの管肉厚THとスケール厚さSの計測データを取り込
む共に、キーボード等を使用して入力した伝熱管3の内
圧、管外径、管肉厚計測データから応力σを算出し、運
転時間H、スケール厚さS、及び予め記憶されたスケー
ス厚さSとメタル温度Tと運転時間Hの関係式から、伝
熱管3のメタル温度Tを算出する。さらに、演算処理装
置5は、予め記憶されたスケール厚さ別クリープ破断強
度データ、内圧応力σ、スケール厚さSから図6の余寿
命評価曲線を決定し、メタル温度Tと余寿命評価曲線を
使用して伝熱管3の余寿命を算出する。それらの余寿命
は、過熱器又は再熱器の全ての伝熱管について算出し、
伝熱管の管列又は段数に対する余寿命の分布を示すグラ
フを作成し、CRT、液晶ディスプレイ等の表示器6に
表示する。
Reference numeral 5 denotes an arithmetic processing device composed of a personal computer or the like, which takes in the measurement data of the pipe wall thickness TH and the scale thickness S from the ultrasonic oscillation measuring device 1 and inputs them using a keyboard or the like. The stress σ is calculated from the inner pressure of the heat transfer tube 3, the outer diameter of the tube, and the wall thickness measurement data, and the operating time H, the scale thickness S, and the pre-stored case thickness S, metal temperature T, and operating time H are calculated. The metal temperature T of the heat transfer tube 3 is calculated from the relational expression. Further, the arithmetic processing unit 5 determines the remaining life evaluation curve of FIG. 6 from the previously stored creep rupture strength data for each scale thickness, the internal pressure stress σ, and the scale thickness S, and calculates the metal temperature T and the remaining life evaluation curve. It is used to calculate the remaining life of the heat transfer tube 3. The remaining life is calculated for all heat transfer tubes of the superheater or reheater,
A graph showing the distribution of the remaining life with respect to the tube row or the number of stages of the heat transfer tubes is created and displayed on the display 6 such as a CRT or a liquid crystal display.

【0018】ところで、伝熱管3内で生成される水蒸気
酸化スケールは、一定の温度で放物線的成長挙動を示す
ことが判明しており、その酸化速度定数kp は kp =d2 /t・・・・・・・(1) の式で表わされる。ここで、dは管の母材の減肉量(c
m)、tは時間(秒)である。
By the way, it has been found that the steam oxidation scale produced in the heat transfer tube 3 exhibits a parabolic growth behavior at a constant temperature, and its oxidation rate constant k p is k p = d 2 / t · ..... Expressed by the formula (1). Where d is the amount of wall thinning of the pipe base metal (c
m) and t are time (seconds).

【0019】また、減肉量dと時間とスケール生成中の
温度Tつまりメタル温度T(°K)の関係式は、実験値
から、 Logkp =1000a/T+b・・・・(2) となり、減肉量d(cm)をスケール厚さS(μm)に
換算し、時間t(秒)を時間t(hour)に置き換える
と、式(1)から d2 /t=((S/2.1)×10-42 /(t×3600)・・(3) となり、スケール生成中の温度Tの式は、式(2)から Log(((S/2.1)×10-42 /(t×3600)) =1000a/T+b ・・・(4) となり、よって、 T(°K)=a/(c−2LogS+Logt)・・・・(5) と表わされる。ここで、a,b,cは、各種条件により
決定される定数である。
Further, the relational expression between the amount of wall thinning d, the time and the temperature T during the scale formation, that is, the metal temperature T (° K) is, from the experimental value, Logk p = 1000a / T + b (2) When the amount of thickness reduction d (cm) is converted to the scale thickness S (μm) and the time t (second) is replaced with the time t (hour), d 2 / t = ((S / 2. 1) × 10 −4 ) 2 / (t × 3600) ··· (3), the equation for the temperature T during scale generation is obtained from Equation (2) as Log (((S / 2.1) × 10 −4 ) ) 2 / (t × 3600)) = 1000a / T + b (4) Therefore, T (° K) = a / (c-2LogS + Logt) (5) Here, a, b, and c are constants determined by various conditions.

【0020】そこで、上記定数a,b,cを決定するた
めに、実際に運転中のボイラにおいて、その過熱器、再
熱器で使用される複数の伝熱管のメタル温度Tを測定す
ると共に、それらの伝熱管の一部を抜き取り、それらの
スケール厚さSを断面観察により測定し、メタル温度T
とスケール厚さS及び運転時間Hのデータを多数採取し
た。
Therefore, in order to determine the constants a, b and c, the metal temperature T of a plurality of heat transfer tubes used in the superheater and reheater of the boiler which is actually in operation is measured, and A part of these heat transfer tubes is pulled out, and their scale thickness S is measured by cross-section observation, and the metal temperature T
A large number of data on the scale thickness S and the operating time H were collected.

