JP2001108669A - Remaining life evaluating apparatus for heat transfer tube - Google Patents

Remaining life evaluating apparatus for heat transfer tube

Info

Publication number
JP2001108669A
JP2001108669A JP28402199A JP28402199A JP2001108669A JP 2001108669 A JP2001108669 A JP 2001108669A JP 28402199 A JP28402199 A JP 28402199A JP 28402199 A JP28402199 A JP 28402199A JP 2001108669 A JP2001108669 A JP 2001108669A
Authority
JP
Japan
Prior art keywords
heat transfer
remaining life
tube
time
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28402199A
Other languages
Japanese (ja)
Other versions
JP3458271B2 (en
Inventor
Kenji Hattori
健司 服部
Yuji Sugita
雄二 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP28402199A priority Critical patent/JP3458271B2/en
Publication of JP2001108669A publication Critical patent/JP2001108669A/en
Application granted granted Critical
Publication of JP3458271B2 publication Critical patent/JP3458271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Abstract

PROBLEM TO BE SOLVED: To provide a remaining life evaluating apparatus for a heat transfer tube capable of accurately calculating a remaining life of a heat transfer tube and effectively and rapidly grasping the remaining life of each of many heat transfer tubes. SOLUTION: A ultrasonic wave is incident from an outer peripheral surface of a heat transfer tube 3, its reflected wave is measured and a scale thickness and a tube wall thickness of the tube 3 are measured by a ultrasonic oscillation measuring apparatus 1. A processor 5 stores the scale thickness and a creep rupture strength data measured for the tube of a real machine in advance, and stores a relational formula of the measured metal temperature, the scale thickness, and a steam oxidizing speed constant obtained from data of an operating time. The processor 5 calculates a remaining life time of the tube from a calculating formula obtained from the data of an internal pressure stress, the scale thickness and the metal temperature, and calculates the stress, the life time and a life consumption ratio at each lapse of a unit operating time. Thus, an accumulated value of the unit operating time calculated based on the consumption rate becomes the remaining life time of the tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電設備のボ
イラの過熱器や再熱器等に使用される伝熱管の余寿命
を、管内のスケール厚さ、内部応力などから算出し、評
価する伝熱管の余寿命評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention calculates and evaluates the remaining life of a heat transfer tube used for a superheater or a reheater of a boiler of a thermal power plant from a scale thickness, an internal stress and the like in the tube. The present invention relates to a heat transfer tube remaining life evaluation device.

【0002】[0002]

【従来の技術】例えば、火力発電設備のボイラにおける
火炉内の管については、減肉の観点から、多くのものが
比較的早い時期に更新されるが、過熱器や再熱器の管寄
せへの継ぎ手管を構成する伝熱管は、フェライト系耐熱
鋼のCr-Mo 管を使用し、比較的厳しい温度条件を与えて
設計され、比較的長期にわたり使用される。しかしなが
ら、この種のボイラの伝熱管の内面には、通常、使用温
度と時間に比例した水蒸気酸化スケールが生成され、水
蒸気酸化スケールが管の外面腐食と共に生成されるため
に、管の減肉量がスケール厚さと共に増大し、内圧発生
応力の増加や材質の劣化により、クリープ損傷等の経年
劣化損傷が生じてくる。このため、ボイラを健全に使用
するためには、その伝熱管の的確な余寿命診断が必要と
される。そのため、従来では、実機から抜き取った管で
試験片を作り、実験室で破壊試験を行ない、或は顕微鏡
による組織観察を行なってクリープ損傷等を実測し、管
の余寿命の診断を行なっていた。
2. Description of the Related Art For example, pipes in a furnace in a boiler of a thermal power plant are renewed relatively early from the viewpoint of wall thinning. The heat transfer tube that constitutes the joint tube is a Cr-Mo tube made of heat-resistant ferritic steel, is designed under relatively severe temperature conditions, and is used for a relatively long time. However, on the inner surface of the heat transfer tube of this type of boiler, steam oxidation scale is generally generated in proportion to the operating temperature and time, and since the steam oxidation scale is generated together with the outer surface corrosion of the tube, the wall thickness of the tube is reduced. Increases with the thickness of the scale, and aging deterioration damage such as creep damage occurs due to an increase in internal pressure generation stress and deterioration of the material. For this reason, in order to use the boiler soundly, an accurate remaining life diagnosis of the heat transfer tube is required. For this reason, conventionally, a test piece was made from a tube extracted from an actual machine, and a destructive test was performed in a laboratory, or creep damage and the like were actually measured by observing the structure with a microscope to diagnose the remaining life of the tube. .

【0003】[0003]

【発明が解決しようとする課題】しかし、このような実
機からの抜き取り検査は、ごく一部の管について余寿命
の評価を行なうに過ぎないこと、及び過熱器、再熱器に
は通常、数百本の伝熱管が配設されているが、接続され
る各伝熱管の接続位置によりメタル温度の違いが大き
く、各伝熱管に生じる材質の劣化や減肉量にかなりのば
らつきが発生していること等から、一部の管についての
破壊試験によって、全体の伝熱管の余寿命を正確に判断
することができない問題があった。
However, such a sampling inspection from an actual machine only evaluates the remaining life of a small part of the pipes, and usually a few heaters and reheaters are used. Hundred heat transfer tubes are provided, but the difference in metal temperature is large depending on the connection position of each heat transfer tube to be connected, and there is considerable variation in the material deterioration and wall thinning occurring in each heat transfer tube. Therefore, there was a problem that it was not possible to accurately determine the remaining life of the entire heat transfer tube by a destructive test on some of the tubes.

【0004】そこで、従来、この種の伝熱管の余寿命を
所謂スケール法により評価する方法が提案されている
(例えば特開平6−331622号公報等)。このスケ
ール法による伝熱管の余寿命評価は、超音波発振計測装
置を用いて管内の水蒸気酸化スケールの厚さを測定し、
水蒸気酸化スケールの生成が熱活性化過程であり、その
厚さの対数と温度・時間パラメータを直線で表すことが
でき、この温度・時間パラメータからメタル温度を算出
し、さらに、管の内圧等から管内に作用する作用応力を
演算し、メタル温度、作用応力、及びクリープ破断強度
のデータベースとから、伝熱管の余寿命を算出する。
Therefore, a method of evaluating the remaining life of this type of heat transfer tube by a so-called scale method has been proposed (for example, Japanese Patent Application Laid-Open No. Hei 6-331622). To evaluate the remaining life of the heat transfer tube by this scale method, measure the thickness of the steam oxidation scale inside the tube using an ultrasonic oscillation measurement device,
The formation of steam oxidation scale is a thermal activation process, and the logarithm of the thickness and the temperature and time parameters can be represented by a straight line.The metal temperature is calculated from these temperature and time parameters, and further, from the internal pressure of the pipe and the like. The operating stress acting on the tube is calculated, and the remaining life of the heat transfer tube is calculated from the database of the metal temperature, the operating stress, and the creep rupture strength.

【0005】しかしながら、従来知られているこの種の
スケール法による余寿命の評価法は、実機材によるクリ
ープ破断強度のデータベースの作成が難しいために、実
験室内で伝熱管の運転状態を作り水蒸気酸化スケールの
厚さの経年変化を測定することになるが、数十万時間と
いう長期間のデータを採取することが難しく、実際に使
用可能なシステムの構築が難しいという問題があった。
However, it is difficult to create a database of the creep rupture strength of actual equipment using the conventional method of evaluating the remaining life by this type of scale method. Although the aging of the scale thickness is measured, there is a problem that it is difficult to collect long-term data of hundreds of thousands of hours, and it is difficult to construct an actually usable system.

【0006】また、従来のスケール法による余寿命評価
装置では、管群全体の余寿命を一括表示できるものはな
く、余寿命の算出値を見ただけでは、何れの位置の伝熱
管がどの程度の余寿命になっているかを、迅速に把握す
ることが難しいという問題があった。
[0006] Further, in the conventional apparatus for evaluating the remaining life by the scale method, there is no apparatus capable of displaying the remaining life of the entire tube group at a time. There is a problem that it is difficult to quickly determine whether the remaining life has expired.

