JPH0820833A - Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production - Google Patents

Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production

Info

Publication number
JPH0820833A
JPH0820833A JP15488694A JP15488694A JPH0820833A JP H0820833 A JPH0820833 A JP H0820833A JP 15488694 A JP15488694 A JP 15488694A JP 15488694 A JP15488694 A JP 15488694A JP H0820833 A JPH0820833 A JP H0820833A
Authority
JP
Japan
Prior art keywords
alloy
weight
toughness
hot rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15488694A
Other languages
Japanese (ja)
Inventor
Masahiro Yanagawa
政洋 柳川
Katsushi Matsumoto
克史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15488694A priority Critical patent/JPH0820833A/en
Publication of JPH0820833A publication Critical patent/JPH0820833A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To develop an Al alloy for liquid hydrogen storage, excellent in tough ness at cryogenic temp., by subjecting a continuously cast slab of an Al-Mg alloy containing specific small amounts of Fe and Si to hot rolling and to cold rolling and controlling the grain size and volume fraction of contained Fe- and Si-type insoluble compounds, respectively. CONSTITUTION:A molten Al-Mg alloy, containing, by weight, 3.5-5.5% Mg, <0.5% Fe, <0.5% Si, and one or more kinds among 0.1-0.3% Cr, 0.1-0.8% Mn, and 0.1-0.3% Zr, is cast and then cooled and solidified at R ( deg.C/sec) cooling rate. At this time, Fe and Si are forcedly allowed to enter into solid solution by regulating R to >=5 when the total content of Fe and Si in the Al alloy is <=0.4% and also regulating R to a value defined by R<=7.5 ([Fe]+[Si])+2.5 when the total content of Fe and Si is >=0.4%, and the maximum length and volume fraction of insoluble compound grains containing Fe and Si are controlled to <=1.0mum and <=1.0%, respectively. The resulting ingot is hot-rolled and cold-rolled, by which the Al alloy material excellent in toughness at low temp. and used for a vessel material for storing liquid hydrogen of <=-253 deg.C can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、靭性に優れた液体水素
貯蔵用Al−Mg系合金及びその製造方法に関し、詳細
には−253℃以下の極低温で液化する液体水素の貯蔵
容器として好適な靭性に優れたAl−Mg系合金及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Mg alloy for liquid hydrogen storage having excellent toughness and a method for producing the same, and in particular, it is suitable as a storage container for liquid hydrogen which is liquefied at an extremely low temperature of -253 ° C or lower. To an Al-Mg based alloy excellent in toughness and a method for producing the same.

【0002】[0002]

【従来の技術】低温用アルミニウム合金としてはJIS
規格5083合金が開発されており、LNGタンク用合
金として用いられている。但し上記5083合金であっ
ても、液体水素温度、即ち−253℃以下という極低温
域の靭性が極めて低いという問題を有している。これは
Al精練時に残存するFeやSiなどの不純物を含有す
る不溶性化合物に起因するものであって、上記不溶性化
合物は、均質化処理や溶体化処理における処理温度を高
くしても合金中に固溶せず粒状に晶出して物性に悪影響
を与える。
2. Description of the Related Art JIS is a low temperature aluminum alloy
A standard 5083 alloy has been developed and used as an alloy for LNG tanks. However, even the above 5083 alloy has a problem that the toughness is extremely low in the liquid hydrogen temperature, that is, in the extremely low temperature range of −253 ° C. or lower. This is due to an insoluble compound containing impurities such as Fe and Si remaining during Al refining, and the insoluble compound is solidified in the alloy even if the treatment temperature in the homogenization treatment or the solution treatment is increased. It does not melt and crystallizes in a granular form, which adversely affects the physical properties.

【0003】この様なAl−Mg系合金の低温靭性を改
善する手段としては、前記不溶性化合物の原因となるF
eやSiなどの不純物元素の含有量を極力制限する方法
が考えられる。しかしながら不可避不純物であるFe及
びSiの含有量を極力制限することは、即ち極めて純度
の高いAl地金を必要とするものであり、コスト高とな
って実用性に乏しい。
As a means for improving the low temperature toughness of such an Al--Mg type alloy, F, which causes the insoluble compound, is used.
A possible method is to limit the content of impurity elements such as e and Si. However, limiting the contents of Fe and Si, which are inevitable impurities, as much as possible requires Al ingot with extremely high purity, resulting in high cost and poor practicability.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、不可避不純物であるFe
やSiの含有量は従来と同程度であっても、製造方法を
改善することにより靭性に優れた液体水素貯蔵用Al−
Mg系合金及びその製造方法を提供しようとするもので
ある。
The present invention has been made in view of the above circumstances, and is an unavoidable impurity Fe.
Although the content of Al and Si is about the same as the conventional one, by improving the manufacturing method, Al- for liquid hydrogen storage excellent in toughness
It is intended to provide an Mg-based alloy and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るAl−Mg系合金とは、 Mg:3.5〜5.5重量% Fe:0.5重量%以下(0重量%を含まない) Si:0.5重量%以下(0重量%を含まない) の要件を満たし、かつCr,Mn及びZrよりなる群か
ら選択された1種以上を夫々 Cr:0.1〜0.3重量% Mn:0.1〜0.8重量% Zr:0.1〜0.3重量% の範囲内で含有し、残部がAlと不可避不純物からなる
Al合金において、連続鋳造後、熱間圧延を行うかまた
は熱間圧延及び冷間圧延を行うと共に熱処理を施して、
Fe及びSiを含む不溶性化合物粒の最大長さを1.0
μm以下、かつ体積分率を1.0%以下に制御してなる
ことを要旨とするものである。
The Al-Mg alloy according to the present invention, which has been able to solve the above-mentioned problems, includes: Mg: 3.5 to 5.5% by weight Fe: 0.5% by weight or less (0 Si: 0.5% by weight or less (not including 0% by weight) and at least one selected from the group consisting of Cr, Mn and Zr, respectively: Cr: 0.1 ~ 0.3 wt% Mn: 0.1 to 0.8 wt% Zr: 0.1 to 0.3 wt% Al alloy with the balance of Al and inevitable impurities, after continuous casting , Hot rolling or hot rolling and cold rolling and heat treatment,
The maximum length of insoluble compound particles containing Fe and Si is 1.0
The gist is that the volume fraction is controlled to be not more than μm and the volume fraction is not more than 1.0%.

【0006】そして上記Al−Mg系合金を製造する為
の好適手段の一つとして、本発明は凝固時の冷却速度R
が R≧5……(1) R≧7.5([Fe]+[Si])+2.5……(2) 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(重量%) を満足する条件で連続鋳造した後、該鋳片を熱間圧延温
度以上に保持された状態で直ちに、あるいは熱間圧延温
度に調整してから熱間圧延する方法を提供するものであ
る。尚上記条件式(1),(2)で示される推奨範囲は
図1に示される如く、[Fe]+[Si]の値が0.4
重量%以下のときは(1)式によって、また[Fe]+
[Si]の値が0.4重量%超のときは(2)式によっ
て規定されることを意味する。
As one of the preferred means for producing the above Al-Mg alloy, the present invention is a cooling rate R during solidification.
Is R ≧ 5 (1) R ≧ 7.5 ([Fe] + [Si]) + 2.5 (2) where R: cooling rate during solidification (° C./sec) [Fe], [ [Si]: after continuous casting under conditions satisfying the Fe (Si) content (% by weight) in the Al alloy, immediately after the cast slab is kept at the hot rolling temperature or higher, or at the hot rolling temperature. A method of hot rolling after adjusting is provided. The recommended range represented by the conditional expressions (1) and (2) is such that the value of [Fe] + [Si] is 0.4 as shown in FIG.
When the amount is less than or equal to wt%, the value is calculated according to the formula (1), and
When the value of [Si] is more than 0.4% by weight, it means that it is defined by the equation (2).

【0007】[0007]

【作用】本発明者らは液体水素貯蔵用合金の開発を目的
として、強度的には問題のないAl−Mg系合金の低温
域における靭性を向上させるという課題について鋭意研
究を重ねた結果、たとえFe及びSiをある程度含有し
たAl−Mg系合金であっても、連続鋳造によりFe及
びSiを合金中に強制固溶させ、Fe及びSiを含む不
溶性化合物粒の最大長さを1.0μm以下で、しかもそ
の体積分率を1.0%以下に制御したものでは、強度を
損なうことなく極低温域における靭性も向上させること
ができるとの知見を得た。さらに上記不溶性化合物粒の
最大長さ及び体積分率を制御するには、連続鋳造過程に
おける凝固時の冷却速度を一定条件内に制御してFe及
びSiを合金中に強制固溶することが最良の方法である
ことをつきとめ、本発明を完成させた。
With the aim of developing an alloy for liquid hydrogen storage, the inventors of the present invention have conducted extensive studies on the problem of improving the toughness of Al-Mg alloys, which have no problem in strength, at low temperatures. Even with an Al-Mg-based alloy containing Fe and Si to some extent, Fe and Si are forcibly solid-solved in the alloy by continuous casting, and the maximum length of insoluble compound particles containing Fe and Si is 1.0 μm or less. Moreover, it has been found that when the volume fraction is controlled to 1.0% or less, the toughness in the cryogenic range can be improved without impairing the strength. Furthermore, in order to control the maximum length and volume fraction of the insoluble compound particles, it is best to control the cooling rate during solidification in the continuous casting process within a certain condition to force Fe and Si to form a solid solution in the alloy. The present invention has been completed by identifying the above method.

【0008】まず本発明に係る成分組成の限定理由を以
下に述べる。 Mg:3.5〜5.5重量% Mgは、Al合金の強度向上に大きく寄与する元素であ
る。Mg量が3.5重量%未満では充分な強度が得られ
ず、一方Mg量が5.5重量%を超えると、靭性を低下
させて連続鋳造ができなくなる。従ってMg量は3.5
〜5.5重量%であることが必要である。尚Mgの下限
としては、より好ましくは3.8重量%以上、更に好ま
しくは4.0重量%以上、一方上限は好ましくは5.0
重量%以下、更に好ましくは4.5重量%以下である。
First, the reasons for limiting the component composition according to the present invention will be described below. Mg: 3.5 to 5.5 wt% Mg is an element that greatly contributes to the strength improvement of the Al alloy. If the amount of Mg is less than 3.5% by weight, sufficient strength cannot be obtained. On the other hand, if the amount of Mg exceeds 5.5% by weight, the toughness is lowered and continuous casting cannot be performed. Therefore, the amount of Mg is 3.5
It is necessary to be ˜5.5 wt%. The lower limit of Mg is more preferably 3.8% by weight or more, further preferably 4.0% by weight or more, while the upper limit is preferably 5.0.
It is less than or equal to wt%, more preferably less than or equal to 4.5 wt%.

【0009】Cr:0.1〜0.3重量% Mn:0.1〜0.8重量% Zr:0.1〜0.3重量% 本発明のAl合金においては、上記3種の金属元素のう
ち1種以上を上記の範囲内で含有させることにより、A
l合金の結晶粒を微細化し靭性を向上させることができ
る。しかも上記3種の金属元素はAlと結合して0.1
〜0.5μm程度の微細な析出物を形成することにより
強度の向上にも寄与する。但し含有量が少な過ぎると靭
性及び強度に対する向上効果が充分でなく、含有量が多
過ぎると粗大な晶出物を形成し、靭性を低下させてしま
う。従ってCr量は0.1〜0.3重量%,Mn量は
0.1〜0.8重量%,Zr量は0.1〜0.3重量%
の範囲内とすることが必要である。
Cr: 0.1 to 0.3% by weight Mn: 0.1 to 0.8% by weight Zr: 0.1 to 0.3% by weight In the Al alloy of the present invention, the above-mentioned three metal elements are used. By incorporating at least one of the above within the above range, A
It is possible to refine the crystal grains of the 1-alloy and improve the toughness. Moreover, the above three kinds of metal elements are combined with Al to form 0.1
The formation of fine precipitates of about 0.5 μm also contributes to the improvement of strength. However, if the content is too small, the effect of improving toughness and strength is not sufficient, and if the content is too large, coarse crystallized substances are formed and the toughness is reduced. Therefore, the amount of Cr is 0.1 to 0.3% by weight, the amount of Mn is 0.1 to 0.8% by weight, and the amount of Zr is 0.1 to 0.3% by weight.
It is necessary to be within the range.

【0010】尚Crの下限としては、より好ましくは
0.15重量%以上、更に好ましくは0.2重量%以
上、一方上限は好ましくは0.25重量%以下、更に好
ましくは0.23重量%以下である。Mnの下限として
は、より好ましくは0.15重量%以上、更に好ましく
は0.2重量%以上、一方上限は好ましくは0.6重量
%以下、更に好ましくは0.5重量%以下である。Zr
の下限としては、より好ましくは0.15重量%以上、
更に好ましくは0.2重量%以上、一方上限は好ましく
は0.25重量%以下、更に好ましくは0.23重量%
以下である。
The lower limit of Cr is more preferably 0.15% by weight or more, further preferably 0.2% by weight or more, while the upper limit is preferably 0.25% by weight or less, more preferably 0.23% by weight. It is the following. The lower limit of Mn is more preferably 0.15% by weight or more, further preferably 0.2% by weight or more, while the upper limit is preferably 0.6% by weight or less, more preferably 0.5% by weight or less. Zr
As a lower limit of, more preferably 0.15 wt% or more,
More preferably 0.2 wt% or more, while the upper limit is preferably 0.25 wt% or less, more preferably 0.23 wt%
It is the following.

【0011】 Fe:0.5重量%以下(0重量%を含まない) Si:0.5重量%以下(0重量%を含まない) Fe及びSiはAl精練時に残存する不可避不純物であ
り、不溶性化合物を形成することから、一般的に言って
Al合金にとって望ましくない元素であり、通常は極力
制限される。本発明ではFe量及びSi量ともに0.5
重量%まで許容できるものの、0.5重量%を超えると
不溶性化合物が成長しやすくなり、粗大かつ多量に形成
されて、靭性が著しく低下する。
Fe: 0.5% by weight or less (not including 0% by weight) Si: 0.5% by weight or less (not including 0% by weight) Fe and Si are inevitable impurities remaining during Al refining and are insoluble. Since it forms a compound, it is generally an undesirable element for Al alloys and is usually limited as much as possible. In the present invention, both the amount of Fe and the amount of Si are 0.5
Although up to 0.5% by weight can be tolerated, if it exceeds 0.5% by weight, the insoluble compound is likely to grow, coarse and large amounts are formed, and the toughness is significantly reduced.

【0012】本発明に係るAl−Mg系合金において
は、Fe及びSiを含む不溶性化合物粒の最大長さ及び
その体積分率を制御することが高い靭性を得る上で非常
に重要である。上記不溶性化合物粒の最大長さが1.0
μm以下、かつその体積分率が1.0%以下である場合
には、極低温域において優れた靭性を発揮する。上記不
溶性化合物粒の最大長さは、高靭性を得る上で0.8μ
m以下が望ましく、0.6μm以下がより好ましい。一
方不溶性化合物の体積分率は0.8%以下が好ましく、
0.6%以下であればより望ましい。
In the Al-Mg alloy according to the present invention, it is very important to control the maximum length of insoluble compound grains containing Fe and Si and the volume fraction thereof in order to obtain high toughness. The maximum length of the insoluble compound particles is 1.0
When it is not more than μm and its volume fraction is not more than 1.0%, it exhibits excellent toughness in an extremely low temperature range. The maximum length of the insoluble compound particles is 0.8μ to obtain high toughness.
m or less is preferable, and 0.6 μm or less is more preferable. On the other hand, the volume fraction of the insoluble compound is preferably 0.8% or less,
It is more desirable if it is 0.6% or less.

【0013】上記不溶性化合物粒の最大長さとは、例え
ば球状や円盤状の結晶であれば最大直径を与える様な切
断面を形成した時の最大直径であり、また略立方体や略
直方体の結晶であれば最も長い対角線の長さを指し、不
特定な形状の結晶であれば最も離れた表面上の2点間の
長さを言う。尚上記不溶性化合物粒の最大長さを測定す
るにあたっては、電子顕微鏡を用い顕微鏡視野で算出す
ればよい。
The maximum length of the insoluble compound grains is, for example, the maximum diameter when a cut surface is formed so as to give the maximum diameter in the case of spherical or disc-shaped crystals, and is a substantially cubic or substantially rectangular parallelepiped crystal. If there is a crystal with an unspecified shape, it means the length of the longest diagonal, if any, and the length between two points on the most distant surface. When measuring the maximum length of the insoluble compound particles, it may be calculated from the microscope field using an electron microscope.

【0014】上記不溶性化合物粒の最大長さ及び体積分
率を制御するには、上記成分組成の要件を満足するAl
合金を用いると共に、凝固時の冷却速度Rが下記
(1),(2)式 R≧5……(1)で且つ R≧7.5([Fe]+[Si])+2.5……(2) 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(重量%) を満足する条件で連続鋳造を行なうことが重要である。
In order to control the maximum length and volume fraction of the insoluble compound particles, Al which satisfies the above-mentioned compositional requirements.
An alloy is used, and the cooling rate R during solidification is the following equations (1) and (2) R ≧ 5 (1) and R ≧ 7.5 ([Fe] + [Si]) + 2.5. (2) However, R: cooling rate during solidification (° C./sec) [Fe], [Si]: continuous casting may be performed under conditions satisfying Fe and Si contents (wt%) in the Al alloy. is important.

【0015】即ち本発明のAl合金では、連続鋳造法に
より凝固時に速やかに冷却してFeやSiなどの不可避
不純物元素を強制固溶させ、靭性に悪影響を及ぼす不溶
性化合物の成長を抑制してその大きさ及び量を制限しよ
うというものであり、上記条件を満足すればFe及びS
iを含有する不溶性化合物粒の最大長さ1.0μm以
下、体積分率を1.0%以下に制御できる。一方凝固時
の冷却速度が前記条件を満足しない場合には、FeやS
iという不純物元素を十分に強制固溶させることができ
ず、従ってFe及びSiを含む不溶性化合物粒の最大長
さ及びその体積分率を本発明範囲内に制御できない為、
十分な靭性が得られない。
That is, in the Al alloy of the present invention, it is cooled rapidly during solidification by the continuous casting method to forcibly dissolve inevitable impurity elements such as Fe and Si to suppress the growth of insoluble compounds which adversely affect toughness. The purpose is to limit the size and amount. If the above conditions are satisfied, Fe and S
The maximum length of insoluble compound particles containing i can be controlled to 1.0 μm or less and the volume fraction can be controlled to 1.0% or less. On the other hand, if the cooling rate during solidification does not satisfy the above conditions, Fe and S
Since the impurity element i cannot be sufficiently forced to form a solid solution, the maximum length of the insoluble compound particles containing Fe and Si and the volume fraction thereof cannot be controlled within the range of the present invention.
Sufficient toughness cannot be obtained.

【0016】前述の通り上記条件式(1),(2)で示
される推奨範囲は、[Fe]+[Si]の値が0.4重
量%以下のときは(1)式によって、また[Fe]+
[Si]の値が0.4重量%超のときは(2)式によっ
て規定されることを意味する。この様に本発明に係るA
l合金を製造するにあたりFeやSiなどの不可避不純
物元素の含有量が多い場合には、その含有量に応じて連
続鋳造過程における凝固時の冷却速度を増加させ、不溶
性化合物粒の最大長さ及び体積分率を制御することが望
ましい。
As described above, the recommended range represented by the conditional expressions (1) and (2) is based on the expression (1) when the value of [Fe] + [Si] is 0.4% by weight or less, and Fe] +
When the value of [Si] is more than 0.4% by weight, it means that it is defined by the equation (2). Thus, A according to the present invention
When the content of unavoidable impurity elements such as Fe and Si is large in the production of the 1-alloy, the cooling rate during solidification in the continuous casting process is increased according to the content, and the maximum length of the insoluble compound particles and It is desirable to control the volume fraction.

【0017】尚本発明のAl合金は、前記成分組成のA
l合金を用いて特定条件による冷却速度で連続鋳造を行
い、Fe及びSiを含有する不溶性化合物粒の最大長さ
及び体積分率を制御することにより優れた靭性を得られ
るものであり、その他の製造条件については特に制限さ
れるものではないが、以下の製造方法が例示できる。
The Al alloy of the present invention has the above composition A
It is possible to obtain excellent toughness by controlling the maximum length and volume fraction of the insoluble compound particles containing Fe and Si by continuously casting the alloy with a cooling rate under specific conditions. The production conditions are not particularly limited, but the following production methods can be exemplified.

【0018】まず本発明に係る合金組成を有するAl合
金を溶融体とし、この溶融体を連続鋳造する。連続鋳造
法としては、水冷式連続鋳造法、双ロール式連続鋳造
法、ベルト式連続鋳造法、ブロック式連続鋳造法などを
採用することができるが、連続鋳造から熱間圧延工程へ
の移行時期は、鋳片内部が固相線温度以下にまで低下し
て完全に凝固した後にタイミングを合わせるのが好まし
い。
First, an Al alloy having the alloy composition according to the present invention is used as a melt, and this melt is continuously cast. As the continuous casting method, a water-cooled continuous casting method, a twin roll type continuous casting method, a belt type continuous casting method, a block type continuous casting method, etc. can be adopted, but the transition time from the continuous casting to the hot rolling step It is preferable to adjust the timing after the inside of the slab has fallen below the solidus temperature and has completely solidified.

【0019】本発明は、連続鋳造して得られる移動帯板
の温度を熱間圧延温度以上に保持して直ちに熱間圧延
し、引き続いて、若しくは一旦巻き取ってから冷間圧延
工程へ送る所謂連鋳・直送圧延方法に有利に適用される
が、この他連続鋳造の後、一旦保持し、鋳片温度が実質
的に降下しないうちに熱間圧延へ送り、更に冷間圧延を
行なう方法にも適用することができる。
In the present invention, the temperature of the moving strip obtained by continuous casting is maintained at a hot rolling temperature or higher and hot rolling is immediately performed, and subsequently or once wound, it is sent to a cold rolling process. It is advantageously applied to continuous casting and direct-feed rolling, but in addition to this method, after continuous casting, it is temporarily held and sent to hot rolling before the slab temperature drops substantially, and further cold rolling is performed. Can also be applied.

【0020】尚熱間圧延を施す場合、開始温度は450
〜500℃の範囲が好ましく、300〜350℃の仕上
げ温度で終了することが望ましい。連続鋳造法では通常
4〜30mm程度の肉厚の移動帯板が連続的に製造さ
れ、これを熱間圧延し、更に必要に応じて冷間圧延を行
うことによって、0.1〜10mm程度の肉厚のAl合
金板に圧延される。圧下率としては50%以上が好まし
い。
When hot rolling is performed, the starting temperature is 450.
It is preferable to finish at a finishing temperature of 300 to 350 ° C. In the continuous casting method, a moving strip having a wall thickness of about 4 to 30 mm is usually continuously produced, and hot rolling is performed, and if necessary, cold rolling is performed to obtain a thickness of about 0.1 to 10 mm. It is rolled into a thick Al alloy plate. The rolling reduction is preferably 50% or more.

【0021】熱間圧延または熱間圧延及び冷間圧延を施
したAl合金板は、溶体化処理の後に水焼き入れし、さ
らに時効処理を施す。上記溶体化処理の条件としては処
理温度が500〜550℃、処理時間は0.1〜1時間
が望ましい。
The hot-rolled or hot-rolled and cold-rolled Al alloy sheet is subjected to solution heat treatment, water quenching, and then an aging treatment. As the conditions for the solution treatment, it is desirable that the treatment temperature is 500 to 550 ° C. and the treatment time is 0.1 to 1 hour.

【0022】[0022]

【実施例】表1に示す組成のAl合金を溶融体とし、連
続鋳造法により肉厚20mmの移動帯板を作製し、直ち
に熱間圧延を施し肉厚3mmの板材とした。尚連続鋳造
時の冷却速度は10℃/secであり、上記熱間圧延の
圧延開始温度は500℃、終了温度は330℃であっ
た。上記板材に500℃で1時間の溶体化処理を施して
水焼き入れを行なった。
EXAMPLE An Al alloy having the composition shown in Table 1 was used as a melt, a moving strip having a thickness of 20 mm was prepared by a continuous casting method, and immediately hot-rolled to obtain a plate having a thickness of 3 mm. The cooling rate during continuous casting was 10 ° C / sec, the rolling start temperature of the hot rolling was 500 ° C, and the finishing temperature was 330 ° C. The plate material was subjected to solution treatment at 500 ° C. for 1 hour and water-quenched.

【0023】この様にして得たAl合金板について、液
体水素温度で引張試験を行い、荷重−変位曲線と両座標
軸で囲まれた面積、即ち破断に要した仕事量を求め、試
験片のゲージ長さ部分の体積で除し単位体積当たりの仕
事量とし、この仕事量の大小で、靭性を評価した。尚不
溶性化合物の大きさと体積分率を走査型電子顕微鏡観察
と画像解析によって求め、鋳造時の凝固速度はデンドラ
イトアームスペースの測定により求めた。さらに強度は
引張強度を測定して評価を行なった。結果は表1に併記
する。
The Al alloy plate thus obtained was subjected to a tensile test at a liquid hydrogen temperature to determine the area surrounded by the load-displacement curve and both coordinate axes, that is, the work required for breaking, and the gauge of the test piece was measured. The work volume per unit volume was divided by the volume of the length portion, and the toughness was evaluated by the magnitude of this work volume. The size and volume fraction of the insoluble compound were determined by observation with a scanning electron microscope and image analysis, and the solidification rate during casting was determined by measuring the dendrite arm space. Further, the strength was evaluated by measuring the tensile strength. The results are also shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】No.1〜14は本発明に係るAl−Mg
系合金であって、いずれも本発明の条件を満足している
ので、十分な強度を有すると共に、極低温域における靭
性に優れている。
No. 1 to 14 are Al-Mg according to the present invention
Since they are all alloys that satisfy the conditions of the present invention, they have sufficient strength and excellent toughness in the cryogenic range.

【0026】これに対してNo.15〜24は、本発明
に係る条件のいずれかひとつ以上を満足していないの
で、強度または靭性が不充分である。No.15は合金
組成は本発明範囲内で鋳造時の冷却条件が本発明範囲を
満足しない場合の比較例であって、凝固時の冷却速度が
低いことから不溶性化合物の大きさも体積分率も本発明
範囲を満足しておらず、靭性に乏しい。No.16はM
g量が少な過ぎる場合の比較例であり、強度が不充分で
ある。No.17はMg量が多過ぎる場合の比較例であ
って、連続鋳造ができなかった。No.18はCr,M
n,Zrがいずれも少な過ぎる場合の比較例であり、強
度が不充分である。No.19はCr量が多過ぎ、N
o.20はMnが多過ぎ、No.21はZrが多過ぎる
場合の比較例であって、不溶性化合物の大きさ及び体積
分率が本発明範囲を満足しておらず、靭性が低い。N
o.22はFe量が多過ぎ、No.23はSi量が多過
ぎる場合の比較例であって、靭性に乏しい。No.24
はJIS5083合金を用いて従来の連続鋳造法で製造
したものであって、凝固時の冷却速度が低過ぎ、靭性に
劣る。
On the other hand, No. Since Nos. 15 to 24 do not satisfy any one or more of the conditions according to the present invention, the strength or toughness is insufficient. No. Reference numeral 15 is a comparative example in which the alloy composition is within the range of the present invention and the cooling conditions during casting do not satisfy the range of the present invention. Since the cooling rate during solidification is low, the size and volume fraction of the insoluble compound are also present in the present invention. Not satisfying the range and poor toughness. No. 16 is M
This is a comparative example when the amount of g is too small, and the strength is insufficient. No. No. 17 is a comparative example when the amount of Mg is too large, and continuous casting could not be performed. No. 18 is Cr, M
This is a comparative example when both n and Zr are too small, and the strength is insufficient. No. 19 has too much Cr, N
o. No. 20 had too much Mn, and No. No. 21 is a comparative example in the case where Zr is too much, and the size and volume fraction of the insoluble compound do not satisfy the range of the present invention, and the toughness is low. N
o. No. 22 has too much Fe, and No. No. 23 is a comparative example when the amount of Si is too large, and has poor toughness. No. 24
Is manufactured by a conventional continuous casting method using JIS5083 alloy, and the cooling rate during solidification is too low, resulting in poor toughness.

【0027】[0027]

【発明の効果】本発明は以上の様に構成されており、連
続鋳造法によりAl−Mg系合金中における不溶性化合
物粒の最大長さを1.0μm以下とし、しかもその体積
分率を1.0%以下に制御しているので、Al−Mg系
合金の有する高強度という特性に加えて、極低温域にお
ける靭性も向上させることができ、液体水素貯蔵用容器
として好適なAl−Mg系合金及びその製造方法が提供
できることとなった。
The present invention is constituted as described above, and the maximum length of the insoluble compound grains in the Al-Mg alloy is 1.0 μm or less by the continuous casting method, and the volume fraction thereof is 1. Since the content is controlled to be 0% or less, in addition to the high strength property of the Al-Mg alloy, the toughness in the cryogenic range can be improved, and the Al-Mg alloy suitable as a liquid hydrogen storage container is suitable. And a manufacturing method thereof can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法において用いられる連続鋳造
時の好ましい冷却速度条件を示すグラフである。
FIG. 1 is a graph showing a preferable cooling rate condition during continuous casting used in the manufacturing method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Mg:3.5〜5.5重量% Fe:0.5重量%以下(0重量%を含まない) Si:0.5重量%以下(0重量%を含まない) の要件を満たし、かつCr,Mn及びZrよりなる群か
ら選択された1種以上を夫々 Cr:0.1〜0.3重量% Mn:0.1〜0.8重量% Zr:0.1〜0.3重量% の範囲内で含有し、残部がAlと不可避不純物からなる
Al合金において、連続鋳造後、熱間圧延を行うかまた
は熱間圧延及び冷間圧延を行うと共に熱処理を施して、
Fe及びSiを含む不溶性化合物粒の最大長さを1.0
μm以下、かつ体積分率を1.0%以下に制御してなる
ことを特徴とする靭性に優れた液体水素貯蔵用Al−M
g系合金。
1. Requirements for Mg: 3.5 to 5.5% by weight Fe: 0.5% by weight or less (not including 0% by weight) Si: 0.5% by weight or less (not including 0% by weight) And at least one selected from the group consisting of Cr, Mn, and Zr, respectively: Cr: 0.1 to 0.3 wt% Mn: 0.1 to 0.8 wt% Zr: 0.1 to 0 In an Al alloy containing 3% by weight and the balance being Al and inevitable impurities, after continuous casting, hot rolling or hot rolling and cold rolling and heat treatment are performed,
The maximum length of insoluble compound particles containing Fe and Si is 1.0
Al-M for liquid hydrogen storage excellent in toughness characterized by controlling the volume fraction to be 1.0 μm or less and the volume fraction to be 1.0% or less
g-based alloy.
【請求項2】 請求項1記載のAl−Mg系合金を製造
するにあたり、凝固時の冷却速度Rが R≧5で且つ R≧7.5([Fe]+[Si])+2.5 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(重量%) を満足する条件で連続鋳造した後、該鋳片温度を熱間圧
延温度以上に保持して熱間圧延することを特徴とする靭
性に優れた液体水素貯蔵用Al−Mg系合金の製造方
法。
2. In producing the Al—Mg alloy according to claim 1, the cooling rate R during solidification is R ≧ 5 and R ≧ 7.5 ([Fe] + [Si]) + 2.5. , R: cooling rate during solidification (° C./sec) [Fe], [Si]: after continuous casting under conditions satisfying the Fe and Si contents (% by weight) in the Al alloy, A method for producing an Al-Mg-based alloy for liquid hydrogen storage excellent in toughness, which is characterized by holding at a hot rolling temperature or higher and performing hot rolling.
【請求項3】 連続鋳造された移動帯板を直ちに熱間圧
延工程へ送る請求項2記載の製造方法。
3. The method according to claim 2, wherein the continuously cast moving strip is immediately sent to the hot rolling step.
【請求項4】 連続鋳造された鋳片を、熱間圧延温度に
調整して熱間圧延工程へ送る請求項2に記載の製造方
法。
4. The manufacturing method according to claim 2, wherein the continuously cast slab is adjusted to a hot rolling temperature and sent to a hot rolling step.
JP15488694A 1994-07-06 1994-07-06 Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production Withdrawn JPH0820833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15488694A JPH0820833A (en) 1994-07-06 1994-07-06 Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15488694A JPH0820833A (en) 1994-07-06 1994-07-06 Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production

Publications (1)

Publication Number Publication Date
JPH0820833A true JPH0820833A (en) 1996-01-23

Family

ID=15594113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15488694A Withdrawn JPH0820833A (en) 1994-07-06 1994-07-06 Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production

Country Status (1)

Country Link
JP (1) JPH0820833A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975263A1 (en) * 2006-01-12 2008-10-01 Furukawa-Sky Aluminum Corporation Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
JP2014009398A (en) * 2012-07-03 2014-01-20 Uacj Corp Al-Mg BASED ALLOY FOR HIGH PRESSURE HYDROGEN GAS VESSEL
JP2014145112A (en) * 2013-01-29 2014-08-14 Uacj Corp Al-Mg ALLOY MATERIAL FOR HIGH PRESSURE HYDROGEN GAS CONTAINER
EP3040139A1 (en) * 2014-12-29 2016-07-06 Kone Corporation An aluminium alloy, mechanical parts made therefrom, and use thereof
JP2017082304A (en) * 2015-10-29 2017-05-18 株式会社神戸製鋼所 Aluminum alloy structural member having excellent impact resistance in cryogenic range
CN109518107A (en) * 2018-12-07 2019-03-26 中南大学 A kind of deep cooling rolling of high-performance titanium band and thermal treatment producing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975263A1 (en) * 2006-01-12 2008-10-01 Furukawa-Sky Aluminum Corporation Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
EP1975263A4 (en) * 2006-01-12 2012-03-07 Furukawa Sky Aluminum Corp Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
US8500926B2 (en) 2006-01-12 2013-08-06 Furukawa-Sky Aluminum Corp Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy
JP2014009398A (en) * 2012-07-03 2014-01-20 Uacj Corp Al-Mg BASED ALLOY FOR HIGH PRESSURE HYDROGEN GAS VESSEL
JP2014145112A (en) * 2013-01-29 2014-08-14 Uacj Corp Al-Mg ALLOY MATERIAL FOR HIGH PRESSURE HYDROGEN GAS CONTAINER
EP3040139A1 (en) * 2014-12-29 2016-07-06 Kone Corporation An aluminium alloy, mechanical parts made therefrom, and use thereof
JP2017082304A (en) * 2015-10-29 2017-05-18 株式会社神戸製鋼所 Aluminum alloy structural member having excellent impact resistance in cryogenic range
CN109518107A (en) * 2018-12-07 2019-03-26 中南大学 A kind of deep cooling rolling of high-performance titanium band and thermal treatment producing method

Similar Documents

Publication Publication Date Title
US3989548A (en) Aluminum alloy products and methods of preparation
US4126486A (en) Producing improved metal alloy products
JPH07252573A (en) Al-zn-mg-cu alloy excellent in toughness and its production
EP0693567B1 (en) High-strength, high-ductility cast aluminum alloy and process for producing the same
JPH11513439A (en) Method for reducing the formation of platelet-shaped primary beta phase in iron-containing AlSi alloys, especially Al-Si-Mn-Fe alloys
JPH06500602A (en) Improved lithium aluminum alloy system
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
US5021106A (en) Brazeable aluminum alloy sheet and process of making same
US5469912A (en) Process for producing aluminum alloy sheet product
US5618358A (en) Aluminum alloy composition and methods of manufacture
JPWO2005064025A1 (en) Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake hardness
JPH07252574A (en) Al-cu-mg alloy excellent in toughness and its production
US5256202A (en) Ti-A1 intermetallic compound sheet and method of producing same
US5318642A (en) High-strength rolled sheet of aluminum alloy and process for producing the same
JPH0820833A (en) Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production
US4874578A (en) Aluminium alloy for superplastic forming
WO2008078399A1 (en) Method of producing aluminum alloy sheet
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
WO2019219453A1 (en) Method of manufacturing an al-mg-mn alloy plate product
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
US4092179A (en) Method of producing high strength cold rolled steel sheet
US7267734B2 (en) Aluminum alloy sheet
JP3335616B2 (en) Powder for continuous casting for B-containing steel and method for producing B-containing steel
Radetic et al. Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment
Konovalov et al. Bulk amorphous plate production by a casting process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002