【0021】そして、上記式(1)〜式(4)より得た
下記の式(6)を用いて、水蒸気酸化速度定数Logk
p を計算し、 Logkp =(S/2.1)×10-42 /(t×3600)・・・(6) これらの水蒸気酸化速度定数Logkp を、図4のよう
に、温度の逆数(1000/(T+273 ))を横軸にとった
グラフ上にプロットし、これらのプロット上に乗る直線
Yを得た。
Then, the steam oxidation rate constant Logk is calculated using the following equation (6) obtained from the above equations (1) to (4).
p was calculated and Logk p = (S / 2.1) × 10 −4 ) 2 / (t × 3600) (6) These steam oxidation rate constants Logk p were calculated as shown in FIG. The reciprocal of (1000 / (T + 273)) was plotted on a graph with the horizontal axis taken to obtain a straight line Y on these plots.

【0022】この直線Yを式化すると、 Logkp =−d×(1000/(T+273))−e・・・(7) ここで、d、eは定数であり、上記式(3)と式(7)
から Log(((S/2.1)×10-42 /(t×3600)) =−d×(1000/(T+273))−e・・・・・・・・(8) となる。そして、上記式(8)から T(℃)+273 =d/( f-2LogS+LogH)・・・(9) のスケール厚さS、メタル温度T℃、運転時間H(h
r)の関係を示す式を得た。ここで、fは定数である。
When this straight line Y is formulated, Logk p = −d × (1000 / (T + 273)) − e (7) where d and e are constants, and the above equation (3) And formula (7)
From Log (((S / 2.1) × 10 −4 ) 2 / (t × 3600)) = −d × (1000 / (T + 273)) − e ... (8) Becomes Then, from the above formula (8), T (° C.) + 273 = d / (f−2LogS + LogH) (9) scale thickness S, metal temperature T ° C., operating time H (h
An equation showing the relationship of r) was obtained. Here, f is a constant.

【0023】上記式(9)において、メタル温度T℃を
例えばn1 ℃〜n10℃に変化させたときの曲線を、横軸
に運転時間tを縦軸にスケール厚さSをとったグラフに
示すと、図5に示すようになり、このグラフの曲線のデ
ータ、つまりスケール厚さS、メタル温度T℃、運転時
間Hの関係を示すデータが、演算処理装置5の記憶部に
演算式として或はテーブルデータ等として予め記憶され
る。
In the above equation (9), a graph in which the metal temperature T ° C. is changed, for example, from n 1 ° C. to n 10 ° C., is a graph with the horizontal axis representing the operating time t and the vertical axis representing the scale thickness S. 5, the curve data of this graph, that is, the data indicating the relationship between the scale thickness S, the metal temperature T ° C., and the operating time H, is stored in the storage unit of the processing unit 5 as an arithmetic expression. Or in advance as table data or the like.

【0024】さらに、演算処理装置5の記憶部には、予
めスケール厚さに応じたクリープ破断強度(ラーソンミ
ラーパラメータ:LM値)のデータが記憶される。この
クリープ破断強度(LM値)のデータは、長期間使用さ
れたボイラの過熱器、再熱器における伝熱管の実機材及
び新材について、実際に管の一部を抜き取り、それらの
スケール厚さを断面観察により測定し、クリープ破断試
験を行なってその破断試験値を採取したものであり、そ
れらのクリープ破断強度(LM値)は、図6に示すよう
に、内圧応力σに対するグラフ上に、スケール厚さS
(140 μm〜 800μm)に応じた直線となり、 LM=f(S,σ)・・・・・・・・(10) の式で表される。
Further, data of creep rupture strength (Larson Miller parameter: LM value) according to the scale thickness is stored in the storage unit of the arithmetic processing unit 5 in advance. This creep rupture strength (LM value) data was obtained by actually extracting a part of the actual equipment and new material of the heat transfer tube in the boiler superheater and reheater used for a long period of time, and measuring their scale thickness. Is measured by observing a cross section, and a creep rupture test is performed to collect the rupture test values. The creep rupture strength (LM value) of the creep rupture test is shown in FIG. Scale thickness S
It becomes a straight line corresponding to (140 μm to 800 μm), and is expressed by the equation: LM = f (S, σ) ... (10).

【0025】これらのスケール厚さSに応じたクリープ
破断強度(LM値)の直線のデータが、演算式として或
はテーブルデータとして予め演算処理装置5の記憶部に
記憶される。なお、直線以外の他のスケール厚さの場合
は、比例補間により算出される。
The straight line data of the creep rupture strength (LM value) according to the scale thickness S is stored in advance in the storage unit of the arithmetic processing unit 5 as an arithmetic expression or table data. If the scale thickness is other than a straight line, it is calculated by proportional interpolation.