【0007】本発明は、上記の点に鑑みてなされたもの
で、伝熱管の余寿命を正確に算出することができると共
に、多数の伝熱管の余寿命を的確且つ迅速に把握するこ
とができる伝熱管の余寿命評価装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is possible to accurately calculate the remaining lives of heat transfer tubes, and to accurately and quickly grasp the remaining lives of a large number of heat transfer tubes. It is an object of the present invention to provide a heat transfer tube remaining life evaluation device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の余寿命評価装置は、図1の構成
図に示すように、伝熱管の外周面から超音波を入射しそ
の反射波を計測することより、伝熱管のスケール厚さと
管肉厚を計測するスケール厚さ・管肉厚測定手段10
と、スケール厚さ・管肉厚測定手段10で計測された管
肉厚、伝熱管の内圧、及び管外径から内圧応力を算出す
る応力算出手段20と、予め実機の伝熱管において計測
したメタル温度、スケール厚さ、及び運転時間のデータ
から水蒸気酸化速度定数の関係式を求めて記憶し、該関
係式と評価しようとする伝熱管の運転時間とスケール厚
さから該伝熱管のメタル温度を算出するメタル温度算出
手段30と、予め実機の伝熱管について計測したスケー
ル厚さとクリープ破断強度を、該伝熱管の内圧応力に対
応したスケール厚さ別のクリープ破断強度データとして
記憶する記憶手段25と、前記計測されたスケール厚さ
と該記憶手段25に書き込まれたスケール厚さ別クリー
プ破断強度データと内圧応力を用いてクリープ破断強度
を算出するクリープ破断強度算出手段40と、該クリー
プ破断強度算出手段40が算出したクリープ破断強度と
前記メタル温度算出手段30で算出したメタル温度とを
用いて伝熱管の残存寿命時間を算出する残存寿命時間算
出手段45と、伝熱管の運転時間の経過と管肉厚の減少
から減肉率を求め、単位運転時間毎に該減肉率に応じて
減少する管肉厚の内圧応力を算出し、該内圧応力と前記
残存寿命時間算出手段45を使用して減肉時の残存寿命
時間を算出し、単位運転時間に対する寿命消費率を算出
すると共に、該寿命消費率を累積して累積寿命消費率を
算出し、該累積寿命消費率が1を越えた時の単位運転時
間の累積値を伝熱管の余寿命時間とする余寿命算出手段
50と、を備えたことを特徴とする。
In order to achieve the above object, a remaining life evaluation apparatus according to the first aspect of the present invention, as shown in the block diagram of FIG. The scale thickness / tube thickness measuring means 10 for measuring the scale thickness and the tube thickness of the heat transfer tube by measuring the reflected wave.
And stress calculating means 20 for calculating the internal pressure stress from the pipe thickness measured by the scale thickness / pipe wall thickness measuring means 10, the internal pressure of the heat transfer pipe, and the outer diameter of the pipe, and the metal previously measured in the heat transfer pipe of the actual machine. The relational expression of the steam oxidation rate constant is obtained and stored from the data of the temperature, the scale thickness, and the operation time, and the metal temperature of the heat transfer tube is calculated from the relational expression and the operation time and the scale thickness of the heat transfer tube to be evaluated. A metal temperature calculating means 30 to be calculated; and a storage means 25 for storing scale thickness and creep rupture strength previously measured for a heat transfer tube of an actual machine as creep rupture strength data for each scale thickness corresponding to the internal pressure stress of the heat transfer tube. Creep rupture strength is calculated by using the measured scale thickness, the creep rupture strength data for each scale thickness written in the storage means 25, and the internal pressure stress. Rupture strength calculation means 40 and remaining life time calculation means for calculating the remaining life time of the heat transfer tube using the creep rupture strength calculated by the creep rupture strength calculation means 40 and the metal temperature calculated by the metal temperature calculation means 30 45, the wall thickness reduction rate is determined from the elapse of the operation time of the heat transfer tube and the reduction in the wall thickness, and the internal pressure stress of the pipe wall thickness that decreases in accordance with the wall reduction rate is calculated for each unit operation time. And the remaining life time calculating means 45 is used to calculate the remaining life time at the time of wall thinning, calculate the life consumption rate per unit operation time, and calculate the cumulative life consumption rate by accumulating the life consumption rates. And a remaining life calculating means 50 for setting a cumulative value of the unit operation time when the cumulative life consumption rate exceeds 1 as a remaining life time of the heat transfer tube.

【0009】[0009]

【作用】上記構成の余寿命評価装置では、予め実機の伝
熱管について、スケール厚さとクリープ破断強度を測定
し、伝熱管の内圧応力に対応したスケール厚さ別のクリ
ープ破断強度データとして記憶手段25に記憶する。ま
た、予め実機の伝熱管において計測したメタル温度、ス
ケール厚さ、及び運転時間のデータから水蒸気酸化速度
定数の関係式を求め、それを記憶する。
In the remaining life evaluation apparatus having the above-mentioned structure, the scale thickness and the creep rupture strength of the actual heat transfer tube are measured in advance, and the creep rupture strength data for each scale thickness corresponding to the internal pressure stress of the heat transfer tube is stored in the storage means 25. To memorize. Further, a relational expression of a steam oxidation rate constant is obtained from data of a metal temperature, a scale thickness, and an operation time measured in advance in a heat transfer tube of an actual machine, and is stored.

【0010】評価しようとする伝熱管について、スケー
ル厚さ・管肉厚測定手段10により、管の外周面から超
音波を入射しその反射波を計測することより、伝熱管の
スケール厚さと管肉厚を計測する。そして、応力算出手
段20が、スケール厚さ・管肉厚測定手段10で計測さ
れた管肉厚、伝熱管の内圧、及び管外径から内圧応力を
算出する。また、メタル温度算出手段30が、前記水蒸
気酸化速度定数の関係式を使用して、伝熱管の運転時間
とスケール厚さから該伝熱管のメタル温度を算出する。
With respect to the heat transfer tube to be evaluated, the scale thickness and tube thickness are measured by measuring the reflected wave by irradiating an ultrasonic wave from the outer peripheral surface of the tube with the scale thickness / tube thickness measuring means 10. Measure the thickness. Then, the stress calculating means 20 calculates the internal pressure stress from the pipe thickness measured by the scale thickness / pipe thickness measuring means 10, the internal pressure of the heat transfer pipe, and the pipe outer diameter. Further, the metal temperature calculating means 30 calculates the metal temperature of the heat transfer tube from the operating time of the heat transfer tube and the scale thickness using the relational expression of the steam oxidation rate constant.

【0011】さらに、クリープ破断強度算出手段40
が、計測されたスケール厚さと記憶手段25に書き込ま
れたスケール厚さ別クリープ破断強度データと内圧応力
を用いてクリープ破断強度を算出し、残存寿命時間算出
手段45が、クリープ破断強度算出手段40が算出した
クリープ破断強度とメタル温度算出手段30で算出した
メタル温度とを用いて伝熱管の残存寿命時間を算出す
る。そして、余寿命算出手段50が、伝熱管の運転時間
の経過と管肉厚の減少から減肉率を求め、単位運転時間
毎に減肉率に応じて減少する管肉厚の内圧応力を算出
し、内圧応力と残存寿命時間算出手段45を使用して減
肉時の残存寿命時間を算出し、単位運転時間に対する寿
命消費率を算出する。余寿命算出手段50は、単位運転
時間が経過する毎に、上記内圧応力、残存寿命時間、及
び寿命消費率を算出し、寿命消費率を累積して累積寿命
消費率を算出する。そして、累積寿命消費率が1を越え
た時の単位運転時間の累積値が伝熱管の余寿命時間とな
る。
Further, the creep rupture strength calculating means 40
Calculates the creep rupture strength using the measured scale thickness, the creep rupture strength data for each scale thickness written in the storage means 25, and the internal pressure stress, and the remaining life time calculation means 45 calculates the creep rupture strength calculation means 40 Is calculated using the creep rupture strength calculated by the above and the metal temperature calculated by the metal temperature calculating means 30. Then, the remaining life calculating means 50 obtains the wall thinning rate from the elapse of the operation time of the heat transfer tube and the decrease in the wall thickness, and calculates the internal pressure stress of the pipe wall thickness which decreases in accordance with the wall thinning rate per unit operation time. Then, the remaining life time at the time of thinning is calculated using the internal pressure stress and the remaining life time calculation means 45, and the life consumption rate per unit operation time is calculated. The remaining life calculating means 50 calculates the internal pressure stress, the remaining life time, and the life consumption rate every time the unit operation time elapses, and accumulates the life consumption rate to calculate the cumulative life consumption rate. Then, the cumulative value of the unit operation time when the cumulative life consumption rate exceeds 1 is the remaining life time of the heat transfer tube.

