JP2017082304A - Aluminum alloy structural member having excellent impact resistance in cryogenic range - Google Patents

Aluminum alloy structural member having excellent impact resistance in cryogenic range Download PDF

Info

Publication number
JP2017082304A
JP2017082304A JP2015213393A JP2015213393A JP2017082304A JP 2017082304 A JP2017082304 A JP 2017082304A JP 2015213393 A JP2015213393 A JP 2015213393A JP 2015213393 A JP2015213393 A JP 2015213393A JP 2017082304 A JP2017082304 A JP 2017082304A
Authority
JP
Japan
Prior art keywords
impact resistance
mass
amount
cryogenic
structural member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015213393A
Other languages
Japanese (ja)
Inventor
中井 学
Manabu Nakai
学 中井
雅是 堀
Masasada Hori
雅是 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015213393A priority Critical patent/JP2017082304A/en
Publication of JP2017082304A publication Critical patent/JP2017082304A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy structural member having excellent impact resistance in a cryogenic range.SOLUTION: The present invention provides an aluminum alloy structural member having excellent impact resistance in a cryogenic range, the aluminum alloy structural member containing Mg: 0.3-5.5 mass%, Mn: 0.01-1.0 mass%, and Ti: 0.001-0.1 mass%, satisfying the relational expression [Mg]≤-7.7[Mn]+8.0 with the Mg content and Mn content defined as [Mg] and [Mn], with the balance being Al and inevitable impurities, and having a conductivity: 27%IACS or more.SELECTED DRAWING: None

Description

本発明は、極低温域での耐衝撃性に優れるアルミニウム合金構造部材に関する。   The present invention relates to an aluminum alloy structural member having excellent impact resistance in a cryogenic temperature range.

低温用アルミニウム(Al)合金としてはJIS規格5083合金が開発されており、液化天然ガス(Liquefied Natural Gas;LNG(液化温度:−162℃))タンク用合金として用いられている。但し、前記5083合金であっても、液体水素の温度(水素液化温度)、即ち−253℃以下という極低温域での耐衝撃性が極めて低いという問題を有している。この問題は、Al精練時に残存するFeやSiなどの不純物を含有する不溶性化合物が、均質化処理や溶体化処理における処理温度を高くしても合金中に固溶せず粒状に晶出して物性に悪影響を与えることに起因して生じる。なお、本明細書における極低温域とは、−253℃以下の温度域(つまり、−253℃から絶対零度である−273.15℃までの温度域)をいう。   As a low temperature aluminum (Al) alloy, JIS standard 5083 alloy has been developed and used as an alloy for liquefied natural gas (LNG) (liquefaction temperature: -162 ° C.) tanks. However, even the 5083 alloy has a problem that the impact resistance in the extremely low temperature region of liquid hydrogen temperature (hydrogen liquefaction temperature), that is, −253 ° C. or lower, is extremely low. This problem is that insoluble compounds containing impurities such as Fe and Si remaining during Al refining do not form solid solutions in the alloy even when the treatment temperature in the homogenization treatment or solution treatment is increased, and crystallize into particles. Caused by adversely affecting Note that the cryogenic temperature range in this specification refers to a temperature range of −253 ° C. or lower (that is, a temperature range from −253 ° C. to −273.15 ° C., which is absolute zero).

このようなAl−Mg系合金の極低温域での耐衝撃性を向上させる手段としては、不溶性化合物の原因となるFeやSiなどの不純物元素の含有量を極力制限することが考えられる。しかしながら、不可避不純物であるFe及びSiの含有量を極力制限することは、即ち極めて純度の高いAl地金を必要とするものであり、コスト高となって実用性に乏しい。このような状況下、Al−Mg系合金の極低温域での耐衝撃性を向上させる発明が、例えば、特許文献1に提案されている。   As a means for improving the impact resistance of such an Al—Mg-based alloy in a cryogenic temperature region, it is conceivable to limit the content of impurity elements such as Fe and Si that cause insoluble compounds as much as possible. However, limiting the contents of Fe and Si, which are inevitable impurities, as much as possible, that is, requiring Al metal with extremely high purity, is costly and lacks practicality. Under such circumstances, for example, Patent Document 1 proposes an invention for improving the impact resistance of an Al—Mg-based alloy in a cryogenic temperature region.

特許文献1には、Mg:3.5〜5.5質量%、Fe:0.5質量%以下、Si:0.5質量%以下の要件を満たし、かつCr、Mn及びZrよりなる群から選択された1種以上を夫々規定の範囲内で含有し、残部がAlと不可避不純物からなるAl−Mg系合金が記載されている。このAl−Mg系合金は、連続鋳造後、熱間圧延又は熱間圧延及び冷間圧延を行うと共に熱処理を施して、Fe及びSiを含む不溶性化合物粒の最大長さを1.0μm以下、かつ体積分率を1.0%以下に制御している。   In Patent Document 1, Mg: 3.5 to 5.5% by mass, Fe: 0.5% by mass or less, Si: 0.5% by mass or less are satisfied, and Cr, Mn, and Zr are included. There is described an Al—Mg-based alloy containing at least one selected type within a specified range, with the balance being Al and inevitable impurities. This Al-Mg alloy is subjected to hot rolling or hot rolling and cold rolling and heat treatment after continuous casting, and the maximum length of insoluble compound grains containing Fe and Si is 1.0 μm or less, and Volume fraction is controlled to 1.0% or less.

特開平8−20833号公報JP-A-8-20833

特許文献1に記載の発明は、晶出物の量を低減することで極低温域での耐衝撃性を向上させている。しかしながら、今後、液体水素の運搬量及び貯蔵量などの増加が見込まれており、極低温域での耐衝撃性をさらに向上させたアルミニウム合金構造部材の開発が望まれている。   The invention described in Patent Document 1 improves impact resistance in a cryogenic temperature region by reducing the amount of crystallized material. However, in the future, the amount of liquid hydrogen transported and stored is expected to increase, and the development of an aluminum alloy structural member that further improves impact resistance in the cryogenic temperature region is desired.

本発明は前記状況に鑑みてなされたものであり、極低温域での耐衝撃性に優れたアルミニウム合金構造部材を提供することを課題とする。   This invention is made | formed in view of the said condition, and makes it a subject to provide the aluminum alloy structural member excellent in the impact resistance in a cryogenic region.

本発明に係る極低温域での耐衝撃性に優れるアルミニウム合金構造部材は、Mg:0.3〜5.5質量%、Mn:0.01〜1.0質量%、Ti:0.001〜0.1質量%、含有しているMg量及びMn量をそれぞれ[Mg]及び[Mn]とした場合に、[Mg]≦−7.7[Mn]+8.0の関係式を満たし、残部がAl及び不可避的不純物からなり、導電率:27%IACS以上であることとしている。
このように、本発明によれば、化学成分及び導電率を特定の条件としているので、極低温域での耐衝撃性に優れたアルミニウム合金構造部材を提供することができる。
The aluminum alloy structural member excellent in impact resistance in the cryogenic temperature range according to the present invention is Mg: 0.3 to 5.5% by mass, Mn: 0.01 to 1.0% by mass, Ti: 0.001 to 0.1% by mass, and when Mg content and Mn content are [Mg] and [Mn] respectively, satisfy the relational expression [Mg] ≦ −7.7 [Mn] +8.0, and the balance Is made of Al and inevitable impurities, and has an electrical conductivity of 27% IACS or higher.
As described above, according to the present invention, since the chemical component and the electrical conductivity are set as specific conditions, an aluminum alloy structural member excellent in impact resistance in a cryogenic temperature region can be provided.

本発明に係る極低温域での耐衝撃性に優れるアルミニウム合金構造部材は、前記極低温用構造部材が圧延材、鍛造材又は押出材であることが好ましい。
このように、本発明に係る極低温域での耐衝撃性に優れるアルミニウム合金構造部材は、極低温域での耐衝撃性に優れているので、極低温用構造部材という用途、特に、圧延材、鍛造材又は押出材に好適に用いることができる。
In the aluminum alloy structural member excellent in impact resistance in the cryogenic temperature region according to the present invention, the cryogenic structural member is preferably a rolled material, a forged material or an extruded material.
As described above, the aluminum alloy structural member having excellent impact resistance in the cryogenic temperature range according to the present invention is excellent in impact resistance in the cryogenic temperature range. It can be suitably used for a forging material or an extruded material.

本発明によれば、極低温域での耐衝撃性に優れたアルミニウム合金構造部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy structural member excellent in the impact resistance in a cryogenic region can be provided.

シャルピー衝撃試験に用いた試験片を説明する説明図である。It is explanatory drawing explaining the test piece used for the Charpy impact test. 導電率と約−173℃における衝撃吸収エネルギーとの関係を示すグラフである。同図中、横軸が導電率(%IACS)であり、縦軸が約−173℃における衝撃吸収エネルギー(J)である。It is a graph which shows the relationship between electrical conductivity and the impact absorption energy in about -173 degreeC. In the figure, the horizontal axis represents conductivity (% IACS), and the vertical axis represents impact absorption energy (J) at about −173 ° C. 約−173℃における衝撃吸収エネルギーが55J以上になる実施例と、そうでない比較例について、Mg量とMn量の関係を示すグラフである。同図中、横軸がMn量(質量%)であり、縦軸がMg量(質量%)である。It is a graph which shows the relationship between the amount of Mg and the amount of Mn about the Example whose impact absorption energy in about -173 degreeC becomes 55 J or more, and the comparative example which is not so. In the figure, the horizontal axis represents the amount of Mn (mass%), and the vertical axis represents the amount of Mg (mass%).

以下、本発明に係る極低温域での耐衝撃性に優れるアルミニウム合金構造部材の一実施形態について詳細に説明する。なお、以下の説明においては、「アルミニウム合金」を「Al合金」と記載することがあり、「極低温域での耐衝撃性に優れるアルミニウム合金構造部材」を「Al合金材」と記載することもある。   Hereinafter, an embodiment of an aluminum alloy structural member excellent in impact resistance in a cryogenic temperature range according to the present invention will be described in detail. In the following description, “aluminum alloy” may be described as “Al alloy”, and “aluminum alloy structural member excellent in impact resistance in a cryogenic temperature region” is described as “Al alloy material”. There is also.

本発明に係るAl合金材は、Mg:0.3〜5.5質量%、Mn:0.01〜1.0質量%、Ti:0.001〜0.1質量%、含有しているMg量及びMn量をそれぞれ[Mg]及び[Mn]とした場合に、[Mg]≦−7.7[Mn]+8.0の関係式を満たし、残部がAl及び不可避的不純物からなる。
また、本発明に係るAl合金材は、導電率を27%IACS(International Annealed Copper Standard)以上としている。
以下、本発明に係るAl合金材におけるこれらの構成要素について詳細に説明する。
The Al alloy material according to the present invention contains Mg: 0.3 to 5.5% by mass, Mn: 0.01 to 1.0% by mass, Ti: 0.001 to 0.1% by mass, and Mg contained When the amount and the amount of Mn are [Mg] and [Mn], respectively, the relational expression [Mg] ≦ −7.7 [Mn] +8.0 is satisfied, and the balance is made of Al and inevitable impurities.
Further, the Al alloy material according to the present invention has a conductivity of 27% IACS (International Annealed Copper Standard) or more.
Hereinafter, these components in the Al alloy material according to the present invention will be described in detail.

(Mg:0.3〜5.5質量%)
Mgは、Al合金材の強度向上に大きく寄与する元素である。Mg量が0.3質量%未満であると、十分な強度が得られない。ここで、十分な強度とは、室温における耐力値が65MPa以上であることをいう。つまり、Mg量が0.3質量%未満であると、室温における耐力を向上させる効果が十分に得られない。その一方で、Mg量が5.0質量%を超えると、極低温域での耐衝撃性が低下し、約−173℃(−173±2℃)において55J以上の衝撃吸収エネルギーを得ることができないだけでなく、加工性も低下する。従って、Mg量は0.3〜5.5質量%とする。なお、Mg量は、室温における耐力向上の観点から1質量%以上とするのが好ましく、2質量%以上とするのがより好ましい。また、Mg量は、極低温域での耐衝撃性の低下を防止する観点から5質量%以下とするのが好ましく、4.5質量%以下とするのがより好ましい。
(Mg: 0.3-5.5% by mass)
Mg is an element that greatly contributes to improving the strength of the Al alloy material. If the amount of Mg is less than 0.3% by mass, sufficient strength cannot be obtained. Here, sufficient strength means that the proof stress value at room temperature is 65 MPa or more. That is, if the amount of Mg is less than 0.3% by mass, the effect of improving the yield strength at room temperature cannot be obtained sufficiently. On the other hand, when the amount of Mg exceeds 5.0% by mass, impact resistance in a cryogenic temperature range is lowered, and an impact absorption energy of 55 J or more can be obtained at about −173 ° C. (−173 ± 2 ° C.). Not only can it be done, but workability will also be reduced. Therefore, the Mg amount is set to 0.3 to 5.5% by mass. The Mg content is preferably 1% by mass or more, more preferably 2% by mass or more from the viewpoint of improving the yield strength at room temperature. In addition, the Mg amount is preferably 5% by mass or less, more preferably 4.5% by mass or less, from the viewpoint of preventing a decrease in impact resistance in a cryogenic region.

(Mn:0.01〜1.0質量%)
Mnは、Al合金の結晶粒を微細化し、極低温域での耐衝撃性を向上させる元素である。また、Mnは、Alと結合して0.1〜0.5μm程度の微細な分散粒子を形成することにより結晶粒の微細化にも寄与する元素である。Mn量が0.01質量%未満であると、結晶粒の微細化は難しく、極低温域での耐衝撃性及び室温における耐力を向上させる効果が十分に得られない。その一方で、Mn量が1.0質量%を超えると、粗大な晶出物を形成し、加工性を低下させると共に、極低温域での耐衝撃性を低下させてしまう。従って、Mn量は、0.01〜1.0質量%とする。なお、Mn量は、極低温域での耐衝撃性及び室温における耐力を向上させる観点から0.05質量%以上とするのが好ましく、0.1質量%以上とするのがより好ましい。また、Mn量は、極低温域での耐衝撃性の低下を防止する観点から0.7質量%以下とするのが好ましく、0.6質量%以下とするのがより好ましい。
(Mn: 0.01 to 1.0% by mass)
Mn is an element that refines the crystal grain of the Al alloy and improves the impact resistance in the cryogenic temperature range. Mn is an element that contributes to the refinement of crystal grains by forming fine dispersed particles of about 0.1 to 0.5 μm by combining with Al. When the amount of Mn is less than 0.01% by mass, it is difficult to make crystal grains fine, and the effect of improving the impact resistance in a cryogenic temperature region and the yield strength at room temperature cannot be sufficiently obtained. On the other hand, when the amount of Mn exceeds 1.0 mass%, a coarse crystallized product is formed, workability is lowered, and impact resistance in a cryogenic region is lowered. Therefore, the amount of Mn is set to 0.01 to 1.0% by mass. The amount of Mn is preferably 0.05% by mass or more and more preferably 0.1% by mass or more from the viewpoint of improving impact resistance in a cryogenic temperature region and yield strength at room temperature. Further, the amount of Mn is preferably 0.7% by mass or less, and more preferably 0.6% by mass or less from the viewpoint of preventing a decrease in impact resistance in a cryogenic region.

(Ti:0.001〜0.1質量%)
Tiは、結晶粒を微細化させ、強度(室温での引張強度、耐力)や極低温域での耐衝撃性を向上させる元素である。Ti量が0.001質量%未満であると、鋳塊の結晶粒が粗大化し、強度や極低温域での耐衝撃性を向上させる効果が十分に得られない。また、熱間加工時に割れが発生し、その後の加工を続けることができない。その一方で、Ti量が0.1質量%を超えると、粗大な晶出物が形成されるようになるため、却って極低温域での耐衝撃性が低下したり、Al合金材の加工性等に悪影響を及ぼしたりするおそれがある。従って、Ti量は0.001〜0.1質量%とする。なお、Ti量は、強度や極低温域でのシャルピー衝撃特性を向上させる観点から0.002質量%以上とするのが好ましく、0.005質量%以上とするのがより好ましい。また、Ti量は、極低温域での耐衝撃性の低下を防止する観点やAl合金材の加工性を保つ観点から0.08質量%以下とするのが好ましく、0.05質量%以下とするのがより好ましい。
(Ti: 0.001 to 0.1% by mass)
Ti is an element that refines crystal grains and improves strength (tensile strength and yield strength at room temperature) and impact resistance in a cryogenic temperature range. When the amount of Ti is less than 0.001% by mass, the crystal grains of the ingot are coarsened, and the effect of improving the strength and impact resistance in a cryogenic region cannot be sufficiently obtained. Moreover, a crack generate | occur | produces at the time of hot processing, and subsequent processing cannot be continued. On the other hand, if the amount of Ti exceeds 0.1% by mass, a coarse crystallized product will be formed. On the other hand, the impact resistance in the cryogenic temperature range is lowered, and the workability of the Al alloy material is reduced. There is a risk of adversely affecting the above. Therefore, the Ti amount is set to 0.001 to 0.1% by mass. The Ti content is preferably 0.002% by mass or more, and more preferably 0.005% by mass or more from the viewpoint of improving strength and Charpy impact characteristics in a cryogenic region. Further, the amount of Ti is preferably 0.08% by mass or less from the viewpoint of preventing a decrease in impact resistance in a cryogenic region and the workability of the Al alloy material, and is 0.05% by mass or less. More preferably.

([Mg]≦−7.7[Mn]+8.0)
MgとMnをそれぞれ前記した範囲で含有していてもMg量とMn量が互いに多いと、本発明の奏する極低温域での耐衝撃性に優れるという効果を奏しない場合がある。本発明者らが研究した結果、MgとMnが下記関係式(1)を満たすことによって極低温域での耐衝撃性に優れるという効果を確実に奏することができることを見出した。なお、下記関係式において、[Mg]はAl合金が含有しているMg量であり、[Mn]はAl合金が含有しているMn量である。下記関係式の導出については後記する[実施例]にて説明する。

[Mg]≦−7.7[Mn]+8.0 ・・・(1)
([Mg] ≦ −7.7 [Mn] +8.0)
Even if Mg and Mn are contained in the respective ranges described above, if the amount of Mg and the amount of Mn are large, the effect of excellent impact resistance in the cryogenic temperature range exhibited by the present invention may not be achieved. As a result of researches by the present inventors, it has been found that the effect of excellent impact resistance in a cryogenic temperature region can be surely exhibited when Mg and Mn satisfy the following relational expression (1). In the following relational expression, [Mg] is the amount of Mg contained in the Al alloy, and [Mn] is the amount of Mn contained in the Al alloy. The derivation of the following relational expression will be described in [Example] described later.

[Mg] ≦ −7.7 [Mn] +8.0 (1)

Mg量とMn量の関係は、Al合金が含有するMg量及びMn量がそれぞれ前記した範囲にあり、かつ、Al合金が含有するMg量([Mg])が、−7.7[Mn]+8.0以下であれば、極低温域での耐衝撃性に優れるという効果を奏することができ、Al合金が含有しているMg量([Mg])が−7.7[Mn]+8.0よりも大きいと極低温域での耐衝撃性に優れるという効果を奏することができない。   The relationship between the amount of Mg and the amount of Mn is that the amount of Mg and the amount of Mn contained in the Al alloy are in the ranges described above, and the amount of Mg contained in the Al alloy ([Mg]) is −7.7 [Mn]. If it is +8.0 or less, the effect of excellent impact resistance in a cryogenic temperature region can be obtained, and the amount of Mg contained in the Al alloy ([Mg]) is −7.7 [Mn] +8. If it is greater than 0, the effect of excellent impact resistance in a cryogenic temperature region cannot be achieved.

(残部)
残部は、Al及び不可避的不純物である。不可避的不純物は、材料の溶解時に不可避的に混入する不純物であり、基本的に含有しない方が好ましいが、本発明の奏する極低温域での耐衝撃性に優れるという効果を阻害しない範囲で含有することは許容される。本発明における不可避的不純物としては、例えば、Fe、Cr、Si、Zr、Zn、Cuなどを挙げることができる。本発明の場合、Feは0.35質量%以下、Crは0.25質量%以下、Siは0.35質量%以下、Zrは0.15質量%以下であれば許容できる。Fe、Cr、Si、Zrがそれぞれ前記上限値を超えると、粗大な晶出物が形成され、成形性を低下させると共に、極低温域での耐衝撃性が低下する。なお、鋳塊の結晶粒の粗大化を抑制するには、Fe、Cr、Si、Zrをそれぞれ0.10質量%以下とするのが望ましい。また、本発明の場合、Znは0.1質量%以下であれば許容できる。Znが前記上限値を超えると、強度が高くなり過ぎるおそれがあり、これにより本発明に係るAl合金材の加工性等に悪影響を及ぼすおそれがある。また、Znが前記上限値を超えると、耐食性、溶接性が低くなり過ぎるおそれがある。さらに、本発明の場合、Cuは0.2質量%以下であれば許容できる。Cuが前記上限値を超えると、耐食性、溶接性が低下するおそれがある。なお、不可避的不純物としては前記したもの以外にもV、Hf、Scなどが含まれ得る。
(Remainder)
The balance is Al and inevitable impurities. Inevitable impurities are impurities that are inevitably mixed when the material is dissolved. Basically, it is preferable not to contain them, but it is contained within a range that does not impair the effect of excellent impact resistance in the cryogenic temperature region according to the present invention. It is permissible to do. Examples of the inevitable impurities in the present invention include Fe, Cr, Si, Zr, Zn, and Cu. In the present invention, it is acceptable if Fe is 0.35% by mass or less, Cr is 0.25% by mass or less, Si is 0.35% by mass or less, and Zr is 0.15% by mass or less. When Fe, Cr, Si, and Zr each exceed the above upper limit value, coarse crystallized substances are formed, which lowers the formability and lowers the impact resistance in the cryogenic temperature range. In addition, in order to suppress the coarsening of the crystal grain of an ingot, it is desirable to make Fe, Cr, Si, and Zr each 0.10 mass% or less. In the present invention, Zn is acceptable as long as it is 0.1% by mass or less. If Zn exceeds the upper limit, the strength may be too high, which may adversely affect the workability of the Al alloy material according to the present invention. Moreover, when Zn exceeds the said upper limit, there exists a possibility that corrosion resistance and weldability may become too low. Furthermore, in the present invention, Cu is acceptable if it is 0.2 mass% or less. When Cu exceeds the upper limit, corrosion resistance and weldability may be deteriorated. Inevitable impurities may include V, Hf, Sc, etc. in addition to the above.

(導電率:27%IACS以上)
母相中のAlの比率が高いほど極低温域での耐衝撃性が高くなる。そして、導電率は、例えば、Al−Mg合金においては、Mgの添加量及びMg系析出物(β相)の析出状態に応じて変化(増減)する。つまり、Mgの添加量が多いと、母相中のMgの固溶度が大きくなり、Al合金材の導電率が低くなる。
また、Mg系析出物の析出量が多いと、母相中のMgの固溶度が小さくなり、母相中のAlの比率が高くなるため、Al合金材の導電率が高くなる。つまり、Al合金材の導電率が高いほど極低温域での耐衝撃性が高くなる。
なお、Mg系析出物の析出量が少ないと、母相中のMgの固溶度が大きくなり、母相中のAlの比率が低くなるため、Al合金材の導電率が低くなる。この場合、Al合金材の極低温域での耐衝撃性が低くなる。
(Conductivity: 27% IACS or higher)
The higher the Al ratio in the matrix, the higher the impact resistance in the cryogenic range. For example, in an Al-Mg alloy, the electrical conductivity changes (increases / decreases) according to the amount of Mg added and the precipitation state of the Mg-based precipitate (β phase). That is, when the amount of Mg added is large, the solid solubility of Mg in the matrix phase increases and the conductivity of the Al alloy material decreases.
Moreover, when there is much precipitation amount of Mg type | system | group deposit, since the solid solubility of Mg in a mother phase will become small and the ratio of Al in a mother phase will become high, the electrical conductivity of Al alloy material will become high. That is, the higher the electrical conductivity of the Al alloy material, the higher the impact resistance in the cryogenic temperature region.
If the amount of Mg-based precipitates is small, the solid solubility of Mg in the matrix phase increases, and the Al ratio in the matrix phase decreases, so the conductivity of the Al alloy material decreases. In this case, the impact resistance of the Al alloy material in the cryogenic temperature region is lowered.

本発明においては、Al合金材の導電率を27%IACS以上とすることにより、極低温域での耐衝撃性を優れたものとすることができる。Al合金材の導電率が27%IACS未満であると極低温域での耐衝撃性を優れたものとすることができない。
なお、極低温域での耐衝撃性をより優れたものとする観点からAl合金材の導電率は28%IACS以上とするのが好ましく、30%IACS以上とするのがより好ましい。
In the present invention, by setting the electrical conductivity of the Al alloy material to 27% IACS or more, the impact resistance in the cryogenic temperature region can be made excellent. If the electrical conductivity of the Al alloy material is less than 27% IACS, the impact resistance in the cryogenic temperature region cannot be made excellent.
Note that, from the viewpoint of further improving the impact resistance in the cryogenic temperature region, the electrical conductivity of the Al alloy material is preferably 28% IACS or more, and more preferably 30% IACS or more.

Al合金材の導電率を27%IACS以上とする方法としては、例えば、熱間圧延後や鍛造後に焼鈍を行い、焼鈍後の冷却を通常よりもゆっくり行うことが挙げられる。例えば、焼鈍後、120℃までの冷却速度(平均冷却速度)を40℃/hr以下にすることが挙げられる。焼鈍後、120℃までの冷却速度が40℃/hr以下であれば、例えば、前記した関係式[Mg]≦−7.7[Mn]+8.0を満たすことが可能となる。なお、本発明においては、Mg系析出物の析出量を多くすることができればよく、これに限定されるものではない。   As a method for setting the electrical conductivity of the Al alloy material to 27% IACS or more, for example, annealing is performed after hot rolling or forging, and cooling after annealing is performed more slowly than usual. For example, after annealing, the cooling rate to 120 ° C. (average cooling rate) may be 40 ° C./hr or less. If the cooling rate to 120 ° C. is 40 ° C./hr or less after annealing, for example, the relational expression [Mg] ≦ −7.7 [Mn] +8.0 can be satisfied. In the present invention, it is only necessary to increase the amount of Mg-based precipitates, and the present invention is not limited to this.

前記したように、本発明に係るAl合金材は極低温域での耐衝撃性に優れているので、極低温用構造部材に用いるのが好ましい。極低温用構造部材としては、液体水素、液体窒素、LNG、液体ヘリウムなどの極低温の物質を収容するためのタンク、配管又は接合部材などを挙げることができる。なお、極低温域での耐衝撃性に優れる構造部材は、圧延材、鍛造材又は押出材を好適に用いることができる。   As described above, since the Al alloy material according to the present invention is excellent in impact resistance in a cryogenic temperature region, it is preferably used for a cryogenic structural member. Examples of the cryogenic structural member include a tank, a pipe, or a joining member for accommodating a cryogenic substance such as liquid hydrogen, liquid nitrogen, LNG, and liquid helium. In addition, a rolling material, a forging material, or an extrusion material can be used suitably for the structural member excellent in the impact resistance in a cryogenic region.

本発明に係るAl合金材は、一般的な設備で製造することができる。例えば、溶解炉で原料を溶解し、前記した化学成分のAl合金に調整した後、鋳造装置で鋳塊を鋳造する。その後、鋳塊の面削及び均質化熱処理を行い、必要に応じて加熱を行う。次いで、これらの処理を行った鋳塊を用いて熱間圧延、鍛造又は押出を行い、さらに焼鈍を行うことにより得ることができる。熱間圧延、鍛造又は押出は、繰り返して行うことができ、これらの工程を組み合わせて行ってもよい。また、これらの工程の間に焼鈍を行ってもよい。そして、本発明においては、焼鈍を行った後の冷却速度を前記したように40℃/hr以下とする。このようにして得られた製品が、例えば、前記した極低温域での耐衝撃性に優れる構造部材(圧延材、鍛造材又は押出材)である。   The Al alloy material according to the present invention can be manufactured with general equipment. For example, the raw material is melted in a melting furnace and adjusted to the above-described chemical composition Al alloy, and then the ingot is cast with a casting apparatus. Thereafter, the ingot is subjected to surface grinding and homogenization heat treatment, and heating is performed as necessary. Subsequently, it can obtain by performing hot rolling, forging, or extrusion using the ingot which performed these processes, and also performing annealing. Hot rolling, forging or extrusion can be repeated, and these steps may be combined. Moreover, you may anneal between these processes. In the present invention, the cooling rate after annealing is set to 40 ° C./hr or less as described above. The product thus obtained is, for example, a structural member (rolled material, forged material, or extruded material) that is excellent in impact resistance in the cryogenic region described above.

本発明に係るAl合金材の製造において、焼鈍後の冷却速度以外は一般的な条件で行うことができる。例えば、原料の溶解は、原料を溶解することができればよく、例えば、750〜800℃の溶湯温度とすることができる。均質化熱処理の温度は450〜550℃で行うことができる。また、熱間圧延の温度は300〜520℃で行うことができ、鍛造は300〜520℃で行うことができ、押出加工の温度は300〜520℃で行うことができる。なお、熱間圧延の加工度、鍛造の加工度及び押出加工の加工度は共に50%以上とすることができる。さらに、焼鈍の保持温度は300〜450℃とすることができる。   In the production of the Al alloy material according to the present invention, it can be performed under general conditions except for the cooling rate after annealing. For example, the raw material may be melted as long as the raw material can be melted, for example, a molten metal temperature of 750 to 800 ° C. The temperature of the homogenization heat treatment can be performed at 450 to 550 ° C. Moreover, the temperature of a hot rolling can be performed at 300-520 degreeC, the forging can be performed at 300-520 degreeC, and the temperature of an extrusion process can be performed at 300-520 degreeC. Note that the hot rolling, the forging, and the extrusion can all be 50% or more. Furthermore, the holding temperature of annealing can be 300-450 degreeC.

以上に説明した本発明に係るAl合金材は、化学成分及び導電率を特定の条件としているので、極低温域での耐衝撃性に優れている。
また、本発明に係るAl合金材は、極低温域での耐衝撃性に優れているので、極低温用構造部材(圧延材、鍛造材又は押出材)として好適である。極低温用構造部材としては、例えば、液体水素の運搬や貯蔵を行うためのタンク、配管又は接合部材などを挙げることができる。なお、本発明に係るAl合金材は、極低温域(−253℃以下)における耐衝撃性に優れているので、これよりも温度の高い液体窒素やLNGなどの運搬や貯蔵を行うためのタンク、配管又は接合部材などにも好適に用いることができる。
The Al alloy material according to the present invention described above is excellent in impact resistance in a cryogenic temperature range because the chemical composition and the electrical conductivity are set as specific conditions.
Moreover, since the Al alloy material according to the present invention is excellent in impact resistance in a cryogenic region, it is suitable as a structural member for cryogenic use (rolled material, forged material or extruded material). Examples of the cryogenic structural member include a tank, a pipe, or a joining member for transporting and storing liquid hydrogen. In addition, since the Al alloy material according to the present invention is excellent in impact resistance in a cryogenic temperature range (−253 ° C. or lower), a tank for carrying and storing liquid nitrogen, LNG, etc. having a higher temperature than this. It can also be suitably used for pipes or joining members.

次に、本発明を実施例に基づいて説明する。なお、本発明は、以下に示した実施例に限定されるものではない。   Next, this invention is demonstrated based on an Example. In addition, this invention is not limited to the Example shown below.

表1のNo.1〜30に係るAl合金を鋳造して鋳塊を製造した。その後、均質化熱処理を450〜540℃で行い、鍛造を360〜420℃、50〜75%の加工度で行い、焼鈍は保持温度345℃で行った。焼鈍後の冷却速度(平均冷却速度)は表1に記載の条件で行い、No.1〜29に係るAl合金の鍛造材を製造した。なお、No.30に係るAl合金は鍛造時に割れが発生したため、鍛造材を製造することができなかった。   No. in Table 1 Ingots were produced by casting Al alloys according to 1-30. Thereafter, homogenization heat treatment was performed at 450 to 540 ° C., forging was performed at a workability of 360 to 420 ° C. and 50 to 75%, and annealing was performed at a holding temperature of 345 ° C. The cooling rate after annealing (average cooling rate) was performed under the conditions shown in Table 1. Forged materials of Al alloys according to 1 to 29 were produced. In addition, No. Since the Al alloy according to 30 was cracked during forging, it was not possible to produce a forged material.

Al合金は時間の経過と共に金属特性が変化するので、今回の検討においては、製造したNo.1〜29に係る鍛造材について促進時効処理を行った。促進時効処理の条件は120℃で7日間保持とした。
促進時効処理を行ったNo.1〜29に係る鍛造材について、以下のようにして導電率の測定と約−173℃における耐衝撃性の評価とを行った。また、No.1〜29に係る鍛造材の室温における耐力を測定した。
Since the metal properties of the Al alloy change with time, in this study, the manufactured No. The forging materials according to 1 to 29 were subjected to accelerated aging treatment. The accelerated aging treatment was carried out at 120 ° C. for 7 days.
No. for which accelerated aging treatment was performed. For the forged materials according to 1 to 29, the conductivity was measured and the impact resistance at about -173 ° C was evaluated as follows. No. The yield strength at room temperature of the forgings according to 1 to 29 was measured.

(導電率の測定)
導電率は、渦電流式の計測器(フェルスター社製、商品名:シグマテスター)を用いて測定した。No.1〜29に係る鍛造材から所定の大きさの試料を切り出し、測定面を切削加工した。その後、エメリー紙で測定面を鏡面状態とし、計測器に付属のプローブを測定面に接触させ、導電率を測定した。試料温度は20℃で5箇所を測定し、それらの平均値をその試料の導電率とした。
(Measurement of conductivity)
The conductivity was measured using an eddy current type measuring instrument (manufactured by Forster Co., Ltd., trade name: Sigma Tester). No. A sample of a predetermined size was cut out from the forging material according to 1 to 29, and the measurement surface was cut. Then, the measurement surface was made into a mirror surface state with emery paper, the probe attached to the measuring instrument was brought into contact with the measurement surface, and the conductivity was measured. The sample temperature was measured at 5 points at 20 ° C., and the average value thereof was defined as the conductivity of the sample.

(約−173℃における耐衝撃性の評価)
シャルピー衝撃試験(JIS Z 2242:2005)に準じて約−173℃におけるシャルピー衝撃特性の評価(衝撃吸収エネルギーの測定)を行った。シャルピー衝撃試験においては、Vノッチ試験片(図1参照)を用いて行った。図1に示すように、Vノッチ試験片1は、Vノッチ2の方向が鍛流線の方向と平行となるように鍛造材から採取した。なお、押出材であれば押出の方向がVノッチの方向と平行となるようにし、圧延材であれば圧延の方向がVノッチの方向と平行となるように採取する。Vノッチ試験片1を液体窒素に10分間以上浸漬した後、当該試験片1を取り出し、試験片1を試験機の載せ台に載せてハンマーを振り下ろし、試験を行った。試験片1にハンマーが衝突する際の試験片1の温度は、液体窒素から試験片1を取り出してから5秒後で約−190℃であり、15秒後に衝突させた際の温度は約−173℃であった。
(Evaluation of impact resistance at about -173 ° C)
According to the Charpy impact test (JIS Z 2242: 2005), evaluation of Charpy impact characteristics at about -173 ° C. (measurement of impact absorption energy) was performed. In the Charpy impact test, a V-notch test piece (see FIG. 1) was used. As shown in FIG. 1, the V-notch test piece 1 was collected from the forging material so that the direction of the V-notch 2 was parallel to the direction of the forging line. In the case of an extruded material, the direction of extrusion is made parallel to the direction of the V notch, and in the case of a rolled material, the direction of rolling is taken so as to be parallel to the direction of the V notch. After immersing the V-notch test piece 1 in liquid nitrogen for 10 minutes or more, the test piece 1 was taken out, the test piece 1 was placed on a platform of a testing machine, and a hammer was shaken down to perform the test. The temperature of the test piece 1 when the hammer collides with the test piece 1 is about −190 ° C. 5 seconds after the test piece 1 is taken out from liquid nitrogen, and the temperature when the hammer is made to collide after 15 seconds is about − It was 173 ° C.

低Mg低Mn合金及びJIS規格5083合金などを用いた事前の検討により、Al合金の鍛造材の特性として、約−173℃での衝撃吸収エネルギーが55J以上あれば、極低温域である液体水素の温度(−253℃)でも十分な衝撃吸収エネルギー(例えば、10J以上)を確保することができると推察された。
そのため、前記したように、液体窒素(温度:−196℃)中に試験片を浸漬して十分に冷却した後、冷却した試験片を液体窒素から取り出し、試験片をシャルピー衝撃試験機に設置し、試験片の温度が約−173℃となったところでハンマーを振り下ろし、衝撃吸収エネルギーを測定した。
約−173℃における衝撃吸収エネルギー(試験片3個の平均値)が55J以上のものを合格とし、極低温域における耐衝撃性に優れていると評価した。他方、約−173℃における衝撃吸収エネルギー(試験片3個の平均値)が55J未満のものを不合格とし、極低温域における耐衝撃性に劣っていると評価した。
As a result of prior studies using a low Mg low Mn alloy and a JIS standard 5083 alloy, as a characteristic of a forging material of an Al alloy, if the impact absorption energy at about −173 ° C. is 55 J or more, liquid hydrogen in a very low temperature region It was speculated that sufficient shock absorption energy (for example, 10 J or more) can be secured even at a temperature of −253 ° C.
Therefore, as described above, after immersing the test piece in liquid nitrogen (temperature: -196 ° C) and cooling it sufficiently, the cooled test piece is taken out from the liquid nitrogen, and the test piece is placed in a Charpy impact tester. When the temperature of the test piece reached about −173 ° C., the hammer was shaken down and the impact absorption energy was measured.
The impact absorption energy at about −173 ° C. (average value of 3 test pieces) was 55 J or more, and it was evaluated that the impact resistance in the cryogenic temperature range was excellent. On the other hand, the impact absorption energy at about −173 ° C. (average value of three test pieces) was less than 55 J, and it was evaluated that the impact resistance in an extremely low temperature range was inferior.

(引張特性の測定)
JIS Z 2241:2011に従って4号試験片を作製し、室温で引張特性を測定した。試験片3個の耐力の平均値が65MPa以上を合格とし、65MPa未満を不合格とした。なお、前記4号試験片は、引張試験片の長手方向が鍛流線の方向と直角となるように採取した(圧延材であれば圧延方向に対して直角となるように採取し、また押出材であれば押出方向に対して直角となるように採取する)。
(Measurement of tensile properties)
A No. 4 test piece was prepared according to JIS Z 2241: 2011, and the tensile properties were measured at room temperature. An average value of the proof stress of three test pieces was 65 MPa or more, and less than 65 MPa was rejected. The No. 4 test piece was sampled so that the longitudinal direction of the tensile test piece was perpendicular to the direction of the forging line (in the case of a rolled material, sampled to be perpendicular to the rolling direction and extruded. If it is a material, it is collected so as to be perpendicular to the extrusion direction).

No.1〜29に係るAl合金の化学成分(質量%)、関係式[Mg]≦−7.7[Mn]+8.0を満たすか否か、焼鈍温度から120℃までの平均冷却速度(℃/hr)(表1では単に「冷却速度」と記載する)、導電率(%IACS)及び約−173℃における衝撃吸収エネルギー(J)を表1に示す。また、室温における耐力(MPa)も併せて表1に示す。なお、表1中の下線は本発明の要件を満たさないことを示し、「−」は鍛造時に割れが発生し、鍛造材を製造することができなかったため測定や評価を行うことができなかったことを示す。   No. The chemical composition (mass%) of the Al alloy according to 1 to 29, whether or not the relational expression [Mg] ≦ −7.7 [Mn] +8.0 is satisfied, the average cooling rate from the annealing temperature to 120 ° C. (° C. / hr) (simply referred to as “cooling rate” in Table 1), conductivity (% IACS) and impact absorption energy (J) at about −173 ° C. are shown in Table 1. Table 1 also shows the yield strength (MPa) at room temperature. In addition, the underline in Table 1 indicates that the requirement of the present invention is not satisfied, and “−” indicates that cracking occurred during forging, and the forging material could not be manufactured, so measurement and evaluation could not be performed. It shows that.

Figure 2017082304
Figure 2017082304

表1に示すように、No.1〜13に係る鍛造材は、本発明の要件を満たしていたので、約−173℃における衝撃吸収エネルギーが55J以上となり、極低温域での耐衝撃性に優れていた(いずれも実施例)。
これに対し、No.14〜27に係る鍛造材は、本発明の要件を満たしていなかったので、約−173℃における衝撃吸収エネルギーが55J未満となり、極低温域での耐衝撃性に劣っていた(いずれも比較例)。また、No.28に係る鍛造材はMg量が本発明の要件を満たしておらず、No.29に係る鍛造材はMn量が本発明の要件を満たしていなかったので、いずれも室温における耐力が低くなった(いずれも比較例)。
As shown in Table 1, no. Since the forging materials according to 1 to 13 satisfied the requirements of the present invention, the impact absorption energy at about −173 ° C. was 55 J or more, and the impact resistance in the cryogenic temperature range was excellent (all examples). .
In contrast, no. Since the forged materials according to 14 to 27 did not satisfy the requirements of the present invention, the impact absorption energy at about −173 ° C. was less than 55 J, and the impact resistance in the cryogenic temperature range was inferior (all are comparative examples) ). No. In the forging material according to No. 28, the amount of Mg does not satisfy the requirements of the present invention. Since the forging material according to No. 29 did not satisfy the requirements of the present invention for Mn, the yield strength at room temperature was low (all were comparative examples).

ここで、今回の検討結果から、導電率と約−173℃における衝撃吸収エネルギーとの間に相関がみられたので、そのグラフを図2に示す。
図2に示すように、導電率が高くなるほど約−173℃における衝撃吸収エネルギーが高くなることが確認された。
Here, from the result of this study, a correlation was found between the conductivity and the impact absorption energy at about −173 ° C., and the graph is shown in FIG.
As shown in FIG. 2, it was confirmed that the higher the conductivity, the higher the impact absorption energy at about −173 ° C.

また、Mgを0.3〜5.5質量%で含有し、Mnを0.01〜1.0質量%で含有していてもMg量とMn量が互いに多いと、約−173℃における衝撃吸収エネルギーが55J未満となる場合があった。すなわち、本発明の極低温域での耐衝撃性に優れるという効果を奏しない場合があることが分かった。そのグラフを図3に示す。図3は、Mg量とMn量との関係において、約−173℃における衝撃吸収エネルギーが55J以上になる実施例(図3中の「○」)と、そうでない比較例(図3中の「×」)とをプロットし、これらを峻別したものである。
図3に示すように、[Mg]≦−7.0[Mn]+8.0という関係式を満たすか否かで本発明の所期の効果を奏するか否かを区別することができることが確認された。なお、[Mg]はAl合金が含有しているMg量(質量%)であり、[Mn]はAl合金が含有しているMn量(質量%)である。
In addition, when Mg is contained in an amount of 0.3 to 5.5% by mass and Mn is contained in an amount of 0.01 to 1.0% by mass, if the amount of Mg and the amount of Mn are large, an impact at about −173 ° C. The absorbed energy may be less than 55J. That is, it has been found that the effect of excellent impact resistance in the cryogenic temperature range of the present invention may not be achieved. The graph is shown in FIG. FIG. 3 shows an example in which the impact absorption energy at about −173 ° C. is 55 J or more (“◯” in FIG. 3) and a comparative example (“ X ") is plotted, and these are distinguished.
As shown in FIG. 3, it is confirmed that whether or not the desired effect of the present invention is achieved can be distinguished by satisfying the relational expression [Mg] ≦ −7.0 [Mn] +8.0. It was done. [Mg] is the amount of Mg (mass%) contained in the Al alloy, and [Mn] is the amount of Mn (mass%) contained in the Al alloy.

以上、本発明に係る極低温域での耐衝撃性に優れるアルミニウム合金構造部材について、実施形態及び実施例により具体的に説明したが、本発明の主旨はこれらに限定されるものではない。   As mentioned above, although the aluminum alloy structural member excellent in impact resistance in the cryogenic temperature range according to the present invention has been specifically described by the embodiments and examples, the gist of the present invention is not limited to these.

Claims (2)

Mg:0.3〜5.5質量%、
Mn:0.01〜1.0質量%、
Ti:0.001〜0.1質量%、
含有しているMg量及びMn量をそれぞれ[Mg]及び[Mn]とした場合に、[Mg]≦−7.7[Mn]+8.0の関係式を満たし、
残部がAl及び不可避的不純物からなり、
導電率:27%IACS以上である
ことを特徴とする極低温域での耐衝撃性に優れるアルミニウム合金構造部材。
Mg: 0.3 to 5.5% by mass,
Mn: 0.01 to 1.0% by mass,
Ti: 0.001 to 0.1% by mass,
When the amount of Mg and the amount of Mn contained are [Mg] and [Mn], respectively, the relational expression [Mg] ≦ −7.7 [Mn] +8.0 is satisfied,
The balance consists of Al and inevitable impurities,
Electrical conductivity: 27% IACS or more An aluminum alloy structural member excellent in impact resistance in a cryogenic temperature region.
圧延材、鍛造材又は押出材であることを特徴とする請求項1に記載の極低温域での耐衝撃性に優れるアルミニウム合金構造部材。   The aluminum alloy structural member having excellent impact resistance in a cryogenic temperature range according to claim 1, which is a rolled material, a forged material or an extruded material.
JP2015213393A 2015-10-29 2015-10-29 Aluminum alloy structural member having excellent impact resistance in cryogenic range Pending JP2017082304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015213393A JP2017082304A (en) 2015-10-29 2015-10-29 Aluminum alloy structural member having excellent impact resistance in cryogenic range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213393A JP2017082304A (en) 2015-10-29 2015-10-29 Aluminum alloy structural member having excellent impact resistance in cryogenic range

Publications (1)

Publication Number Publication Date
JP2017082304A true JP2017082304A (en) 2017-05-18

Family

ID=58711831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213393A Pending JP2017082304A (en) 2015-10-29 2015-10-29 Aluminum alloy structural member having excellent impact resistance in cryogenic range

Country Status (1)

Country Link
JP (1) JP2017082304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022160456A1 (en) * 2021-01-27 2022-08-04 山东省科学院新材料研究所 High-strength, high-plasticity light alloy material, preparation method therefor, and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380311A (en) * 1976-12-27 1978-07-15 Showa Denko Kk Aluminium alloy for welded structure having excellent toughness at lowtemperature
JPH0820833A (en) * 1994-07-06 1996-01-23 Kobe Steel Ltd Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production
JP2000144297A (en) * 1998-11-06 2000-05-26 Furukawa Electric Co Ltd:The Aluminum alloy welded joint excellent in toughness at low temperature, and structural material using same
JP2001032031A (en) * 1999-07-22 2001-02-06 Kobe Steel Ltd Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP2006257505A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability
US20140000768A1 (en) * 2012-06-15 2014-01-02 Alcoa Inc. Aluminum alloys and methods for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380311A (en) * 1976-12-27 1978-07-15 Showa Denko Kk Aluminium alloy for welded structure having excellent toughness at lowtemperature
JPH0820833A (en) * 1994-07-06 1996-01-23 Kobe Steel Ltd Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production
JP2000144297A (en) * 1998-11-06 2000-05-26 Furukawa Electric Co Ltd:The Aluminum alloy welded joint excellent in toughness at low temperature, and structural material using same
JP2001032031A (en) * 1999-07-22 2001-02-06 Kobe Steel Ltd Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP2006257505A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability
US20140000768A1 (en) * 2012-06-15 2014-01-02 Alcoa Inc. Aluminum alloys and methods for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022160456A1 (en) * 2021-01-27 2022-08-04 山东省科学院新材料研究所 High-strength, high-plasticity light alloy material, preparation method therefor, and application thereof

Similar Documents

Publication Publication Date Title
JP7229181B2 (en) aluminum alloy
KR101781669B1 (en) Aluminum alloy wire for use in bolts, bolt, and manufacturing method of these
JP5863626B2 (en) Aluminum alloy forging and method for producing the same
JP6412103B2 (en) Structural aluminum alloy plate and manufacturing method thereof
US4200459A (en) Heat resistant low expansion alloy
CN101835915A (en) Alloy composite and preparation thereof
CN110423923B (en) Aluminum alloy suitable for 3D printing
US9243309B2 (en) Ti alloy and Ti alloy member having Zr and Hf, or Zr and Nb, or Zr, Hf, and Nb for hydrogen embrittlement resistance
CN113646458A (en) Nickel alloy with good corrosion resistance and high tensile strength and method for producing semi-finished product
EP3719165A1 (en) Process for manufacturing ni-based alloy, and ni-based alloy
US20180298474A1 (en) Al-zn-cu alloy and manufacturing method thereof
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
WO2014057738A1 (en) Plate-like conductor for bus bar, and bus bar comprising same
JP5308907B2 (en) Method for producing Al alloy forged product
JP2017082304A (en) Aluminum alloy structural member having excellent impact resistance in cryogenic range
JP2009197249A (en) Aluminum alloy for high-pressure hydrogen gas and aluminum alloy clad material for high-pressure hydrogen gas
JP5532462B2 (en) Manufacturing method of plastic products made of aluminum alloy
WO2021132634A1 (en) Alloy
US11441217B2 (en) Method for producing semi-finished products from a nickel-based alloy
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
Ammon et al. Pilot production and evaluation of tantalum alloy sheet
CN109680192A (en) A kind of Al-Mg-Mn-Er-Zr alloy hot and stabilizing annealing technique and material
JP7468931B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy rod, and methods for producing the same, and magnesium alloy member
CN112553548B (en) Method for improving obdurability of aluminum-magnesium alloy welding wire
JP2018135579A (en) Structural aluminium alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305