【0026】一方、伝熱管3の内圧による応力σは、超
音波発振計測装置1により計測した管肉厚TH、キーボ
ード等から入力した管外径DO 、内圧Pを用いて、予め
記憶された σ=(P/100)×(DO /2TH−0.5)・・・・(11) の式から算出する。
On the other hand, the stress σ due to the internal pressure of the heat transfer tube 3 is stored in advance by using the tube wall thickness TH measured by the ultrasonic oscillation measuring device 1, the tube outer diameter D O input from a keyboard or the like, and the internal pressure P. σ = (P / 100) × (D o /2TH−0.5) ... (11)

【0027】ところで、伝熱管の材料特性にはばらつき
があり、その材料特性のばらつきが余寿命の推定評価に
影響を与えることが考えられる。このために、実際にス
ケール厚さSと応力σから図6のグラフデータを用いて
クリープ破断強度(LM値)を推定評価する場合、破断
応力σに対し安全率の概念を導入し、選択可能な複数の
安全係数α(例えば100% 80% 67%)を内圧応力σに乗じ
て、図6のグラフ上に破線で示すように、クリープ破断
強度(LM値)の評価線を作り、実際にはこの評価線を
使用してスケール厚さSと応力σに対するクリープ破断
強度(LM値)を得るようにしている。つまり、実際の
演算に使用する評価応力σO は、σO =σ/αの式から
算出する。
By the way, there are variations in the material properties of the heat transfer tube, and it is conceivable that the variations in the material properties affect the estimation and evaluation of the remaining life. Therefore, when the creep rupture strength (LM value) is actually estimated and evaluated from the scale thickness S and the stress σ using the graph data of FIG. 6, the concept of the safety factor for the rupture stress σ is introduced and selectable. By multiplying the internal pressure stress σ by multiple safety factors α (for example, 100% 80% 67%), make an evaluation line of creep rupture strength (LM value) as shown by the broken line in the graph of Fig. 6, and actually Uses this evaluation line to obtain the creep rupture strength (LM value) with respect to the scale thickness S and the stress σ. That is, the evaluation stress σ O used in the actual calculation is calculated from the equation σ O = σ / α.

【0028】そして、クリープ破断強度(LM値)とメ
タル温度Tと管の残存寿命時間との関係は、 LM=(T+273 )×(g+Logφ)×10-3・・・(12) の式で表される。ここで、gは定数、φは管の残存寿命
時間である。
The relationship between the creep rupture strength (LM value), the metal temperature T, and the remaining life time of the pipe is expressed by the following formula: LM = (T + 273) × (g + Logφ) × 10 −3 (12) To be done. Here, g is a constant and φ is the remaining life time of the tube.

【0029】上記式(12)にクリープ破断強度(LM
値)とメタル温度Tを代入して管の残存寿命時間φが算
出されるが、長期間運転に応じた管肉厚の減少に伴い、
その内圧応力が上昇するため、減少した管肉厚に基づき
クリープ破断強度(LM値)を長期間運転に応じて下方
修正する必要がある。
The creep rupture strength (LM
Value) and the metal temperature T are substituted to calculate the remaining life time φ of the pipe, but with the decrease in the pipe wall thickness due to long-term operation,
Since the internal pressure stress increases, it is necessary to correct the creep rupture strength (LM value) downward based on the reduced pipe wall thickness according to long-term operation.

【0030】そこで、伝熱管3の新材時の初期肉厚は既
知であるから、運転時間H時の管肉厚THから減肉率β
(図9)を求め、そして、一定の単位運転時間(例えば
1000時間)Δt毎に、管肉厚の減少に伴う応力の上昇に
基づき、クリープ破断強度(LM値)を算出してLM値
を下方に修正し、そのLM値と減少した管肉厚に伴い上
昇した応力σi を使用して、単位時間毎にその時点の残
存寿命時間φi を算出する。
Therefore, since the initial wall thickness of the heat transfer tube 3 when a new material is known is known, the wall thickness reduction rate β is calculated from the tube wall thickness TH during the operating time H.
(Fig. 9), and a certain unit operating time (for example,
1000 hours) At every Δt, the creep rupture strength (LM value) is calculated based on the increase in stress due to the decrease in pipe wall thickness, and the LM value is corrected downward, and the LM value and the reduced pipe wall thickness Using the increased stress σ i , the remaining life time φ i at that time is calculated for each unit time.

【0031】さらに、その単位時間Δtに対する残存寿
命時間φi の割合を寿命消費率ψiとし、ψi =Δt/
φi の式から算出する。また同時に、経過時間として
単位時間Δt(1000時間)を累積し、単位時間Δt毎に
つまり運転時間Hに単位時間Δtを加算する毎に、寿命
消費率ψi を求めて、それを累積し、累積寿命消費率Σ
ψi を算出する。そして、この累積寿命消費率Σψi
1を越えた時、寿命を終えたと判断し、最終的に、その
一つ前の経過時間つまり単位時間Δtの累積値が伝熱管
3の余寿命時間Φi-1 となる。
Further, the ratio of the remaining life time φ i to the unit time Δt is the life consumption rate ψ i, and ψ i = Δt /
It is calculated from the formula of φ i . At the same time, the unit time Δt (1000 hours) is accumulated as the elapsed time, and every time the unit time Δt is added, that is, every time the unit time Δt is added to the operating time H, the life consumption rate ψ i is calculated and accumulated. Cumulative life consumption rate Σ
Calculate ψ i . Then, when the cumulative life consumption rate Σψ i exceeds 1, it is determined that the life has ended, and finally the cumulative value of the elapsed time immediately before that, that is, the unit time Δt is the remaining life time Φ of the heat transfer tube 3. i-1 .

【0032】このような余寿命時間Φi-1 の算出は、入
力された全ての伝熱管について実施され、管列に対する
余寿命のグラフとして管の段数毎に、或は管の段数に対
する余寿命のグラフとして、表示器6にグラフ表示され
る。
The calculation of the remaining life time Φ i-1 is carried out for all the input heat transfer tubes, and the remaining life is plotted for each row of tubes as a graph of the remaining life for the row of tubes or the remaining life for the number of tubes. Is displayed as a graph on the display 6.

【0033】次に、余寿命評価装置の具体的な動作を、
図8、図9のフローチャートを参照して説明する。
Next, the specific operation of the remaining life evaluation device will be described.
This will be described with reference to the flowcharts of FIGS.

【0034】先ず、超音波発振計測装置1で採取された
伝熱管3の計測データつまり管肉厚THとスケール厚さ
Sの各々データを読み込み、各々のデータシートに書き
込む(ステップ100)。各データには伝熱管3の位置
を示すデータ(管列数と段数)が付され、演算処理装置
5には、キーボード等から伝熱管3の全管列数と全段数
が入力される。次に、ステップ110で、伝熱管3のこ
れまでの運転時間Hをキーボード等から入力する。
First, the measurement data of the heat transfer tube 3 collected by the ultrasonic oscillation measuring device 1, that is, the tube thickness TH and the scale thickness S, is read and written in each data sheet (step 100). Data indicating the position of the heat transfer tube 3 (the number of tube rows and the number of stages) is attached to each data, and the total number of tube rows and the number of all stages of the heat transfer tube 3 are input to the arithmetic processing device 5 from a keyboard or the like. Next, in step 110, the operation time H of the heat transfer tube 3 up to now is input from a keyboard or the like.

【0035】そして、次のステップ120で、各々の伝
熱管3のメタル温度Tを算出する。このメタル温度T
は、運転時間Hとスケール厚さSを用いて、上述の式
(9)から算出される。即ち、運転時間Hとスケール厚
さSのグラフ上でメタル温度Tの曲線は図5に示すよう
に表されるから、運転時間Hとスケール厚さSからメタ
ル温度Tの曲線が決定され(対応する運転時間Hとスケ
ール厚さSの位置に曲線がない場合は比例補間により決
定され)、メタル温度Tが算出される。
Then, in the next step 120, the metal temperature T of each heat transfer tube 3 is calculated. This metal temperature T
Is calculated from the above equation (9) using the operating time H and the scale thickness S. That is, since the curve of the metal temperature T is shown on the graph of the operating time H and the scale thickness S as shown in FIG. 5, the curve of the metal temperature T is determined from the operating time H and the scale thickness S (corresponding When there is no curve at the position of the operating time H and the scale thickness S, the metal temperature T is calculated.

【0036】次に、ステップ130で、実際に使用され
る伝熱管3の内圧P(kg/cm2)と管外径DO (mm)とを
キーボード等から入力する。そして、ステップ140
で、伝熱管3の内圧による応力σを、超音波発振計測装
置1により計測した管肉厚TH、入力した管外径DO
内圧Pを用いて、上記式(11)から算出する。
Next, at step 130, the internal pressure P (kg / cm 2 ) of the heat transfer tube 3 actually used and the tube outer diameter D O (mm) are input from a keyboard or the like. And step 140
Then, the stress σ due to the internal pressure of the heat transfer tube 3, the tube wall thickness TH measured by the ultrasonic oscillation measuring device 1, the input tube outer diameter D O ,
It is calculated from the above equation (11) using the internal pressure P.

【0037】次に、ステップ150で、安全係数α(例
えば100% 80% 67%)を入力し、スケール厚さS、応力
σ、安全係数αからクリープ破断強度となるラーソンミ
ラーパラメータ(LM値)を、図6のグラフに示す式の
データを用いて算出する。安全係数αは内圧応力σに乗
じて使用され、評価応力σO (kg/mm2)が、σO =σ/
αの式から算出され、この評価応力σO は、図6に示す
破線のように、安全係数を乗じることにより、内圧応力
σに対応した実線の下側に移動したものとなる。スケー
ル厚さSに対応した直線がない場合には、比例補間して
評価応力σO とスケール厚さSに対応したラーソンミラ
ーパラメータ(評価LM値)を算出する。
Next, in step 150, the safety factor α (for example, 100% 80% 67%) is input, and the Larson-Miller parameter (LM value) which becomes the creep rupture strength from the scale thickness S, stress σ, and safety factor α. Is calculated using the data of the formula shown in the graph of FIG. The safety factor α is used by multiplying the internal pressure stress σ, and the evaluation stress σ O (kg / mm 2 ) is σ O = σ /
The evaluation stress σ O calculated from the expression of α is moved to the lower side of the solid line corresponding to the internal pressure stress σ by multiplying the safety factor as shown by the broken line in FIG. If there is no straight line corresponding to the scale thickness S, proportional interpolation is performed to calculate the Larson-Miller parameter (evaluation LM value) corresponding to the evaluation stress σ O and the scale thickness S.

【0038】次に、ステップ160で、上記式(10)
に、上記評価LM値とメタル温度Tを代入して、管の残
存寿命時間φ0 を算出する。その後、運転時間Hに単位
運転時間Δtを加算して、運転時間(H+Δt)の時点
の減肉した管肉厚THi を求め、その管肉厚THi から
内圧応力σi を求めると共に、上記と同様に、スケール
厚さS、内圧応力σi 、安全係数αから、クリープ破断
強度となるラーソンミラーパラメータ(LM値)を、図
6のグラフの式またはデーブルデータを用いて算出し、
単位運転時間Δt経過後の管の残存寿命時間φi を算出
する。そして、この残存寿命時間φi から寿命消費率ψ
i を算出すると共に、累積寿命消費率Σψi を求め、累
積寿命消費率Σψi が1を越えた時点のつまり一つ前の
単位時間Δtの累積値が伝熱管3の余寿命時間Φi-1
して算出される。
Next, at step 160, the above equation (10) is obtained.
By substituting the evaluation LM value and the metal temperature T into, the remaining life time φ 0 of the tube is calculated. Then, the unit operating time Δt is added to the operating time H to obtain the reduced wall thickness TH i at the time of the operating time (H + Δt), and the internal pressure stress σ i is obtained from the pipe thickness TH i. Similarly, the Larson Miller parameter (LM value), which is the creep rupture strength, is calculated from the scale thickness S, the internal pressure stress σ i , and the safety coefficient α by using the formula of the graph in FIG. 6 or the table data,
The remaining life time φ i of the pipe after the unit operation time Δt has elapsed is calculated. Then, from this remaining life time φ i , the life consumption rate ψ
calculates a i, we obtain the cumulative lifetime consumption rate Shigumapusai i, remaining life time of the cumulative value of the clogging previous unit time Δt at which the cumulative lifetime consumption rate Shigumapusai i exceeds 1 the heat transfer tubes 3 [Phi i- Calculated as 1 .

【0039】即ち、図9の詳細フローチャートに示すよ
うに、先ず、ステップ200で、運転時間Δt経過時の
管肉厚THi を、減肉率βを用いて算出し、次に、ステ
ップ210で、上記と同様に、変化した内圧応力σi
を、変化した管肉厚THi 、管外径DO 、内圧Pを用い
て、上記式(11)から算出する。次に、ステップ22
0で、スケール厚さS、内圧応力σi 、安全係数αから
クリープ破断強度となるラーソンミラーパラメータ(L
M値)を、上記と同様に、図6のグラフデータを用いて
算出する。
That is, as shown in the detailed flow chart of FIG. 9, first, at step 200, the pipe wall thickness TH i after the lapse of the operating time Δt is calculated using the thickness reduction ratio β, and then at step 210. , As described above, the changed internal pressure stress σ i
Is calculated from the above equation (11) using the changed pipe wall thickness TH i , pipe outer diameter D O , and internal pressure P. Next, step 22
At 0, the Larson-Miller parameter (L is the creep rupture strength based on the scale thickness S, internal pressure stress σ i , and safety factor α).
The M value) is calculated using the graph data of FIG. 6 in the same manner as above.

【0040】そして、次に、ステップ230で、単位時
間Δt経過後の管の残存寿命時間φ i を算出し、次のス
テップ240で、単位時間Δtに対する残存寿命時間φ
i の割合となる寿命消費率ψi を、ψi =Δt/φi
式から算出し、それを累積し、累積寿命消費率Σψi
求める。次に、ステップ250で、この累積寿命消費率
Σψi が1を越えたか否かを判定し、1を越えてない場
合、次にステップ260に進み、さらに上記運転時間H
i に単位運転時間Δtを加算して、運転時間H i+1
し、再びステップ200に戻り、運転時間Hi+1 経過時
の管肉厚THi+1を、上記と同様に減肉率βを用いて算
出する。
Then, in step 230, the unit time is
Remaining life time of the pipe after a lapse of Δt i And calculate the next
At step 240, the remaining life time φ with respect to the unit time Δt
i Lifetime consumption rate ψi Is ψi = Δt / φi of
Calculated from the formula and accumulated, cumulative life consumption rate Σψi To
Ask. Next, in step 250, this cumulative life consumption rate is
Σψi If it exceeds 1, it is judged whether it exceeds 1.
If so, the process proceeds to step 260, and the operating time H
i Unit operating time Δt is added to i + 1 When
Then, the process returns to step 200 again, and the operating time Hi + 1 When elapsed
Pipe wall thickness THi + 1Is calculated using the metal loss rate β as above.
Put out.

【0041】さらに上記と同様に、応力σi+1 を算出
し、残存寿命時間φi+1 を算出し、寿命消費率ψi+1
算出する。そして上記と同様に、ステップ250で、こ
の累積寿命消費率Σψi+1 が1を越えたか否かを判定
し、1を越えてない場合、再びステップ260に進み、
運転時間Hi+1 に単位運転時間Δtを加算して、運転時
間Hi+2 とする。
Further, similarly to the above, the stress σ i + 1 is calculated, the remaining life time φ i + 1 is calculated, and the life consumption rate ψ i + 1 is calculated. Then, similarly to the above, in step 250, it is determined whether or not the cumulative life consumption rate Σψ i + 1 exceeds 1, and when it does not exceed 1, the process proceeds to step 260 again,
The unit operating time Δt is added to the operating time H i + 1 to obtain the operating time H i + 2 .

【0042】このように、上記ステップ200〜ステッ
プ260を繰り返し実行することにより、運転時間Hが
単位運転時間Δtづつ経過し、管肉厚THは徐々に減少
し、応力σは徐々に増大し、寿命消費率ψは徐々に増大
していく。そしてその累積寿命消費率Σψi が1を越え
た時、ステップ250からステップ270に進み、累積
寿命消費率Σψi が1を越えた時点のつまり一つ前の単
位時間Δtの累積値ΣHi-1 が伝熱管3の余寿命時間Φ
i-1 として算出される。
As described above, by repeating the above steps 200 to 260, the operating time H passes by the unit operating time Δt, the pipe wall thickness TH gradually decreases, and the stress σ gradually increases. The life consumption rate ψ gradually increases. When the cumulative life consumption rate Σψ i exceeds 1, the process proceeds from step 250 to step 270, and when the cumulative life consumption rate Σψ i exceeds 1, that is, the cumulative value ΣH i- of the previous unit time Δt. 1 is the remaining life of the heat transfer tube 3 Φ
Calculated as i-1 .

【0043】このような伝熱管3の余寿命時間Φi-1
算出は、計測・入力された全ての伝熱管3について実施
され、管列に対する余寿命のグラフとして管の段数毎
に、或は管の段数に対する余寿命のグラフとして管列毎
に、図10のようにグラフ表示される。このように、管
列又は管の段数に対する余寿命時間のグラフとしてグラ
フ表示することにより、過熱器や再熱器において、例え
ば出口管寄せに接続して使用される伝熱管の接続位置に
応じて、管の余寿命時間が変化する傾向が良好に分か
り、多数の伝熱管の余寿命を迅速にかつ的確に把握し、
無駄のない管の交換に役立てることができる。
The calculation of the remaining life time Φ i-1 of the heat transfer tubes 3 as described above is performed for all the measured and input heat transfer tubes 3, and is a graph of the remaining life with respect to the row of tubes for each stage number of tubes, or Is displayed as a graph of the remaining life with respect to the number of stages of tubes for each tube row as shown in FIG. In this way, by displaying the graph as a graph of the remaining life time with respect to the tube row or the number of stages of the tube, in the superheater or reheater, for example, according to the connection position of the heat transfer tube used by connecting to the outlet header. It is easy to understand the tendency for the remaining life of the tubes to change, and to quickly and accurately grasp the remaining life of many heat transfer tubes,
It can be used for lean tube replacement.

【0044】[0044]

【発明の効果】本発明の余寿命評価装置によれば、予め
実機の伝熱管において採取したデータに基づき作成した
クリープ破断強度等のデータや演算式を使用し、評価し
ようとする伝熱管について計測した管肉厚とスケール厚
さのデータを用いて余寿命を算出するから、実際の過熱
器や再熱器の伝熱管の余寿命を正確に算出することがで
きる。また、単位運転時間が経過する毎に、内圧応力、
クリープ破断強度、残存寿命時間、及び寿命消費率を算
出し、寿命消費率の累積値である累積寿命消費率が1を
越えた時の単位運転時間の累積値を、伝熱管の余寿命時
間とするので、運転時間の経過と共に減少する管肉厚に
応じた内圧応力の増加に伴う正確な余寿命を算出するこ
とができる。
According to the remaining life evaluation apparatus of the present invention, the heat transfer tube to be evaluated is measured by using the data such as the creep rupture strength and the arithmetic expression prepared in advance based on the data collected in the heat transfer tube of the actual machine. Since the remaining life is calculated by using the data of the pipe wall thickness and the scale thickness, it is possible to accurately calculate the remaining life of the heat transfer pipe of the actual superheater or reheater. In addition, internal pressure stress,
The creep rupture strength, remaining life time, and life consumption rate are calculated, and the cumulative value of unit operating time when the cumulative life consumption rate, which is the cumulative value of the life consumption rate, exceeds 1, is defined as the remaining life time of the heat transfer tube. Therefore, it is possible to calculate the accurate remaining life due to the increase of the internal pressure stress according to the pipe wall thickness that decreases with the passage of the operating time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成図である。FIG. 1 is a configuration diagram of the present invention.

【図2】本発明の一実施形態を示す余寿命評価装置の構
成図である。
FIG. 2 is a configuration diagram of a remaining life evaluation apparatus showing an embodiment of the present invention.

【図3】超音波発振計測装置の測定反射波の波形図であ
る。
FIG. 3 is a waveform diagram of a measurement reflected wave of the ultrasonic oscillation measuring device.

【図4】メタル温度と水蒸気酸化速度定数の関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between metal temperature and steam oxidation rate constant.

【図5】スケール厚さ、メタル温度、運転時間の関係を
示すグラフである。
FIG. 5 is a graph showing the relationship between scale thickness, metal temperature, and operating time.

【図6】スケール厚さ、応力、クリープ破断強度(LM
値)の関係を示すグラフである。
FIG. 6 Scale thickness, stress, creep rupture strength (LM
It is a graph which shows the relationship of (value).

【図7】(a)は過熱器の出口寄せの平面図、(b)は
その拡大断面図である。
FIG. 7A is a plan view of the outlet of the superheater, and FIG. 7B is an enlarged sectional view thereof.

【図8】余寿命評価装置の動作を示すフローチャートで
ある。
FIG. 8 is a flowchart showing the operation of the remaining life evaluation apparatus.

【図9】余寿命計算処理のフローチャートである。FIG. 9 is a flowchart of remaining life calculation processing.

【図10】余寿命評価装置のグラフ出力図である。FIG. 10 is a graph output diagram of the remaining life evaluation apparatus.

【符号の説明】[Explanation of symbols]

1−超音波発振計測装置 2−探触子 3−伝熱管 5−演算処理装置 6−表示器 1-Ultrasonic oscillation measuring device 2-probe 3- Heat transfer tube 5-Processing device 6-Display

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 33/20 G01M 19/00 G01N 29/10 Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 33/20 G01M 19/00 G01N 29/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 伝熱管の外周面から超音波を入射しその
反射波を計測することにより該伝熱管のスケール厚さと
管肉厚を計測するスケール厚さ・管肉厚測定手段と、 前記スケール厚さ・管肉厚測定手段で計測された管肉
厚、伝熱管の内圧、及び管外径から内圧応力を算出する
応力算出手段と、 予め実機の伝熱管において計測したメタル温度、スケー
ル厚さ、及び運転時間のデータから水蒸気酸化速度定数
の関係式を求めて記憶し、該関係式と評価しようとする
伝熱管の運転時間とスケール厚さから該伝熱管のメタル
温度を算出するメタル温度算出手段と、 予め実機の伝熱管について計測したスケール厚さとクリ
ープ破断強度を、該伝熱管の内圧応力に対応したスケー
ル厚さ別のクリープ破断強度データとして記憶する記憶
手段と、 前記計測されたスケール厚さと該記憶手段に書き込まれ
たスケール厚さ別クリープ破断強度データと内圧応力を
用いてクリープ破断強度を算出するクリープ破断強度算
出手段と、 該クリープ破断強度算出手段が算出したクリープ破断強
度と前記メタル温度算出手段で算出したメタル温度とを
用いて伝熱管の残存寿命時間を算出する残存寿命時間算
出手段と、 伝熱管の運転時間の経過と管肉厚の減少から減肉率を求
め、単位運転時間毎に該減肉率に応じて減少する管肉厚
の内圧応力を算出し、該内圧応力と前記残存寿命時間算
出手段を使用して減肉時の残存寿命時間を算出し、単位
運転時間に対する寿命消費率を算出すると共に、該寿命
消費率を累積して累積寿命消費率を算出し、該累積寿命
消費率が1を越えた時の単位運転時間の累積値を伝熱管
の余寿命時間とする余寿命算出手段と、 を備えたことを特徴とする伝熱管の余寿命評価装置。
1. Scale thickness / tube wall thickness measuring means for measuring the scale thickness and tube wall thickness of the heat transfer tube by injecting ultrasonic waves from the outer peripheral surface of the heat transfer tube and measuring the reflected wave thereof. Thickness / tube wall thickness, stress calculation means to calculate internal pressure stress from heat transfer tube inner pressure and tube outer diameter, metal temperature and scale thickness previously measured in heat transfer tube of actual machine , And the relational expression of the steam oxidation rate constant is obtained from the data of the operating time and stored, and the metal temperature calculation is performed to calculate the metal temperature of the heat transfer tube from the operating time and the scale thickness of the heat transfer tube to be evaluated with the relational expression. Means for storing scale thickness and creep rupture strength measured in advance for a heat transfer tube of an actual machine as creep rupture strength data for each scale thickness corresponding to internal pressure stress of the heat transfer tube; Creep rupture strength calculation means for calculating creep rupture strength using the measured scale thickness, scale rupture strength data by scale thickness written in the storage means, and internal pressure stress, and creep rupture strength calculated by the creep rupture strength calculation means The remaining life time calculating means for calculating the remaining life time of the heat transfer tube using the strength and the metal temperature calculated by the metal temperature calculating means, and the thinning rate from the elapsed operating time of the heat transfer tube and the decrease in the tube wall thickness. Obtained, calculate the internal pressure stress of the pipe wall thickness that decreases according to the wall thinning rate for each unit operating time, and calculate the remaining life time at the time of thinning using the internal pressure stress and the remaining life time calculation means. Calculating the life consumption rate per unit operating time, calculating the cumulative life consumption rate by accumulating the life consumption rates, and calculating the cumulative value of the unit operating time when the cumulative life consumption rate exceeds 1 No no no Residual life evaluating apparatus of the heat transfer tube for the remaining life calculating means for the life time, further comprising a said.
【請求項2】 過熱器又は再熱器に使用された複数の伝
熱管について前記余寿命算出手段が算出した余寿命時間
を、該複数の伝熱管の管列又は段数に対するグラフとし
て表示する余寿命分布グラフ表示手段が具備されたこと
を特徴とする請求項1記載の伝熱管の余寿命評価装置。
2. A remaining life in which the remaining life time calculated by the remaining life calculation means for a plurality of heat transfer tubes used in a superheater or a reheater is displayed as a graph with respect to the number of rows or stages of the plurality of heat transfer tubes. 2. The heat transfer tube residual life evaluation device according to claim 1, further comprising distribution graph display means.
JP28402199A 1999-10-05 1999-10-05 Heat transfer tube remaining life evaluation device Expired - Fee Related JP3458271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28402199A JP3458271B2 (en) 1999-10-05 1999-10-05 Heat transfer tube remaining life evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28402199A JP3458271B2 (en) 1999-10-05 1999-10-05 Heat transfer tube remaining life evaluation device

Publications (2)

Publication Number Publication Date
JP2001108669A JP2001108669A (en) 2001-04-20
JP3458271B2 true JP3458271B2 (en) 2003-10-20

Family

ID=17673287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28402199A Expired - Fee Related JP3458271B2 (en) 1999-10-05 1999-10-05 Heat transfer tube remaining life evaluation device

Country Status (1)

Country Link
JP (1) JP3458271B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187483B2 (en) * 2007-06-29 2013-04-24 東京電力株式会社 Pipe evaluation method and pipe evaluation program
JP4831624B2 (en) * 2007-12-04 2011-12-07 バブコック日立株式会社 Graphitization damage diagnosis method for carbon steel and Mo steel for boilers
KR100924504B1 (en) 2009-04-14 2009-11-02 주식회사 피레타 Non destructive inspection apparatus and life evaluation method using by it
JP6303858B2 (en) * 2014-06-20 2018-04-04 株式会社Ihi Creep life evaluation method for ferritic steel
KR101656672B1 (en) * 2014-09-30 2016-09-19 한국전력공사 Evaluating method for degree of risk using creep and wall thinning of heat exchanger steam tube
JP6985734B2 (en) * 2017-12-21 2021-12-22 トクデン株式会社 Superheated steam generator and its maintenance method
FR3087888B1 (en) * 2018-10-31 2020-10-09 Safran Aircraft Engines DEVICE AND METHOD FOR MONITORING THE LIFETIME OF A HYDRAULIC EQUIPMENT OF AN AIRCRAFT
KR102580188B1 (en) * 2022-08-31 2023-10-18 한전케이피에스 주식회사 Input apparatus for power generation boiler maintenance history

Also Published As

Publication number Publication date
JP2001108669A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
US5050108A (en) Method for extending the useful life of boiler tubes
JP2008003009A (en) Lifetime diagnosis device for high-temperature equipment, and lifetime diagnosis method and program for high-temperature equipment
JP3458271B2 (en) Heat transfer tube remaining life evaluation device
JP2003090506A (en) Method and device to diagnose damage of boiler heat transfer pipe different material joint welding part
JP5380219B2 (en) Method for estimating metal temperature and life of boiler heat transfer tubes
CN110907475A (en) Method for evaluating residual life of martensite heat-resistant steel
JP4367408B2 (en) Pipe thickness reduction management system
JP3532448B2 (en) Method and apparatus for evaluating remaining creep life of heat transfer tube
JP4818213B2 (en) Remaining life estimation system, remaining life estimation method, computer program, recording medium
JP3652418B2 (en) Corrosion fatigue damage diagnosis prediction method for boiler water wall pipe
JPH06300667A (en) Method and equipment for detecting abnormality of valve rod
JP6254033B2 (en) Life evaluation method and life evaluation apparatus
CN114252149B (en) Method for rapidly evaluating vibration damage and service life of high-low drainage pipeline of thermal power plant
JP2014224720A (en) Fatigue damage evaluation method, fatigue damage evaluation system and fatigue damage evaluation device
JP5377617B2 (en) Remaining life estimation method, estimation system, and estimation program for estimating the remaining life of a high chromium steel pipe
JP2002156325A (en) Surface crack depth analytical method of metal member
JP2004028818A (en) Method for monitoring corrosive environment and its apparatus
JP2000234986A (en) System and method for evaluating crack development
JP2013228119A (en) Method and device for diagnosis of crack and damage of boiler heat transfer tube
JPH03140841A (en) Method for monitoring life of high temperature structural part
JPH09218195A (en) Method for evaluating damage of boiler pipe collecting stub pipe
JPH05223809A (en) Remaining service life estimating method for gamma' phase precipitation reinforcement type alloy
JPH0875107A (en) Method for estimating life time of high temperature pressure resistant part
JP2005134115A (en) Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
JPH08285211A (en) Scale production amount monitoring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees