JPH1038829A - Pipeline crack progress quantity predicting device - Google Patents

Pipeline crack progress quantity predicting device

Info

Publication number
JPH1038829A
JPH1038829A JP19070896A JP19070896A JPH1038829A JP H1038829 A JPH1038829 A JP H1038829A JP 19070896 A JP19070896 A JP 19070896A JP 19070896 A JP19070896 A JP 19070896A JP H1038829 A JPH1038829 A JP H1038829A
Authority
JP
Japan
Prior art keywords
crack
calculating
crack propagation
pipe
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19070896A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamashita
鐵生 山下
Yoshiki Ogata
善樹 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19070896A priority Critical patent/JPH1038829A/en
Publication of JPH1038829A publication Critical patent/JPH1038829A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pipeline crack progress quantity predicting device that can immediately know the total value of the crack progress quantity caused by fluctuating thermal load during a long plant cycle and can continue to monitor constantly. SOLUTION: A pipeline crack progress quantity predicting device has a temperature detector 9 installed in a monitor place 30 in a pipeline with its inner surface receiving thermal load, an arithmetic processing unit 10 inputting a signal from the detector 9 and computing the pipeline crack progress quantity in the place 30, and a display device 20 inputting a signal from the arithmetic processing unit 10 and displaying the crack progress quantity of the pipeline in the installed place of the detector 9. The arithmetic processing unit 10 consists of a means 100 for computing generated stress, a simplified means 200 for computing the J-integrated value, a means 400 for comparing with a crack propagation curve, and a means 500 for computing the crack progress quantity. The display device 20 inputs a signal from the means 500 for computing the crack progress quantity and displays the crack progress quantity of the pipeline.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配管内表面の熱荷
重にに対して、想定き裂の、その後のき裂進展量を予測
するために用いる配管き裂進展量算定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for calculating the amount of crack growth of a pipe used to predict the amount of crack growth of an assumed crack in response to a thermal load on the inner surface of the pipe.

【0002】[0002]

【従来の技術】従来の技術による配管系に対する、内面
に生じる熱荷重に対する従来の健全性の評価方法は、数
値解析的に、熱荷重に対して熱弾塑性破壊力学パラメー
タのJ積分値を解析によって求め、その解析結果を材料
についてのデータと比較する事により、き裂の進展によ
る破壊に対する健全性を評価していた。
2. Description of the Related Art A conventional method for evaluating the soundness of a piping system with respect to a thermal load generated on an inner surface of a piping system is a method of numerically analyzing a J-integral value of a thermoelastic-plastic fracture mechanics parameter with respect to a thermal load. By comparing the analysis results with the data on the materials, the soundness against fracture due to crack propagation was evaluated.

【0003】[0003]

【発明が解決しようとする課題】従来技術による配管の
想定き裂に対するき裂進展量の評価方法では、(A)当
該場所における温度変化に対する発生熱応力に対し、熱
弾塑性破壊力学パラメータのJ積分値を数値解析によっ
て求め、(B)予め採取したき裂進展評価データとを比
較してき裂進展予測を立てていた。
According to the prior art method for evaluating the amount of crack growth for an assumed crack in a pipe, (A) the thermal elasto-plastic fracture mechanics parameter J The integral value was obtained by numerical analysis, and (B) crack growth prediction was made by comparing the data with crack growth evaluation data collected in advance.

【0004】しかしながら、この方法では、時間的な評
価時点において、その都度数値解析を実施しなければな
らない。そのため、時間的応答が遅く、リアルタイムで
き裂進展量を監視する事が困難であった。
However, in this method, a numerical analysis must be carried out each time a temporal evaluation is performed. Therefore, the temporal response was slow, and it was difficult to monitor the amount of crack propagation in real time.

【0005】本発明は、これらの問題を解決し、当該場
所の温度変化を検知すれば、この温度変化による発生熱
応力を基に、即座に、き裂の進展量を算定する装置を提
供する事を目的とする。
The present invention solves these problems, and provides a device for immediately calculating the amount of crack propagation based on the thermal stress generated by the temperature change when the temperature change in the location is detected. For the purpose.

【0006】[0006]

【課題を解決するための手段】本発明に係る配管のき裂
進展量予測装置は、内表面に熱荷重をうける配管におい
て、(A)監視したい場所に設置した温度検出器と、
(B)前記温度検出器からの信号を入力し、前記場所に
おける配管のき裂進展量を算出する演算処理装置と、
(C)前記演算処理装置からの信号を入力し、前記温度
検出器を設置した場所における配管のき裂進展量を表示
する表示装置を有し、(D)前記演算処理装置は、発生
応力を算出する手段と、J積分値を算出する簡易手段
と、き裂伝播曲線と比較する手段と、き裂進展量を算出
する手段とから成り、(E)前記発生応力を算出する手
段は、温度検出器からの信号を入力し、温度検出器によ
り検出される時間的変化および前記設置場所における配
管の材質、寸法、形状から求まる前記設置場所の発生應
力を算出し、(F)前記J積分値を算出する簡易手段
は、前記発生応力を算出する手段からの信号を入力し、
前記設置場所における配管の発生応力の算出値から弾塑
性破壊力学パラメータであるJ積分値を算出し、(H)
前記き裂伝播曲線と比較する手段は、前記J積分値を算
出する簡易手段からの信号を入力し、前記設置場所にお
ける配管のき裂の進展評価値を予め材料試験により取得
したき裂伝播曲線に基づくデータとの比較値を算出し、
(I)前記き裂進展量を算出する手段は、前記き裂伝播
手段と比較する手段からの信号を入力し、該比較する手
段で算出した比較値に基づき、前記設置場所における配
管のき裂進展量を算出し、(J)前記表示装置は、前記
き裂進展量を算出する手段からの信号を入力し、温度検
出器を設置した場所における配管のき裂進展量を表示す
ることを特徴とする。
According to the present invention, there is provided an apparatus for predicting the amount of crack propagation in a pipe, comprising: (A) a temperature detector installed at a place to be monitored in a pipe subjected to a thermal load on an inner surface;
(B) an arithmetic processing unit that receives a signal from the temperature detector and calculates the amount of crack propagation in the pipe at the location;
(C) a display device for inputting a signal from the arithmetic processing device and displaying a crack propagation amount of a pipe at a place where the temperature detector is installed, and (D) the arithmetic processing device Means for calculating the J-integral value, means for comparing with the crack propagation curve, and means for calculating the amount of crack propagation, and (E) means for calculating the generated stress comprises temperature A signal from the detector is input, and a temporal change detected by the temperature detector and a generated force at the installation location determined from the material, dimensions, and shape of the pipe at the installation location are calculated, and (F) the J integrated value The simple means for calculating the input from the signal from the means for calculating the generated stress,
A J-integral value, which is an elasto-plastic fracture mechanics parameter, is calculated from the calculated value of the generated stress of the pipe at the installation location, and (H)
The means for comparing the crack propagation curve with the crack propagation curve receives a signal from the simple means for calculating the J integral value, and obtains a crack propagation curve obtained in advance by a material test on a crack propagation evaluation value of the pipe at the installation location. Calculate the comparison value with the data based on the
(I) The means for calculating the amount of crack propagation receives a signal from a means for comparison with the crack propagation means, and, based on the comparison value calculated by the means for comparing, the crack in the pipe at the installation location. (J) The display device inputs a signal from the means for calculating the amount of crack propagation, and displays the amount of crack propagation in the pipe at the place where the temperature detector is installed. And

【0007】従って、次のように作用する。 (1)本発明装置により、配管のき裂進展を監視したい
場所における配管の板厚方向の熱応力分布を使用して、
この熱応力分布によるき裂進展の評価値、すなわち、熱
弾塑性破壊力学パラメータのJ積分値を求め、この値
と、予め監視し度い場所の材料から採取したき裂進展デ
ータの(き裂伝播曲線)とを比較する事によって、き裂
の進展量を算出することができる。 (2)評価したい時点のき裂進展量は、例えば、(A)
疲労き裂進展の場合は、負荷重による前記の各応力分布
が、その評価時点で何回生じたかで決まり、各1回の荷
重当たりのき裂進展量を積分する事により求められる。
Therefore, the following operation is performed. (1) By using the thermal stress distribution in the thickness direction of the pipe at the place where the crack growth of the pipe is to be monitored,
An evaluation value of the crack growth based on this thermal stress distribution, that is, a J-integral value of a thermo-elastic-plastic fracture mechanics parameter is obtained. (Propagation curve), the amount of crack propagation can be calculated. (2) The amount of crack growth at the time of evaluation is, for example, (A)
In the case of fatigue crack growth, the above-mentioned stress distribution due to the load is determined by how many times the stress has occurred at the time of the evaluation, and is obtained by integrating the amount of crack growth per load for each load.

【0008】(B)また、応力腐蝕割れ(以下S.C.
Cともいう)の場合には、前記の応力分布が何時間継続
したかで決まるため、熱応力が作用した場合の各単位時
間当たりのき裂進展量を積分する事により求めることが
できる。
(B) Further, stress corrosion cracking (hereinafter referred to as SC.
In the case of (C), the stress distribution is determined by how long the stress distribution lasts, and thus can be determined by integrating the amount of crack propagation per unit time when a thermal stress is applied.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を、図1〜図
5に示す。図1は第1の実施の形態に係る配管のき裂進
展予測装置の演算処理の説明図。図2は第1の実施の形
態を説明するための原子炉配管ラインの説明図。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention are shown in FIGS. FIG. 1 is an explanatory diagram of a calculation process of a pipe crack growth prediction device according to a first embodiment. FIG. 2 is an explanatory diagram of a reactor piping line for explaining the first embodiment.

【0010】図3は配管内面の軸方向き裂および周方向
き裂の説明図。図4は熱荷重時のJ積分値の簡易評価法
の中で用いる帯板片側き裂の説明図。図5は本発明の演
算処理に用いるJ積分値の簡易評価法の説明図である。
FIG. 3 is an explanatory view of an axial crack and a circumferential crack on the inner surface of the pipe. FIG. 4 is an explanatory view of a band plate one-side crack used in a simple evaluation method of a J-integral value under a thermal load. FIG. 5 is an explanatory diagram of a simple evaluation method of the J integral value used in the arithmetic processing of the present invention.

【0011】本発明の実施の形態を、図2に示す原子炉
容器1の1次冷却材管2について従来技術と対比しなが
ら説明する。原子炉容器1から出た高温高圧水19は、
この1次冷却材管2を通って蒸気発生器3に流れてい
く。 (1)き裂進展量について (従来技術)従来技術では、健全性評価の一環として、
この1次冷却材管2の内表面に疲労あるいは應力腐食割
れ(SCC)によるき裂がある場合を想定して、高温高
圧水の温度変化によるき裂の進展により、寿命評価が度
々行われている。
An embodiment of the present invention will be described with reference to a primary coolant pipe 2 of a reactor vessel 1 shown in FIG. The high-temperature and high-pressure water 19 discharged from the reactor vessel 1
It flows through the primary coolant pipe 2 to the steam generator 3. (1) Crack growth amount (Prior art) In the prior art, as a part of soundness evaluation,
Assuming that there is a crack due to fatigue or stress corrosion cracking (SCC) on the inner surface of the primary coolant pipe 2, the life is frequently evaluated by the propagation of the crack due to the temperature change of the high-temperature high-pressure water. I have.

【0012】そして、この1次冷却材管にき裂がある場
合の寿命評価法としては、1次冷却材管2に生じる温度
変化に伴う発生応力を求め、この応力を基に破壊力学パ
ラメータのJ積分値を詳細解析によって求め、その結果
と、予め1次冷却材管2と同等の材料試験により求めて
おいた、き裂進展データ(き裂伝播曲線)とを比較し
て、どの程度、温度変化によりき裂が進展したかを判定
し、き裂進展量を求めて、寿命評価を行う方法が採られ
ている。
As a method of evaluating the life when the primary coolant pipe has a crack, a stress generated due to a temperature change occurring in the primary coolant pipe 2 is obtained, and based on the stress, a fracture mechanics parameter is determined. The J integral value was determined by a detailed analysis, and the result was compared with the crack propagation data (crack propagation curve) previously determined by a material test equivalent to that of the primary coolant pipe 2. A method is employed in which it is determined whether a crack has developed due to a temperature change, the amount of crack growth is determined, and the life is evaluated.

【0013】しかしながら、この方法は事後評価とな
り、また、詳細解析のため、非常に時間がかかる。 (本発明)そこで本発明は、温度変化に対応して、すぐ
にき裂進展量を算出することができる装置を提供する。
すなわち、図1(a)に示す様に当該部の近くの適当な
位置に、1次冷却材管2の内面温度を検出する温度検出
器9が設置されており、この温度検出器9からの温度デ
ータは、逐次演算処理装置10に送られる様になってい
る。
However, this method is an ex-post evaluation and takes a very long time for detailed analysis. (Invention) Accordingly, the present invention provides an apparatus capable of immediately calculating a crack growth amount in response to a temperature change.
That is, as shown in FIG. 1A, a temperature detector 9 for detecting the inner surface temperature of the primary coolant pipe 2 is installed at an appropriate position near the relevant portion. The temperature data is sequentially sent to the arithmetic processing unit 10.

【0014】図1(b)は温度検出器9から送られて来
たデータである。この温度データは時系列的に記憶され
ている。温度データが送られて来ると、この温度データ
と、図3に示す1次冷却材管2の寸法、形状、配管内半
径18、配管板厚11、および材料定数を使用して、図
1(c)に示すような1次冷却材管の板厚内の熱應力分
布を演算処理する。
FIG. 1B shows data sent from the temperature detector 9. This temperature data is stored in chronological order. When the temperature data is sent, the temperature data and the dimensions and shape of the primary coolant pipe 2 shown in FIG. 3, the radius 18 in the pipe, the pipe thickness 11 and the material constant are used as shown in FIG. The thermal stress distribution in the thickness of the primary coolant pipe as shown in c) is calculated.

【0015】この熱應力分布を基に、図3に示す想定さ
れた或いは検出された、軸方向き裂14または周方向き
裂15のき裂深さ16と、き裂巾17を使用し、図5に
示す熱荷重時のJ積分値簡易評価法を用いて、J積分値
を算出し、そのJ積分値と、き裂深さ16と配管板厚1
1の比(a/T)の関係を、図1(d)のように算出す
る。 (2)J積分値の算出 (従来技術)従来技術では、このJ積分値算出に対して
詳細解析を行う為、非常に時間を要した。
On the basis of the thermal stress distribution, a crack depth 16 and a crack width 17 of an assumed or detected axial crack 14 or circumferential crack 15 shown in FIG. The J-integral value was calculated using the simplified evaluation method of the J-integral value under thermal load shown in FIG. 5, and the J-integral value, the crack depth 16 and the pipe thickness 1 were calculated.
The relationship of the ratio (a / T) of 1 is calculated as shown in FIG. (2) Calculation of J-Integral Value (Prior Art) In the prior art, it took a very long time to perform a detailed analysis on the J-integral value calculation.

【0016】(本発明)本発明では、J積分値を算出す
る簡易手段を用いる。そのため、本発明では、このJ積
分値を算出する簡易評価法(図5)を提供する。
(The present invention) In the present invention, a simple means for calculating the J integral value is used. Therefore, the present invention provides a simple evaluation method (FIG. 5) for calculating the J integral value.

【0017】このJ積分値と比較するデータとして、図
1(c)に示す1次冷却材管2と同等の材料試験片から
得られる図1(g)、(h)の應力腐食割れ(SC
C)、あるいは疲労き裂に対する、き裂伝播曲線を求め
ておき、想定された或いは検出された、き裂に対する
(a/T)から求まるJ積分値を図1(d)から求め、
これを図1(g)、(h)と比較すれば、その評価時点
における単位時間あるいは単位回数当たりのき裂進展量
dat あるいはdan を求めることができる。
As the data to be compared with the J integral value, the stress corrosion cracking (SC) shown in FIGS. 1 (g) and (h) obtained from a material test piece equivalent to the primary coolant pipe 2 shown in FIG. 1 (c) is used.
C) or a crack propagation curve for a fatigue crack is obtained in advance, and an assumed or detected J-integral value obtained from (a / T) for the crack is obtained from FIG.
This FIG. 1 (g), the can be obtained when compared with (h), crack propagation amount da t or da n can per count unit time or unit at the time of evaluation.

【0018】この、き裂伝播曲線の應力腐食割れ(SC
C)は、J積分値と、単位時間dtにおけるき裂進展量
dat /dtの関係を示し、き裂伝播曲線の疲労き裂
は、J積分値と、単位回数dnにおけるき裂進展量da
n /dtの関係を示す。
The stress corrosion cracking (SC
C) includes a J-integral value, shows the relationship between the crack propagation amount da t / dt can in the unit time dt, the fatigue crack crack propagation curve, a J-integral value, crack propagation amount da come in a unit number dn
The relationship of n / dt is shown.

【0019】従って、図1(b)から(h)までを時系
列的に連続して行えば、図1(i)、(j)に示すよう
に、想定された或いは検出された、き裂の初期値a0
らのトータルの時間t、あるいはトータルの回数nにお
ける、き裂進展量のトータル値(Σdat あるいはΣd
n 、すなわちat あるいはan )の関係を求めること
ができる。
Therefore, if FIG. 1 (b) to FIG. 1 (h) are continuously performed in time series, as shown in FIG. 1 (i) and (j), the assumed or detected crack of the initial value a 0 total time from t or the number n of the total, the crack growth of the total value (Shigumada t or Σd
a n, that is, to determine the relationship of a t or a n).

【0020】求められたき裂進展量at あるいはan
は、図1(k)に示すように、板厚から初期き裂a0
差し引いた残りの板厚T0 と比較することにより、予防
処置をとるように指示する。 (3)本発明と関連出願の相違点 関連出願として挙げられる特願平07−310746号
「配管のき裂進展量算定装置」との違いは、(A)本発
明は「き裂進展量の予測が熱荷重に対する予測装置であ
る。」のに対し、(B)特願平07−310746号は
「内圧と、軸力荷重に対する予測装置である。」点で相
違する。従って、本発明の主内容の1つである図5の
「J積分値簡易評価法」が根本的に、関連出願のものと
相違する。
[0020] Taki asked crack propagation amount a t or a n
As shown in FIG. 1 (k), by comparison with the rest of the plate thickness T 0 obtained by subtracting the initial crack a 0 from a thickness of an instruction to take preventive action. (3) Differences between the Present Invention and Related Application The difference from Japanese Patent Application No. 07-310746 “Piping crack growth amount calculation device” cited as a related application is as follows. The prediction is a prediction device for a thermal load. "However, (B) Japanese Patent Application No. 07-310746 is different in that it is a prediction device for an internal pressure and an axial load. Therefore, one of the main contents of the present invention, the "simple evaluation method of J integral value" in FIG. 5, is fundamentally different from that of the related application.

【0021】[0021]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)従来技術では、配管内表面の想定き裂に対する熱
荷重による疲労き裂、或いは應力腐食割れ(SCC)等
の進展量の判定については、熱荷重に対し、事後検討の
方法が採られ、しかも、何らかの事象が生じても、即座
にき裂進展量の評価を行い、対策を講じるシステムはな
く、また、その技術も無かった。
Since the present invention is configured as described above, it has the following effects. (1) In the prior art, a post-examination method is used for the determination of the amount of growth such as fatigue cracks or stress corrosion cracking (SCC) due to a thermal load for an assumed crack on the inner surface of a pipe. Moreover, even if an event occurs, there is no system for immediately evaluating the amount of crack growth and taking measures, and there is no technology for this.

【0022】しかし、本発明によれば、温度の時々刻々
の変動に対し、この変動荷重による発生応力を求め、こ
の発生応力による想定き裂に対する破壊力学パラメータ
のJ積分値の簡易評価を行い、この値と予め材料試験に
より採ったき裂進展データを比較する事により、き裂進
展量を求める事が出来る。 (2)そのため、長いプラントサイクルの間の変動熱荷
重によるき裂進展量のトータル値を、求めたい時点で、
即座に知る事が出来ると共に、絶えず監視し続ける事が
出来る。
However, according to the present invention, the stress generated by the fluctuating load is determined for the momentary fluctuation of the temperature, and the J-integral value of the fracture mechanics parameter for the assumed crack due to the generated stress is simply evaluated. By comparing this value with crack growth data previously obtained by a material test, the amount of crack growth can be determined. (2) Therefore, when the total value of the crack growth amount due to the fluctuating thermal load during a long plant cycle is to be obtained,
Not only can you know immediately, but you can also constantly monitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る配管のき裂進
展予測装置の演算処理の説明図。
FIG. 1 is an explanatory diagram of a calculation process of a pipe crack growth prediction device according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態を説明するための原
子炉配管ラインの説明図。
FIG. 2 is an explanatory diagram of a reactor piping line for explaining the first embodiment of the present invention.

【図3】配管内面の軸方向き裂および周方向き裂の説明
図。
FIG. 3 is an explanatory view of an axial crack and a circumferential crack on an inner surface of a pipe.

【図4】本発明の熱荷重時のJ積分値の簡易評価法の中
で用いる帯板片側き裂の説明図。
FIG. 4 is an explanatory view of a band plate one-sided crack used in the simplified evaluation method of the J-integral value under a thermal load according to the present invention.

【図5】本発明の演算処理に用いるJ積分値の簡易評価
法の説明図。
FIG. 5 is an explanatory diagram of a simple evaluation method of a J-integral value used in the arithmetic processing of the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉容器、 2…1次冷却材管、 3…蒸気発生器、 4…加圧器、 5…1次冷却材ポンプ、 6…制御棒、 7…炉心、 9…温度検出器、 10…演算処理装置、 11…配管板厚、 12…想定き裂或いは検出き裂、 13…帯板、 14…軸方向き裂、 15…周方向き裂、 16…き裂深さ、 17…き裂巾、 18…配管内半径、 19…高温高圧水、 20…表示装置、 30…温度検出器の設置場所 100…発生応力を算出する手段 (図1
(c))、 200…J積分値を算出する簡易手段 (図1
(d))、 400…き裂伝播曲線と比較する手段 (図1(g)
(h)、 500…き裂進展量を算出する手段 (図1(i)
(j))、 a…き裂深さ、 a0 …初期段階のき裂深さ、 an …疲労によるき裂進展量、 at …応力腐蝕によるき裂進展量、 J…J積分値、 T…板厚、 T0 …板厚Tから初期き裂a0 を差し引いた量、 dat /dt…単位時間におけるき裂進展量、 dan /dn…単位回数におけるき裂進展量。
DESCRIPTION OF SYMBOLS 1 ... Reactor vessel, 2 ... Primary coolant pipe, 3 ... Steam generator, 4 ... Pressurizer, 5 ... Primary coolant pump, 6 ... Control rod, 7 ... Core, 9 ... Temperature detector, 10 ... Arithmetic processing unit, 11: pipe thickness, 12: assumed crack or detected crack, 13: strip, 14: axial crack, 15: circumferential crack, 16: crack depth, 17: crack Width, 18: Radius in pipe, 19: High-temperature and high-pressure water, 20: Display device, 30: Location of temperature detector 100: Means for calculating generated stress (FIG. 1)
(C)), 200... Simple means for calculating J integrated value (FIG. 1)
(D)), 400 means for comparing with the crack propagation curve (FIG. 1 (g)
(H), 500: means for calculating the amount of crack propagation (FIG. 1 (i)
(J)), a ... can裂深is, a 0 ... initial stage of can裂深is, crack propagation amount came due to a n ... fatigue, a t ... crack propagation amount came due to the stress corrosion, J ... J integral value, T ... thickness, T 0 ... the amount obtained by subtracting the initial crack a 0 from a thickness T, crack propagation amount came in da t / dt ... unit time, crack propagation amount came in the number of times da n / dn ... unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内表面に熱荷重をうける配管において、
(A)監視したい場所(30)に設置した温度検出器
(9)と、(B)前記温度検出器(9)からの信号を入
力し、前記場所(30)における配管のき裂進展量を算
出する演算処理装置(10)と、(C)前記演算処理装
置(10)からの信号を入力し、前記温度検出器(9)
を設置した場所(30)における配管のき裂進展量を表
示する表示装置(20)を有し、(D)前記演算処理装
置(10)は、 発生応力を算出する手段(100)と、 J積分値を算出する簡易手段(200)と、 き裂伝播曲線と比較する手段(400)と、 き裂進展量を算出する手段(500)とから成り、
(E)前記発生応力を算出する手段(100)は、温度
検出器(9)からの信号を入力し、温度検出器(9)に
より検出される時間的変化および前記設置場所(30)
における配管の材質、寸法、形状から求まる前記設置場
所(30)における発生應力を算出し、(F)前記J積
分値を算出する簡易手段(200)は、前記発生応力を
算出する手段(100)からの信号を入力し、前記設置
場所(30)における配管の発生応力の算出値から弾塑
性破壊力学パラメータであるJ積分値を算出し、(H)
前記き裂伝播曲線と比較する手段(400)は、前記J
積分値を算出する簡易手段(200)からの信号を入力
し、前記設置場所(30)における配管のき裂の進展評
価値を予め材料試験により取得したき裂伝播曲線に基づ
くデータとの比較値を算出し、(I)前記き裂進展量を
算出する手段(500)は、前記き裂伝播手段と比較す
る手段(400)からの信号を入力し、該比較する手段
(400)で算出した比較値に基づき、前記設置場所
(30)における配管のき裂進展量を算出し、(J)前
記表示装置(20)は、前記き裂進展量を算出する手段
(500)からの信号を入力し、温度検出器(9)を設
置した場所(30)における配管のき裂進展量を表示す
ることを特徴とする配管のき裂進展量予測装置。
1. A pipe subjected to a thermal load on an inner surface thereof,
(A) A signal from the temperature detector (9) installed at the place (30) to be monitored and (B) a signal from the temperature detector (9) are input, and the crack propagation amount of the pipe at the place (30) is measured. An arithmetic processing unit (10) for calculating, and (C) a signal from the arithmetic processing unit (10) is input, and the temperature detector (9)
A display device (20) for displaying the amount of crack propagation in the pipe at the place (30) where the device is installed, and (D) the arithmetic processing device (10) comprises: means (100) for calculating the generated stress; A simple means for calculating an integral value (200), a means for comparing with a crack propagation curve (400), and a means for calculating a crack propagation amount (500),
(E) The means (100) for calculating the generated stress receives a signal from the temperature detector (9), and changes over time detected by the temperature detector (9) and the installation location (30).
Calculating the generated stress at the installation location (30) obtained from the material, dimensions, and shape of the pipe in (F), and (F) calculating the J-integral value by the simple means (200). (H) is calculated from the calculated value of the stress generated in the pipe at the installation location (30) by calculating a J-integral value that is an elastic-plastic fracture mechanics parameter.
The means (400) for comparing with the crack propagation curve comprises:
A signal from a simple means (200) for calculating an integral value is input, and a comparison value of a crack propagation evaluation value of the pipe at the installation location (30) with data based on a crack propagation curve obtained in advance by a material test. (I) The means (500) for calculating the amount of crack propagation receives the signal from the means (400) for comparison with the crack propagation means, and calculates the signal by the means (400) for comparison. Based on the comparison value, the amount of crack propagation in the pipe at the installation location (30) is calculated, and (J) the display device (20) receives a signal from the means (500) for calculating the amount of crack propagation. A crack growth predicting device for piping, wherein a crack growth amount of the pipe at the place (30) where the temperature detector (9) is installed is displayed.
JP19070896A 1996-07-19 1996-07-19 Pipeline crack progress quantity predicting device Withdrawn JPH1038829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19070896A JPH1038829A (en) 1996-07-19 1996-07-19 Pipeline crack progress quantity predicting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19070896A JPH1038829A (en) 1996-07-19 1996-07-19 Pipeline crack progress quantity predicting device

Publications (1)

Publication Number Publication Date
JPH1038829A true JPH1038829A (en) 1998-02-13

Family

ID=16262521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19070896A Withdrawn JPH1038829A (en) 1996-07-19 1996-07-19 Pipeline crack progress quantity predicting device

Country Status (1)

Country Link
JP (1) JPH1038829A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046342A1 (en) * 2004-10-29 2006-05-04 Hitachi, Ltd. Management system and program of long object
JP2010156668A (en) * 2008-05-09 2010-07-15 Nippon Steel Corp Fatigue life estimation device of welded structure, fatigue life estimation method of welded structure, and computer program
CN109979622A (en) * 2017-12-27 2019-07-05 核动力运行研究所 Nuclear power plant's voltage-stablizer fatigue life monitors assessment system and method on-line
CN112270757A (en) * 2020-09-21 2021-01-26 上海发电设备成套设计研究院有限责任公司 Pipeline three-dimensional state monitoring method and device based on space curve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046342A1 (en) * 2004-10-29 2006-05-04 Hitachi, Ltd. Management system and program of long object
US7729875B2 (en) 2004-10-29 2010-06-01 Hitachi, Ltd. Long infrastructure management system and program
JP2010156668A (en) * 2008-05-09 2010-07-15 Nippon Steel Corp Fatigue life estimation device of welded structure, fatigue life estimation method of welded structure, and computer program
CN109979622A (en) * 2017-12-27 2019-07-05 核动力运行研究所 Nuclear power plant's voltage-stablizer fatigue life monitors assessment system and method on-line
CN109979622B (en) * 2017-12-27 2021-02-09 核动力运行研究所 Nuclear power plant voltage stabilizer fatigue life online monitoring and evaluating system and method
CN112270757A (en) * 2020-09-21 2021-01-26 上海发电设备成套设计研究院有限责任公司 Pipeline three-dimensional state monitoring method and device based on space curve

Similar Documents

Publication Publication Date Title
Zhang et al. Fatigue reliability analysis using nondestructive inspection
US7546224B2 (en) Method for assessing the integrity of a structure
US8316712B2 (en) Quantitative acoustic emission non-destructive inspection for revealing, typifying and assessing fracture hazards
KR900003909A (en) Method of evaluating the closed perfection level for the closed system of the reactor and its system
JPH06347379A (en) Plant monitoring and diagnosing system and non-destructive inspecting and diagnosing system
Zhang et al. Reliability-based reassessment of corrosion fatigue life
Guan et al. Probabilistic modeling and sizing of embedded flaws in ultrasonic non-destructive inspections for fatigue damage prognostics and structural integrity assessment
JP4406638B2 (en) Method and apparatus for monitoring the behavior of a line containing fluid under pressure
Rodriguez III et al. Part II: development of a general failure control system for estimating the reliability of deteriorating structures
JP2005024371A (en) Hydrogen embrittlement cracking determination method for material used under high-temperature high-pressure hydrogen environment
JPH1114782A (en) Method and device for evaluating deterioration of piping
Khaleel et al. Effects of alternative inspection strategies on piping reliability
JPH1038829A (en) Pipeline crack progress quantity predicting device
JPH1123776A (en) Composite diagnostic system of reactor internal equipment
JPH09145578A (en) Apparatus for determining development of crack in pipe
JP2004028818A (en) Method for monitoring corrosive environment and its apparatus
RU2315971C1 (en) Damage degree of object detecting method
RU2262634C1 (en) Method of detecting pipeline sections disposed to corrosion cracking under stressing
Kerezsi et al. Using the ASME and BSI codes to predict crack growth due to repeated thermal shock
RU2141654C1 (en) Method of acoustic emission tests of articles
Fleming et al. Application of Markovian technique to modeling influences of inspection on pipe rupture frequencies
Schmitz et al. Planning and use of condition-dependent NDT for the interaction between fracture mechanics and quantitative NDT
KR20120093622A (en) A unification apparatus and method for thickness measurement and thickness reduction evaluation
Pickett et al. Prediction of the Low Cycle Fatigue Life of Pressure Vessels
JPH08285211A (en) Scale production amount monitoring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007