【0012】このように、予め実機の伝熱管について、
スケール厚さとクリープ破断強度を測定し、伝熱管の内
圧応力に対応したスケール厚さ別のクリープ破断強度デ
ータとして記憶し、また、同様の伝熱管において計測し
たメタル温度、スケール厚さ、及び運転時間のデータか
ら水蒸気酸化速度定数の関係式を求めて記憶し、それら
のデータを演算式等として使用して伝熱管の余寿命を算
出するから、実際の過熱器や再熱器の伝熱管の余寿命を
正確に算出することができる。
As described above, the heat transfer tube of the actual machine is
Measure the scale thickness and creep rupture strength, store them as creep rupture strength data for each scale thickness corresponding to the internal pressure stress of the heat transfer tube, and also measure the metal temperature, scale thickness, and operating time for the same heat transfer tube The relational expression of the steam oxidation rate constant is obtained from the data and stored, and the remaining life of the heat transfer tube is calculated using the data as an arithmetic expression or the like. The life can be accurately calculated.

【0013】また、余寿命算出手段は、単位運転時間が
経過する毎に、内圧応力、残存寿命時間、及び寿命消費
率を算出し、寿命消費率を累積して累積寿命消費率を算
出し、累積寿命消費率が1を越えた時の単位運転時間の
累積値を伝熱管の余寿命時間とするから、運転時間の経
過と共に、伝熱管の管肉厚が減少し、それに伴い増大す
る内圧応力の変化に応じた正確な余寿命を算出すること
ができる。
The remaining life calculating means calculates an internal pressure stress, a remaining life time, and a life consumption rate each time the unit operation time elapses, and accumulates the life consumption rate to calculate a cumulative life consumption rate. Since the cumulative value of the unit operation time when the cumulative life consumption rate exceeds 1 is defined as the remaining life time of the heat transfer tube, as the operation time elapses, the tube thickness of the heat transfer tube decreases, and the internal pressure stress increases accordingly. It is possible to calculate an accurate remaining life in accordance with the change in.

【0014】さらに、請求項2の発明のように、余寿命
分布グラフ表示手段を設け、過熱器又は再熱器に使用さ
れた複数の伝熱管について、余寿命算出手段が算出した
余寿命時間を、複数の伝熱管の管列又は段数に対するグ
ラフとして表示するように構成すれば、多数の伝熱管が
列状又は段状に配設される過熱器又は再熱器であって
も、実際の伝熱管の位置と余寿命の関係を迅速に把握す
ることができる。
Further, as in the second aspect of the present invention, a remaining life distribution graph displaying means is provided, and the remaining life time calculated by the remaining life calculating means for a plurality of heat transfer tubes used in the superheater or the reheater is provided. However, if the heat transfer tubes are configured to be displayed as a graph with respect to the tube row or the number of stages of the plurality of heat transfer tubes, even if a superheater or a reheater in which a large number of heat transfer tubes are arranged in a row or step shape, the actual transfer is performed. The relationship between the position of the heat pipe and the remaining life can be quickly grasped.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図2は余寿命評価装置の構成図を
示している。1は超音波発振計測装置であり、例えば2
0MHz程度の周波数の超音波を発振し、その反射波を
検出する探触子2を備える。この超音波発振計測装置1
は、計測時、伝熱管3の外周面に当てた探触子2から超
音波を発振出力し、伝熱管3の母材層とスケール層から
反射される超音波の反射波を検出し、その反射波レベル
から管3の管肉厚とスケール厚さを計測し、その計測デ
ータを出力する。図3はその反射波の波形図を示し、横
軸は時間、縦軸は波の検出レベルである。波形図におい
て、THが管の母材の厚さ(管肉厚)、Sがスケール厚
さに対応し、スケール中を進む超音波の音速とその横軸
の時間幅から、管肉厚THとスケール厚さSが算出さ
れ、計測データとして出力される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a configuration diagram of the remaining life evaluation device. Reference numeral 1 denotes an ultrasonic oscillation measuring device, for example, 2
The probe 2 oscillates ultrasonic waves having a frequency of about 0 MHz and detects reflected waves. This ultrasonic oscillation measuring device 1
During measurement, ultrasonic waves are oscillated and output from the probe 2 applied to the outer peripheral surface of the heat transfer tube 3, and reflected waves of the ultrasonic waves reflected from the base material layer and the scale layer of the heat transfer tube 3 are detected. The tube thickness and scale thickness of the tube 3 are measured from the reflected wave level, and the measurement data is output. FIG. 3 shows a waveform diagram of the reflected wave, where the horizontal axis represents time and the vertical axis represents the detection level of the wave. In the waveform diagram, TH corresponds to the thickness of the base material of the pipe (pipe thickness), S corresponds to the thickness of the scale, and the thickness of the pipe TH, The scale thickness S is calculated and output as measurement data.

【0016】被計測物となる伝熱管3は、図7に示すよ
うに、過熱器或は再熱器の出口管寄せ4に接続される管
であり、各伝熱管3には管列番号(例えば1〜74)と
段数(例えばA〜J)が付けられ、これらの管の計測デ
ータには、その管列番号と段数が付され、識別される。
As shown in FIG. 7, the heat transfer pipes 3 to be measured are pipes connected to an outlet header 4 of a superheater or a reheater. For example, 1 to 74) and the number of stages (for example, A to J) are given, and the measurement data of these tubes is identified by attaching the tube row number and the number of stages.

【0017】5はパーソナルコンピュータ等から構成さ
れる演算処理装置であり、上記超音波発振計測装置1か
らの管肉厚THとスケール厚さSの計測データを取り込
む共に、キーボード等を使用して入力した伝熱管3の内
圧、管外径、管肉厚計測データから応力σを算出し、運
転時間H、スケール厚さS、及び予め記憶されたスケー
ス厚さSとメタル温度Tと運転時間Hの関係式から、伝
熱管3のメタル温度Tを算出する。さらに、演算処理装
置5は、予め記憶されたスケール厚さ別クリープ破断強
度データ、内圧応力σ、スケール厚さSから図6の余寿
命評価曲線を決定し、メタル温度Tと余寿命評価曲線を
使用して伝熱管3の余寿命を算出する。それらの余寿命
は、過熱器又は再熱器の全ての伝熱管について算出し、
伝熱管の管列又は段数に対する余寿命の分布を示すグラ
フを作成し、CRT、液晶ディスプレイ等の表示器6に
表示する。
Reference numeral 5 denotes an arithmetic processing unit constituted by a personal computer or the like. The arithmetic processing unit 5 receives measurement data of the tube thickness TH and the scale thickness S from the ultrasonic oscillation measurement device 1 and inputs the measurement data using a keyboard or the like. The stress σ is calculated from the measured internal pressure, tube outer diameter, and tube wall thickness data of the heat transfer tube 3, and the operating time H, the scale thickness S, and the previously stored skein thickness S, metal temperature T, and operating time H are calculated. The metal temperature T of the heat transfer tube 3 is calculated from the relational expression. Further, the arithmetic processing unit 5 determines the remaining life evaluation curve of FIG. 6 from the creep rupture strength data for each scale thickness, the internal stress σ, and the scale thickness S stored in advance, and calculates the metal temperature T and the remaining life evaluation curve. The remaining life of the heat transfer tube 3 is calculated by using this. Their remaining life is calculated for all tubes of the superheater or reheater,
A graph showing the distribution of the remaining life with respect to the tube row or the number of stages of the heat transfer tubes is created and displayed on a display 6 such as a CRT or a liquid crystal display.

【0018】ところで、伝熱管3内で生成される水蒸気
酸化スケールは、一定の温度で放物線的成長挙動を示す
ことが判明しており、その酸化速度定数kp は kp =d2 /t・・・・・・・(1) の式で表わされる。ここで、dは管の母材の減肉量(c
m)、tは時間(秒)である。
Meanwhile, it has been found that the steam oxidation scale generated in the heat transfer tube 3 exhibits a parabolic growth behavior at a constant temperature, and the oxidation rate constant k p is k p = d 2 / t · ... (1) Here, d is the wall thickness reduction of the pipe base material (c
m) and t are time (seconds).

【0019】また、減肉量dと時間とスケール生成中の
温度Tつまりメタル温度T(°K)の関係式は、実験値
から、 Logkp =1000a/T+b・・・・(2) となり、減肉量d(cm)をスケール厚さS(μm)に
換算し、時間t(秒)を時間t(hour)に置き換える
と、式(1)から d2 /t=((S/2.1)×10-42 /(t×3600)・・(3) となり、スケール生成中の温度Tの式は、式(2)から Log(((S/2.1)×10-42 /(t×3600)) =1000a/T+b ・・・(4) となり、よって、 T(°K)=a/(c−2LogS+Logt)・・・・(5) と表わされる。ここで、a,b,cは、各種条件により
決定される定数である。
From the experimental value, the relational expression of the wall thickness reduction d, the time, and the temperature T during scale generation, that is, the metal temperature T (° K), is as follows from the experimental value: Log k p = 1000a / T + b (2) When the thickness reduction d (cm) is converted into the scale thickness S (μm), and the time t (second) is replaced with the time t (hour), d 2 / t = ((S / 2. 1) × 10 −4 ) 2 / (t × 3600) ·· (3), and the expression of the temperature T during the scale generation is expressed by Log (((S / 2.1) × 10 −4 ) from the expression (2). ) 2 / (t × 3600)) = 1000 a / T + b (4) Therefore, T (° K) = a / (c−2 LogS + Logt) (5) Here, a, b, and c are constants determined by various conditions.

【0020】そこで、上記定数a,b,cを決定するた
めに、実際に運転中のボイラにおいて、その過熱器、再
熱器で使用される複数の伝熱管のメタル温度Tを測定す
ると共に、それらの伝熱管の一部を抜き取り、それらの
スケール厚さSを断面観察により測定し、メタル温度T
とスケール厚さS及び運転時間Hのデータを多数採取し
た。
In order to determine the constants a, b, and c, the metal temperatures T of a plurality of heat transfer tubes used in the superheater and the reheater in the boiler actually operating are measured. A part of these heat transfer tubes was withdrawn, their scale thickness S was measured by cross-section observation, and the metal temperature T
And many data of scale thickness S and operation time H were collected.

【0021】そして、上記式(1)〜式(4)より得た
下記の式(6)を用いて、水蒸気酸化速度定数Logk
p を計算し、 Logkp =(S/2.1)×10-42 /(t×3600)・・・(6) これらの水蒸気酸化速度定数Logkp を、図4のよう
に、温度の逆数(1000/(T+273 ))を横軸にとった
グラフ上にプロットし、これらのプロット上に乗る直線
Yを得た。
Then, using the following equation (6) obtained from the above equations (1) to (4), the steam oxidation rate constant Logk
p is calculated, and Logk p = (S / 2.1) × 10 −4 ) 2 / (t × 3600) (6) These steam oxidation rate constants Logk p are calculated as shown in FIG. Is plotted on a graph with the horizontal axis representing the reciprocal of (1000 / (T + 273)) to obtain a straight line Y on these plots.

【0022】この直線Yを式化すると、 Logkp =−d×(1000/(T+273))−e・・・(7) ここで、d、eは定数であり、上記式(3)と式(7)
から Log(((S/2.1)×10-42 /(t×3600)) =−d×(1000/(T+273))−e・・・・・・・・(8) となる。そして、上記式(8)から T(℃)+273 =d/( f-2LogS+LogH)・・・(9) のスケール厚さS、メタル温度T℃、運転時間H(h
r)の関係を示す式を得た。ここで、fは定数である。
Formulating this straight line Y, Logk p = −d × (1000 / (T + 273)) − e (7) where d and e are constants, and the above equation (3) And equation (7)
From Log (((S / 2.1) × 10 −4 ) 2 / (t × 3600)) = − d × (1000 / (T + 273)) − e (8) Becomes Then, from the above equation (8), T (° C.) + 273 = d / (f−2LogS + LogH) (9) Scale thickness S, metal temperature T ° C., and operation time H (h)
An expression indicating the relationship of r) was obtained. Here, f is a constant.

【0023】上記式(9)において、メタル温度T℃を
例えばn1 ℃〜n10℃に変化させたときの曲線を、横軸
に運転時間tを縦軸にスケール厚さSをとったグラフに
示すと、図5に示すようになり、このグラフの曲線のデ
ータ、つまりスケール厚さS、メタル温度T℃、運転時
間Hの関係を示すデータが、演算処理装置5の記憶部に
演算式として或はテーブルデータ等として予め記憶され
る。
In the above equation (9), a curve obtained when the metal temperature T ° C. is changed from, for example, n 1 ° C. to n 10 ° C. is a graph in which the horizontal axis represents the operation time t and the vertical axis represents the scale thickness S. 5 is as shown in FIG. 5, and the data of the curve of this graph, that is, the data showing the relationship between the scale thickness S, the metal temperature T ° C., and the operation time H are stored in the storage unit of the arithmetic processing unit 5 by the arithmetic expression Or stored in advance as table data or the like.

【0024】さらに、演算処理装置5の記憶部には、予
めスケール厚さに応じたクリープ破断強度(ラーソンミ
ラーパラメータ:LM値)のデータが記憶される。この
クリープ破断強度(LM値)のデータは、長期間使用さ
れたボイラの過熱器、再熱器における伝熱管の実機材及
び新材について、実際に管の一部を抜き取り、それらの
スケール厚さを断面観察により測定し、クリープ破断試
験を行なってその破断試験値を採取したものであり、そ
れらのクリープ破断強度(LM値)は、図6に示すよう
に、内圧応力σに対するグラフ上に、スケール厚さS
(140 μm〜 800μm)に応じた直線となり、 LM=f(S,σ)・・・・・・・・(10) の式で表される。
Further, data of creep rupture strength (Larson Miller parameter: LM value) corresponding to the scale thickness is stored in the storage unit of the arithmetic processing unit 5 in advance. The data of this creep rupture strength (LM value) are based on the actual thickness and scale thickness of the actual and new heat transfer tubes in the superheater and reheater of a boiler used for a long time. Was measured by cross-sectional observation, a creep rupture test was performed, and the rupture test values were collected. The creep rupture strength (LM value) was, as shown in FIG. Scale thickness S
(140 μm to 800 μm), and is expressed by the following formula: LM = f (S, σ) (10)

【0025】これらのスケール厚さSに応じたクリープ
破断強度(LM値)の直線のデータが、演算式として或
はテーブルデータとして予め演算処理装置5の記憶部に
記憶される。なお、直線以外の他のスケール厚さの場合
は、比例補間により算出される。
The straight line data of the creep rupture strength (LM value) corresponding to the scale thickness S is stored in advance in the storage unit of the arithmetic processing unit 5 as an arithmetic expression or table data. In the case of a scale thickness other than a straight line, it is calculated by proportional interpolation.

【0026】一方、伝熱管3の内圧による応力σは、超
音波発振計測装置1により計測した管肉厚TH、キーボ
ード等から入力した管外径DO 、内圧Pを用いて、予め
記憶された σ=(P/100)×(DO /2TH−0.5)・・・・(11) の式から算出する。
On the other hand, the stress σ due to the internal pressure of the heat transfer tube 3 is stored in advance using the tube thickness TH measured by the ultrasonic oscillation measuring device 1, the tube outer diameter D O input from a keyboard or the like, and the internal pressure P. σ = (P / 100) × (D O /2TH−0.5) (11)

【0027】ところで、伝熱管の材料特性にはばらつき
があり、その材料特性のばらつきが余寿命の推定評価に
影響を与えることが考えられる。このために、実際にス
ケール厚さSと応力σから図6のグラフデータを用いて
クリープ破断強度(LM値)を推定評価する場合、破断
応力σに対し安全率の概念を導入し、選択可能な複数の
安全係数α(例えば100% 80% 67%)を内圧応力σに乗じ
て、図6のグラフ上に破線で示すように、クリープ破断
強度(LM値)の評価線を作り、実際にはこの評価線を
使用してスケール厚さSと応力σに対するクリープ破断
強度(LM値)を得るようにしている。つまり、実際の
演算に使用する評価応力σO は、σO =σ/αの式から
算出する。
By the way, the material characteristics of the heat transfer tube vary, and it is considered that the variation of the material characteristics affects the estimation of the remaining life. For this reason, when estimating and evaluating the creep rupture strength (LM value) using the graph data of FIG. 6 from the scale thickness S and the stress σ, the concept of the safety factor for the rupture stress σ is introduced and can be selected. By multiplying a plurality of safety factors α (for example, 100% 80% 67%) by the internal pressure stress σ, an evaluation line of the creep rupture strength (LM value) is made as shown by a broken line on the graph of FIG. Uses this evaluation line to obtain the creep rupture strength (LM value) for scale thickness S and stress σ. That is, the evaluation stress σ O used in the actual calculation is calculated from the equation σ O = σ / α.

【0028】そして、クリープ破断強度(LM値)とメ
タル温度Tと管の残存寿命時間との関係は、 LM=(T+273 )×(g+Logφ)×10-3・・・(12) の式で表される。ここで、gは定数、φは管の残存寿命
時間である。
The relationship between the creep rupture strength (LM value), the metal temperature T, and the remaining life time of the pipe is expressed by the following formula: LM = (T + 273) × (g + Logφ) × 10 -3 (12) Is done. Here, g is a constant, and φ is the remaining life time of the tube.

【0029】上記式(12)にクリープ破断強度(LM
値)とメタル温度Tを代入して管の残存寿命時間φが算
出されるが、長期間運転に応じた管肉厚の減少に伴い、
その内圧応力が上昇するため、減少した管肉厚に基づき
クリープ破断強度(LM値)を長期間運転に応じて下方
修正する必要がある。
In the above equation (12), the creep rupture strength (LM)
Value) and the metal temperature T are used to calculate the remaining life time φ of the pipe.
Since the internal pressure stress increases, it is necessary to correct the creep rupture strength (LM value) downward according to the long-term operation based on the reduced pipe wall thickness.

【0030】そこで、伝熱管3の新材時の初期肉厚は既
知であるから、運転時間H時の管肉厚THから減肉率β
(図9)を求め、そして、一定の単位運転時間(例えば
1000時間)Δt毎に、管肉厚の減少に伴う応力の上昇に
基づき、クリープ破断強度(LM値)を算出してLM値
を下方に修正し、そのLM値と減少した管肉厚に伴い上
昇した応力σi を使用して、単位時間毎にその時点の残
存寿命時間φi を算出する。
Therefore, since the initial thickness of the heat transfer tube 3 at the time of new material is known, the thickness reduction β
(FIG. 9) and determine a certain unit operating time (eg,
(1000 hours) At every Δt, the creep rupture strength (LM value) is calculated based on the increase in stress due to the decrease in pipe wall thickness, and the LM value is corrected downward. Using the increased stress σ i , the remaining life time φ i at that time is calculated for each unit time.

【0031】さらに、その単位時間Δtに対する残存寿
命時間φi の割合を寿命消費率ψiとし、ψi =Δt/
φi の式から算出する。また同時に、経過時間として
単位時間Δt(1000時間)を累積し、単位時間Δt毎に
つまり運転時間Hに単位時間Δtを加算する毎に、寿命
消費率ψi を求めて、それを累積し、累積寿命消費率Σ
ψi を算出する。そして、この累積寿命消費率Σψi
1を越えた時、寿命を終えたと判断し、最終的に、その
一つ前の経過時間つまり単位時間Δtの累積値が伝熱管
3の余寿命時間Φi-1 となる。
Further, the ratio of the remaining life time φ i to the unit time Δt is defined as a life consumption rate ψ i, and ψ i = Δt /
It is calculated from the formula of φ i . At the same time, the unit time Δt (1000 hours) is accumulated as the elapsed time, and the life consumption rate ψ i is obtained for each unit time Δt, that is, every time the unit time Δt is added to the operation time H, and the accumulated values are accumulated. Cumulative life consumption rateΣ
算出 Calculate i . When the cumulative life consumption rate Σψ i exceeds 1, it is determined that the life is over, and finally, the elapsed time immediately before that, that is, the cumulative value of the unit time Δt is the remaining life time Φ of the heat transfer tube 3. i-1 .

【0032】このような余寿命時間Φi-1 の算出は、入
力された全ての伝熱管について実施され、管列に対する
余寿命のグラフとして管の段数毎に、或は管の段数に対
する余寿命のグラフとして、表示器6にグラフ表示され
る。
The calculation of the remaining life time Φ i-1 is performed for all the input heat transfer tubes, and a graph of the remaining life with respect to the row of tubes is displayed for each number of tubes or for the number of tubes. Is displayed on the display 6 as a graph.

【0033】次に、余寿命評価装置の具体的な動作を、
図8、図9のフローチャートを参照して説明する。
Next, the specific operation of the remaining life evaluation device will be described.
This will be described with reference to the flowcharts of FIGS.

【0034】先ず、超音波発振計測装置1で採取された
伝熱管3の計測データつまり管肉厚THとスケール厚さ
Sの各々データを読み込み、各々のデータシートに書き
込む(ステップ100)。各データには伝熱管3の位置
を示すデータ(管列数と段数)が付され、演算処理装置
5には、キーボード等から伝熱管3の全管列数と全段数
が入力される。次に、ステップ110で、伝熱管3のこ
れまでの運転時間Hをキーボード等から入力する。
First, the measurement data of the heat transfer tube 3 collected by the ultrasonic oscillation measuring device 1, that is, the data of the tube thickness TH and the scale thickness S is read and written into each data sheet (step 100). Each data is provided with data indicating the position of the heat transfer tubes 3 (the number of tube rows and the number of stages), and the arithmetic processing unit 5 receives the total number of tube rows and the total number of stages of the heat transfer tubes 3 from a keyboard or the like. Next, in step 110, the operating time H so far of the heat transfer tube 3 is input from a keyboard or the like.

【0035】そして、次のステップ120で、各々の伝
熱管3のメタル温度Tを算出する。このメタル温度T
は、運転時間Hとスケール厚さSを用いて、上述の式
(9)から算出される。即ち、運転時間Hとスケール厚
さSのグラフ上でメタル温度Tの曲線は図5に示すよう
に表されるから、運転時間Hとスケール厚さSからメタ
ル温度Tの曲線が決定され(対応する運転時間Hとスケ
ール厚さSの位置に曲線がない場合は比例補間により決
定され)、メタル温度Tが算出される。
Then, in the next step 120, the metal temperature T of each heat transfer tube 3 is calculated. This metal temperature T
Is calculated from the above equation (9) using the operation time H and the scale thickness S. That is, since the curve of the metal temperature T is represented on the graph of the operation time H and the scale thickness S as shown in FIG. 5, the curve of the metal temperature T is determined from the operation time H and the scale thickness S (corresponding to FIG. 5). If there is no curve at the position of the operating time H and the scale thickness S, the metal temperature T is calculated.

【0036】次に、ステップ130で、実際に使用され
る伝熱管3の内圧P(kg/cm2)と管外径DO (mm)とを
キーボード等から入力する。そして、ステップ140
で、伝熱管3の内圧による応力σを、超音波発振計測装
置1により計測した管肉厚TH、入力した管外径DO
内圧Pを用いて、上記式(11)から算出する。
Next, in step 130, the internal pressure P (kg / cm 2 ) and the outer diameter D O (mm) of the heat transfer tube 3 actually used are inputted from a keyboard or the like. And step 140
Then, the stress σ due to the internal pressure of the heat transfer tube 3 is obtained by measuring the tube thickness TH measured by the ultrasonic oscillation measuring device 1, the input tube outer diameter D O ,
Using the internal pressure P, it is calculated from the above equation (11).

【0037】次に、ステップ150で、安全係数α(例
えば100% 80% 67%)を入力し、スケール厚さS、応力
σ、安全係数αからクリープ破断強度となるラーソンミ
ラーパラメータ(LM値)を、図6のグラフに示す式の
データを用いて算出する。安全係数αは内圧応力σに乗
じて使用され、評価応力σO (kg/mm2)が、σO =σ/
αの式から算出され、この評価応力σO は、図6に示す
破線のように、安全係数を乗じることにより、内圧応力
σに対応した実線の下側に移動したものとなる。スケー
ル厚さSに対応した直線がない場合には、比例補間して
評価応力σO とスケール厚さSに対応したラーソンミラ
ーパラメータ(評価LM値)を算出する。
Next, in step 150, a safety coefficient α (for example, 100% 80% 67%) is input, and a Larson Miller parameter (LM value) which becomes a creep rupture strength from the scale thickness S, stress σ, and safety coefficient α. Is calculated using the data of the equation shown in the graph of FIG. The safety factor α is used by multiplying the internal stress σ, and the evaluation stress σ O (kg / mm 2 ) is given by σ O = σ /
The evaluation stress σ O is calculated from the equation of α, and is shifted below the solid line corresponding to the internal pressure stress σ by multiplying by the safety factor as shown by the broken line in FIG. When there is no straight line corresponding to the scale thickness S, the Larson Miller parameter (evaluation LM value) corresponding to the evaluation stress σ O and the scale thickness S is calculated by proportional interpolation.

【0038】次に、ステップ160で、上記式(10)
に、上記評価LM値とメタル温度Tを代入して、管の残
存寿命時間φ0 を算出する。その後、運転時間Hに単位
運転時間Δtを加算して、運転時間(H+Δt)の時点
の減肉した管肉厚THi を求め、その管肉厚THi から
内圧応力σi を求めると共に、上記と同様に、スケール
厚さS、内圧応力σi 、安全係数αから、クリープ破断
強度となるラーソンミラーパラメータ(LM値)を、図
6のグラフの式またはデーブルデータを用いて算出し、
単位運転時間Δt経過後の管の残存寿命時間φi を算出
する。そして、この残存寿命時間φi から寿命消費率ψ
i を算出すると共に、累積寿命消費率Σψi を求め、累
積寿命消費率Σψi が1を越えた時点のつまり一つ前の
単位時間Δtの累積値が伝熱管3の余寿命時間Φi-1
して算出される。
Next, at step 160, the above equation (10)
The remaining life time φ 0 of the tube is calculated by substituting the evaluation LM value and the metal temperature T into the above. Then, by adding the unit driving time to the operating time H Delta] t, obtains the operation time (H + Δt) tube wall thickness TH i was thinning of time of, along with determining the internal pressure stress sigma i from the tube wall thickness TH i, said Similarly, from the scale thickness S, the internal pressure stress σ i , and the safety coefficient α, the Larson-Miller parameter (LM value) serving as the creep rupture strength is calculated using the equation of the graph of FIG.
The remaining life time φ i of the pipe after the elapse of the unit operation time Δt is calculated. From the remaining life time φ i , the life consumption rate ψ
i , and the cumulative life consumption rate Σψ i is obtained, and the cumulative value of the unit time Δt at the time when the cumulative life consumption rate Σψ i exceeds 1, ie, the previous unit time Δt, is the remaining life time Φ i− of the heat transfer tube 3. Calculated as 1 .

【0039】即ち、図9の詳細フローチャートに示すよ
うに、先ず、ステップ200で、運転時間Δt経過時の
管肉厚THi を、減肉率βを用いて算出し、次に、ステ
ップ210で、上記と同様に、変化した内圧応力σi
を、変化した管肉厚THi 、管外径DO 、内圧Pを用い
て、上記式(11)から算出する。次に、ステップ22
0で、スケール厚さS、内圧応力σi 、安全係数αから
クリープ破断強度となるラーソンミラーパラメータ(L
M値)を、上記と同様に、図6のグラフデータを用いて
算出する。
[0039] That is, as shown in the detailed flowchart of FIG. 9, first, at step 200, the pipe wall thickness TH i during operation time Δt elapses, calculated using the thinning rate beta, then at step 210 , As described above, the changed internal pressure stress σ i
Is calculated from the above equation (11) using the changed pipe wall thickness TH i , pipe outer diameter D O , and internal pressure P. Next, step 22
0, the Larson Miller parameter (L) which becomes the creep rupture strength from the scale thickness S, the internal stress σ i , and the safety factor α
M value) is calculated using the graph data of FIG. 6 in the same manner as described above.

【0040】そして、次に、ステップ230で、単位時
間Δt経過後の管の残存寿命時間φ i を算出し、次のス
テップ240で、単位時間Δtに対する残存寿命時間φ
i の割合となる寿命消費率ψi を、ψi =Δt/φi
式から算出し、それを累積し、累積寿命消費率Σψi
求める。次に、ステップ250で、この累積寿命消費率
Σψi が1を越えたか否かを判定し、1を越えてない場
合、次にステップ260に進み、さらに上記運転時間H
i に単位運転時間Δtを加算して、運転時間H i+1
し、再びステップ200に戻り、運転時間Hi+1 経過時
の管肉厚THi+1を、上記と同様に減肉率βを用いて算
出する。
Then, in step 230, the unit time
The remaining life time of the tube after the elapse of Δt i And calculate the next
At step 240, the remaining life time φ per unit time Δt
i Life consumption rate which is the ratio of ψi , Ψi = Δt / φi of
Calculate from the formula and accumulate it, the cumulative life consumption rate Σψi To
Ask. Next, at step 250, the cumulative life consumption rate
Σψi Judge whether has exceeded 1 and if it does not exceed 1,
If so, the process proceeds to step 260, where the operation time H
i To the operation time H i + 1 When
Then, returning to step 200 again, the operation time Hi + 1 When
Pipe thickness THi + 1Is calculated using the thinning rate β in the same manner as above.
Put out.

【0041】さらに上記と同様に、応力σi+1 を算出
し、残存寿命時間φi+1 を算出し、寿命消費率ψi+1
算出する。そして上記と同様に、ステップ250で、こ
の累積寿命消費率Σψi+1 が1を越えたか否かを判定
し、1を越えてない場合、再びステップ260に進み、
運転時間Hi+1 に単位運転時間Δtを加算して、運転時
間Hi+2 とする。
Further, in the same manner as described above, the stress σ i + 1 is calculated, the remaining life time φ i + 1 is calculated, and the life consumption rate ψ i + 1 is calculated. Then, similarly to the above, in step 250, it is determined whether or not the cumulative life consumption rate Σψ i + 1 has exceeded 1, and if not, the process proceeds to step 260 again.
The unit operating time Δt is added to the operating time Hi + 1 to obtain the operating time Hi + 2 .

【0042】このように、上記ステップ200〜ステッ
プ260を繰り返し実行することにより、運転時間Hが
単位運転時間Δtづつ経過し、管肉厚THは徐々に減少
し、応力σは徐々に増大し、寿命消費率ψは徐々に増大
していく。そしてその累積寿命消費率Σψi が1を越え
た時、ステップ250からステップ270に進み、累積
寿命消費率Σψi が1を越えた時点のつまり一つ前の単
位時間Δtの累積値ΣHi-1 が伝熱管3の余寿命時間Φ
i-1 として算出される。
As described above, by repeatedly executing the above steps 200 to 260, the operation time H elapses by the unit operation time Δt, the pipe thickness TH gradually decreases, and the stress σ gradually increases. The life consumption rate ψ gradually increases. When the cumulative life consumption rate Σψ i exceeds 1, the process proceeds from step 250 to step 270, where the cumulative value ΣH i− of the unit time Δt at the time when the cumulative life consumption rate Σψ i exceeds 1 is obtained . 1 is the remaining life time Φ of the heat transfer tube 3
It is calculated as i-1 .

【0043】このような伝熱管3の余寿命時間Φi-1
算出は、計測・入力された全ての伝熱管3について実施
され、管列に対する余寿命のグラフとして管の段数毎
に、或は管の段数に対する余寿命のグラフとして管列毎
に、図10のようにグラフ表示される。このように、管
列又は管の段数に対する余寿命時間のグラフとしてグラ
フ表示することにより、過熱器や再熱器において、例え
ば出口管寄せに接続して使用される伝熱管の接続位置に
応じて、管の余寿命時間が変化する傾向が良好に分か
り、多数の伝熱管の余寿命を迅速にかつ的確に把握し、
無駄のない管の交換に役立てることができる。
Such calculation of the remaining life time Φ i-1 of the heat transfer tubes 3 is performed for all the measured and input heat transfer tubes 3, and a graph of the remaining life with respect to the tube row is provided for each number of pipe stages. Is displayed as a graph of the remaining life with respect to the number of pipe stages for each pipe row as shown in FIG. In this way, by displaying the graph as a graph of the remaining life time with respect to the number of pipe rows or pipe stages, in the superheater or the reheater, for example, according to the connection position of the heat transfer pipe connected to the outlet header and used. The tendency to change the remaining life time of the tubes is well understood, and the remaining life of many heat transfer tubes is quickly and accurately grasped.
It can be used to replace tubes without waste.

【0044】[0044]

【発明の効果】本発明の余寿命評価装置によれば、予め
実機の伝熱管において採取したデータに基づき作成した
クリープ破断強度等のデータや演算式を使用し、評価し
ようとする伝熱管について計測した管肉厚とスケール厚
さのデータを用いて余寿命を算出するから、実際の過熱
器や再熱器の伝熱管の余寿命を正確に算出することがで
きる。また、単位運転時間が経過する毎に、内圧応力、
クリープ破断強度、残存寿命時間、及び寿命消費率を算
出し、寿命消費率の累積値である累積寿命消費率が1を
越えた時の単位運転時間の累積値を、伝熱管の余寿命時
間とするので、運転時間の経過と共に減少する管肉厚に
応じた内圧応力の増加に伴う正確な余寿命を算出するこ
とができる。
According to the remaining life evaluation device of the present invention, the heat transfer tube to be evaluated is measured by using data such as creep rupture strength or an arithmetic expression created based on data previously collected from the heat transfer tube of the actual machine. Since the remaining life is calculated using the obtained data of the pipe wall thickness and the scale thickness, it is possible to accurately calculate the actual remaining life of the heat transfer tube of the actual superheater or reheater. In addition, every time the unit operation time elapses, the internal pressure stress,
The creep rupture strength, remaining life time, and life consumption rate are calculated, and the cumulative value of the unit operation time when the cumulative life consumption rate, which is the cumulative value of the life consumption rate, exceeds 1, is calculated as the remaining life time of the heat transfer tube. Therefore, it is possible to calculate an accurate remaining life associated with an increase in the internal pressure stress according to the pipe wall thickness that decreases as the operation time elapses.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成図である。FIG. 1 is a configuration diagram of the present invention.

【図2】本発明の一実施形態を示す余寿命評価装置の構
成図である。
FIG. 2 is a configuration diagram of a remaining life evaluation apparatus according to an embodiment of the present invention.

【図3】超音波発振計測装置の測定反射波の波形図であ
る。
FIG. 3 is a waveform diagram of a measurement reflected wave of the ultrasonic oscillation measurement device.

【図4】メタル温度と水蒸気酸化速度定数の関係を示す
グラフである。
FIG. 4 is a graph showing a relationship between a metal temperature and a steam oxidation rate constant.

【図5】スケール厚さ、メタル温度、運転時間の関係を
示すグラフである。
FIG. 5 is a graph showing a relationship between scale thickness, metal temperature, and operation time.

【図6】スケール厚さ、応力、クリープ破断強度(LM
値)の関係を示すグラフである。
FIG. 6: Scale thickness, stress, creep rupture strength (LM)
3 is a graph showing the relationship of the values.

【図7】(a)は過熱器の出口寄せの平面図、(b)は
その拡大断面図である。
FIG. 7A is a plan view of an outlet of a superheater, and FIG. 7B is an enlarged sectional view thereof.

【図8】余寿命評価装置の動作を示すフローチャートで
ある。
FIG. 8 is a flowchart showing the operation of the remaining life evaluation device.

【図9】余寿命計算処理のフローチャートである。FIG. 9 is a flowchart of a remaining life calculation process.

【図10】余寿命評価装置のグラフ出力図である。FIG. 10 is a graph output diagram of the remaining life evaluation device.

【符号の説明】[Explanation of symbols]

1−超音波発振計測装置 2−探触子 3−伝熱管 5−演算処理装置 6−表示器 1-Ultrasonic oscillation measuring device 2-Probe 3-Heat transfer tube 5-Processing unit 6-Display

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G024 AD12 AD38 BA01 BA12 BA13 BA30 CA02 CA30 EA09 EA20 FA02 FA15 2G047 AA07 AB01 AC02 BC11 BC18 GG19 GG36 2G055 AA03 AA12 BA09 BA11 BA14 BA20 EA08 FA08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G024 AD12 AD38 BA01 BA12 BA13 BA30 CA02 CA30 EA09 EA20 FA02 FA15 2G047 AA07 AB01 AC02 BC11 BC18 GG19 GG36 2G055 AA03 AA12 BA09 BA11 BA14 BA20 EA08 FA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 伝熱管の外周面から超音波を入射しその
反射波を計測することにより該伝熱管のスケール厚さと
管肉厚を計測するスケール厚さ・管肉厚測定手段と、 前記スケール厚さ・管肉厚測定手段で計測された管肉
厚、伝熱管の内圧、及び管外径から内圧応力を算出する
応力算出手段と、 予め実機の伝熱管において計測したメタル温度、スケー
ル厚さ、及び運転時間のデータから水蒸気酸化速度定数
の関係式を求めて記憶し、該関係式と評価しようとする
伝熱管の運転時間とスケール厚さから該伝熱管のメタル
温度を算出するメタル温度算出手段と、 予め実機の伝熱管について計測したスケール厚さとクリ
ープ破断強度を、該伝熱管の内圧応力に対応したスケー
ル厚さ別のクリープ破断強度データとして記憶する記憶
手段と、 前記計測されたスケール厚さと該記憶手段に書き込まれ
たスケール厚さ別クリープ破断強度データと内圧応力を
用いてクリープ破断強度を算出するクリープ破断強度算
出手段と、 該クリープ破断強度算出手段が算出したクリープ破断強
度と前記メタル温度算出手段で算出したメタル温度とを
用いて伝熱管の残存寿命時間を算出する残存寿命時間算
出手段と、 伝熱管の運転時間の経過と管肉厚の減少から減肉率を求
め、単位運転時間毎に該減肉率に応じて減少する管肉厚
の内圧応力を算出し、該内圧応力と前記残存寿命時間算
出手段を使用して減肉時の残存寿命時間を算出し、単位
運転時間に対する寿命消費率を算出すると共に、該寿命
消費率を累積して累積寿命消費率を算出し、該累積寿命
消費率が1を越えた時の単位運転時間の累積値を伝熱管
の余寿命時間とする余寿命算出手段と、 を備えたことを特徴とする伝熱管の余寿命評価装置。
1. A scale thickness / tube thickness measuring means for measuring a scale thickness and a tube thickness of the heat transfer tube by irradiating an ultrasonic wave from an outer peripheral surface of the heat transfer tube and measuring a reflected wave thereof; Stress calculation means for calculating the internal pressure stress from the pipe wall thickness measured by the thickness / pipe wall thickness measurement means, the internal pressure of the heat transfer pipe, and the outer diameter of the pipe; metal temperature and scale thickness measured in advance on the heat transfer pipe of the actual machine And calculating and storing a relational expression of the steam oxidation rate constant from the data of the operation time and calculating the metal temperature of the heat transfer tube from the operation time and the scale thickness of the heat transfer tube to be evaluated with the relational expression. Means for storing the scale thickness and creep rupture strength previously measured for the heat transfer tube of the actual machine as creep rupture strength data for each scale thickness corresponding to the internal pressure stress of the heat transfer tube; Creep rupture strength calculating means for calculating the creep rupture strength using the creep rupture strength data for each scale thickness and the internal pressure stress written in the storage means and the creep rupture strength calculated by the creep rupture strength calculating means A remaining life time calculating means for calculating the remaining life time of the heat transfer tube by using the strength and the metal temperature calculated by the metal temperature calculating means; and Calculate the internal pressure stress of the pipe wall thickness to be reduced according to the wall thinning rate for each unit operation time, and calculate the remaining life time at the time of thinning using the internal pressure stress and the remaining life time calculating means. Calculating the life consumption rate with respect to the unit operation time, calculating the cumulative life consumption rate by accumulating the life consumption rate, and calculating the accumulated value of the unit operation time when the cumulative life consumption rate exceeds 1 by using the heat transfer tube. After Residual life evaluating apparatus of the heat transfer tube for the remaining life calculating means for the life time, further comprising a said.
【請求項2】 過熱器又は再熱器に使用された複数の伝
熱管について前記余寿命算出手段が算出した余寿命時間
を、該複数の伝熱管の管列又は段数に対するグラフとし
て表示する余寿命分布グラフ表示手段が具備されたこと
を特徴とする請求項1記載の伝熱管の余寿命評価装置。
2. A remaining life displaying a remaining life time calculated by the remaining life calculating means for a plurality of heat transfer tubes used in a superheater or a reheater as a graph with respect to a tube row or the number of stages of the plurality of heat transfer tubes. 2. The apparatus according to claim 1, further comprising a distribution graph display unit.
JP28402199A 1999-10-05 1999-10-05 Heat transfer tube remaining life evaluation device Expired - Fee Related JP3458271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28402199A JP3458271B2 (en) 1999-10-05 1999-10-05 Heat transfer tube remaining life evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28402199A JP3458271B2 (en) 1999-10-05 1999-10-05 Heat transfer tube remaining life evaluation device

Publications (2)

Publication Number Publication Date
JP2001108669A true JP2001108669A (en) 2001-04-20
JP3458271B2 JP3458271B2 (en) 2003-10-20

Family

ID=17673287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28402199A Expired - Fee Related JP3458271B2 (en) 1999-10-05 1999-10-05 Heat transfer tube remaining life evaluation device

Country Status (1)

Country Link
JP (1) JP3458271B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008587A (en) * 2007-06-29 2009-01-15 Tokyo Electric Power Co Inc:The Method for evaluating tube, and evaluating program of the tube
JP2009139137A (en) * 2007-12-04 2009-06-25 Babcock Hitachi Kk Graphitization damage diagnosing method of carbon steel and mo steel for boiler
KR100924504B1 (en) 2009-04-14 2009-11-02 주식회사 피레타 Non destructive inspection apparatus and life evaluation method using by it
JP2016006389A (en) * 2014-06-20 2016-01-14 株式会社Ihi Ferrite steel creep remaining life evaluation method
KR20160039099A (en) * 2014-09-30 2016-04-08 한국전력공사 Evaluating method for degree of risk using creep and wall thinning of heat exchanger steam tube
CN109958993A (en) * 2017-12-21 2019-07-02 特电株式会社 Overheated steam generating means and its maintaining method
FR3087888A1 (en) * 2018-10-31 2020-05-01 Safran Aircraft Engines DEVICE AND METHOD FOR MONITORING THE LIFETIME OF HYDRAULIC EQUIPMENT OF AN AIRCRAFT
KR102580188B1 (en) * 2022-08-31 2023-10-18 한전케이피에스 주식회사 Input apparatus for power generation boiler maintenance history

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008587A (en) * 2007-06-29 2009-01-15 Tokyo Electric Power Co Inc:The Method for evaluating tube, and evaluating program of the tube
JP2009139137A (en) * 2007-12-04 2009-06-25 Babcock Hitachi Kk Graphitization damage diagnosing method of carbon steel and mo steel for boiler
KR100924504B1 (en) 2009-04-14 2009-11-02 주식회사 피레타 Non destructive inspection apparatus and life evaluation method using by it
JP2016006389A (en) * 2014-06-20 2016-01-14 株式会社Ihi Ferrite steel creep remaining life evaluation method
KR20160039099A (en) * 2014-09-30 2016-04-08 한국전력공사 Evaluating method for degree of risk using creep and wall thinning of heat exchanger steam tube
KR101656672B1 (en) 2014-09-30 2016-09-19 한국전력공사 Evaluating method for degree of risk using creep and wall thinning of heat exchanger steam tube
CN109958993A (en) * 2017-12-21 2019-07-02 特电株式会社 Overheated steam generating means and its maintaining method
JP2019113206A (en) * 2017-12-21 2019-07-11 トクデン株式会社 Superheated steam generation device and maintenance method for the same
CN109958993B (en) * 2017-12-21 2022-08-23 特电株式会社 Superheated steam generator and maintenance method thereof
FR3087888A1 (en) * 2018-10-31 2020-05-01 Safran Aircraft Engines DEVICE AND METHOD FOR MONITORING THE LIFETIME OF HYDRAULIC EQUIPMENT OF AN AIRCRAFT
WO2020089555A1 (en) * 2018-10-31 2020-05-07 Safran Aircraft Engines Device and method for monitoring the lifetime of a hydraulic apparatus of an aircraft
CN113167683A (en) * 2018-10-31 2021-07-23 赛峰飞机发动机公司 Device and method for monitoring the life of a hydraulic unit of an aircraft
US11377975B2 (en) 2018-10-31 2022-07-05 Safran Aircraft Engines Device and method for monitoring the lifetime of a hydraulic apparatus of an aircraft
CN113167683B (en) * 2018-10-31 2023-05-23 赛峰飞机发动机公司 Device and method for monitoring the life of a hydraulic device of an aircraft
KR102580188B1 (en) * 2022-08-31 2023-10-18 한전케이피에스 주식회사 Input apparatus for power generation boiler maintenance history

Also Published As

Publication number Publication date
JP3458271B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
FI96994C (en) Device for calculating the crack length of conductive sensors
CN101013067A (en) High temperature furnace pipe residue lifetime estimation method and device
JP2008003009A (en) Lifetime diagnosis device for high-temperature equipment, and lifetime diagnosis method and program for high-temperature equipment
JP2003090506A (en) Method and device to diagnose damage of boiler heat transfer pipe different material joint welding part
JP2001108669A (en) Remaining life evaluating apparatus for heat transfer tube
CN110907475A (en) Method for evaluating residual life of martensite heat-resistant steel
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
JP3652418B2 (en) Corrosion fatigue damage diagnosis prediction method for boiler water wall pipe
JP6254033B2 (en) Life evaluation method and life evaluation apparatus
JP2005147797A (en) Method of estimating damage ratio of boiler heat transfer piping material and method of determining time for chemical cleaning
JPH04282455A (en) Method and apparatus for maintenance control of structure part
JP2002156325A (en) Surface crack depth analytical method of metal member
JP3332971B2 (en) Diagnosis method for deterioration of ferritic heat-resistant steel
JP2004028818A (en) Method for monitoring corrosive environment and its apparatus
JP5492057B2 (en) Damage prediction method for heat-resistant steel welds
JP2000234986A (en) System and method for evaluating crack development
JP2013228119A (en) Method and device for diagnosis of crack and damage of boiler heat transfer tube
JPH0875107A (en) Method for estimating life time of high temperature pressure resistant part
JPH05223809A (en) Remaining service life estimating method for gamma' phase precipitation reinforcement type alloy
JPH09218195A (en) Method for evaluating damage of boiler pipe collecting stub pipe
JP2627925B2 (en) Remaining life evaluation method for metallic materials
JPH0627088A (en) Diagnostic apparatus for life expectancy of ferritic heat resisting steels
JPH08285211A (en) Scale production amount monitoring device
JP2020118566A (en) High-temperature apparatus remaining life evaluation method and remaining life evaluation assisting system
JP2003065984A (en) Method and apparatus for assessing remaining life of furnace heat conduction wall panel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees