JPH0819740A - Catalyst for exhaust gas purification and manufacturing method therefor - Google Patents

Catalyst for exhaust gas purification and manufacturing method therefor

Info

Publication number
JPH0819740A
JPH0819740A JP6157502A JP15750294A JPH0819740A JP H0819740 A JPH0819740 A JP H0819740A JP 6157502 A JP6157502 A JP 6157502A JP 15750294 A JP15750294 A JP 15750294A JP H0819740 A JPH0819740 A JP H0819740A
Authority
JP
Japan
Prior art keywords
catalyst
weight
alumina
exhaust gas
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6157502A
Other languages
Japanese (ja)
Other versions
JP3669640B2 (en
Inventor
Yoshikazu Fujisawa
義和 藤澤
Kazuhide Terada
一秀 寺田
Takeshi Narushige
丈志 成重
Yoshiyuki Nakanishi
義幸 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP15750294A priority Critical patent/JP3669640B2/en
Priority to CA002150379A priority patent/CA2150379C/en
Priority to EP94927803A priority patent/EP0671211B1/en
Priority to DE69421796T priority patent/DE69421796T2/en
Priority to PCT/JP1994/001614 priority patent/WO1995009048A1/en
Publication of JPH0819740A publication Critical patent/JPH0819740A/en
Priority to US08/919,482 priority patent/US6008155A/en
Application granted granted Critical
Publication of JP3669640B2 publication Critical patent/JP3669640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalyst for high exhaust gas purification which has high NOX purifying efficiency even in oxygen excessive atmosphere. CONSTITUTION:A catalyst for exhaust gas purification consists of a catalytic element and aluminosilicate having solid acidity and molecule sieving function and the catalytic element is composed of alumina and a catalytic metal carried on the alumina. The alumina is reformed alumina whose conversion ratio R into a-type is set to be 0.1%<=R<=95%. In the case A and B are defined as the contained weight of the catalytic element and the contained weight of the aluminosilicate, respectively, the weight ratio A1={A/(A+B)}X100 is set to be a value to satisfy 11wt.%<=A1<=95wt.%. The catalytic metal is one of a metal selected from platinum-group. The weight ratio a1 of the catalytic metal in the catalytic element is set to be 0.1wt.%<a1<=5wt.%. A catalyst like this has relatively weak oxidizing function, so that CHO which is a partly oxidized product of HC and has high NOX reducing function can be produced in a wide temperature of an exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気ガス浄化用触媒、特
に、触媒素子と、固体酸性および分子篩性を有するアル
ミノシリケートとを備え、その触媒素子はアルミナとそ
のアルミナに担持された触媒用金属とよりなる排気ガス
浄化用触媒およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises an exhaust gas purifying catalyst, in particular, a catalytic element and an aluminosilicate having solid acidity and molecular sieving property, the catalytic element being alumina and a catalytic metal supported on the alumina. And an exhaust gas purifying catalyst comprising:

【0002】[0002]

【従来の技術】従来、前記触媒素子におけるアルミナと
しては、γ相および/またはη相を有する活性アルミナ
が用いられ、また触媒用金属としてはPtが用いられて
いる。この場合、アルミノシリケートは支持体としての
機能を持つと共にHC等に対する吸着能を有する(例え
ば、特公昭56−27295号公報参照)。
2. Description of the Related Art Conventionally, activated alumina having a γ phase and / or an η phase has been used as the alumina in the catalyst element, and Pt has been used as the catalyst metal. In this case, the aluminosilicate has a function as a support and an adsorption ability for HC and the like (see, for example, JP-B-56-27295).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、活性ア
ルミナにPtを担持させると、その活性アルミナが多孔
質であって大きな比表面積を持つことから、Ptが高分
散されるため、PtによるHC吸着能およびNOx吸着
能は向上するが、その反面、酸素過剰雰囲気(例えば、
空燃比A/F≒24)においては、触媒によってHC
(炭化水素)の完全酸化、つまりHC→CO2 +H2
の酸化反応が進行し、HCの部分酸化物であってNOx
還元能を有する活性CHOの生成量が不足すると共にP
t表面に吸着した酸素による還元阻害作用が生じ易いた
め、NOxの還元浄化を十分に行うことができず、また
NOxの浄化温度域が狭くなる、という問題がある。
However, when Pt is supported on activated alumina, since the activated alumina is porous and has a large specific surface area, Pt is highly dispersed, so that the HC adsorption capacity by Pt is high. Although the NOx adsorption capacity is improved, the oxygen excess atmosphere (for example,
When the air-fuel ratio A / F≈24), the catalyst causes HC
Complete oxidation of (hydrocarbon), that is, HC → CO 2 + H 2 O
Oxidation reaction of NOx progresses, and it is a partial oxide of HC and NOx
Insufficient production of active CHO with reducing ability
There is a problem that the reduction and purification of NOx cannot be sufficiently performed and the temperature range for purification of NOx becomes narrow because the reduction inhibitory effect of oxygen adsorbed on the t surface is likely to occur.

【0004】本発明は前記に鑑み、アルミナとして、活
性アルミナよりも比表面積を低下させたものを用いると
共に、これに特定量の触媒用金属を担持させることによ
って、HCの部分酸化を広い排気ガス温度範囲で現出さ
せ、また特定量のアルミノシリケートを併用して、これ
に活性CHOの吸脱作用を行わせ、これにより酸素過剰
雰囲気においてもNOx浄化率を向上させることのでき
る前記触媒およびその触媒の製造方法を提供することを
目的とする。
In view of the above, the present invention uses, as the alumina, one having a smaller specific surface area than that of the activated alumina, and by supporting a specific amount of the metal for the catalyst on the exhaust gas, the partial oxidation of HC can be widely performed. The catalyst and the catalyst which can be developed in a temperature range and can be used in combination with a specific amount of aluminosilicate to adsorb and desorb active CHO, thereby improving the NOx purification rate even in an oxygen excess atmosphere. It is an object to provide a method for producing a catalyst.

【0005】[0005]

【課題を解決するための手段】本発明は、触媒素子と、
固体酸性および分子篩性を有するアルミノシリケートと
を備え、前記触媒素子はアルミナとそのアルミナに担持
された触媒用金属とよりなる排気ガス浄化用触媒におい
て、前記アルミナはα化率Rを0.1%≦R≦95%に
設定された改質アルミナであり、また前記触媒素子の配
合重量をAとし、一方、前記アルミノシリケートの配合
重量をBとしたとき、前記触媒素子の重量比率A1
{A/(A+B)}×100は11重量%≦A1 <95
重量%に設定され、さらに前記触媒用金属は白金族から
選択される少なくとも一種の金属であり、前記触媒素子
における前記触媒用金属の重量比率a1 は0.1重量%
<a 1 ≦5重量%に設定されることを特徴とする。
The present invention comprises a catalytic element,
Aluminosilicate with solid acidity and molecular sieving property
And the catalyst element is supported on alumina and the alumina.
Exhaust gas purification catalyst consisting of the used catalyst metal
The alumina has an α conversion rate R of 0.1% ≦ R ≦ 95%.
The modified alumina is set, and the catalyst element
The total weight is A, while the aluminosilicate is mixed
When the weight is B, the weight ratio of the catalyst element is A1=
{A / (A + B)} × 100 is 11% by weight ≦ A1<95
%, And the catalyst metal is from the platinum group
At least one metal selected, said catalytic element
Weight ratio a of the metal for the catalyst in1Is 0.1% by weight
<A 1It is characterized in that ≦ 5% by weight is set.

【0006】本発明に係る排気ガス浄化用触媒の製造方
法は、活性アルミナに、加熱温度Tを800℃≦T≦1
100℃に設定した熱処理を施して、その活性アルミナ
よりα化率Rが0.1%≦R≦95%である改質アルミ
ナを得る工程と、その改質アルミナに、白金属から選択
される少なくとも一種の触媒用金属を担持させて触媒素
子を作製し、その際、前記触媒素子における前記触媒用
金属の重量比率a1 を0.1重量%<a1 ≦5重量%に
設定する工程と、前記触媒素子と、固体酸性および分子
篩性を有するアルミノシリケートとを混合し、その際、
前記触媒素子の配合重量をAとし、一方、前記アルミノ
シリケートの配合重量をBとしたとき、前記触媒素子の
重量比率A1 ={A/(A+B)}×100を11重量
%≦A1<95重量%に設定する工程と、を順次行うこ
とを特徴とする。
In the method for producing an exhaust gas purifying catalyst according to the present invention, activated alumina is heated at a heating temperature T of 800 ° C. ≦ T ≦ 1.
A step of performing a heat treatment set at 100 ° C. to obtain a modified alumina having an α conversion R of 0.1% ≦ R ≦ 95% from the activated alumina, and the modified alumina is selected from a white metal. A step of producing a catalytic element by supporting at least one catalytic metal, and setting the weight ratio a 1 of the catalytic metal in the catalytic element to 0.1% by weight <a 1 ≦ 5% by weight. Mixing the catalyst element and an aluminosilicate having solid acidity and molecular sieving property,
When the compounding weight of the catalyst element is A and the compounding weight of the aluminosilicate is B, the weight ratio A 1 = {A / (A + B)} × 100 of the catalyst element is 11% by weight ≦ A 1 < It is characterized in that the step of setting to 95% by weight is sequentially performed.

【0007】[0007]

【作用】α化率Rを前記のように設定すると、改質アル
ミナの比表面積は、それがα相を有することから、γ相
等を持つ活性アルミナのそれに比べて小さくなる。した
がって、この改質アルミナに特定量の触媒用金属を担持
させると、活性アルミナに比べてその金属の分散性が抑
制されるので、触媒はHCに対して比較的弱い酸化能を
発揮する。
When the α conversion rate R is set as described above, the specific surface area of the modified alumina is smaller than that of the activated alumina having the γ phase because it has the α phase. Therefore, when a specific amount of the catalyst metal is supported on the modified alumina, the dispersibility of the metal is suppressed as compared with the activated alumina, so that the catalyst exhibits a relatively weak oxidizing ability with respect to HC.

【0008】これにより、HCが部分酸化されてNOx
還元能を有する活性CHOが生成され、この活性CHO
の生成は、広い排気ガス温度範囲で行われると共にアル
ミノシリケートが活性CHOの一部を吸着して貯蔵し、
またその一部を離脱して供給するので、最初からフリー
状態の活性CHOおよび離脱によりフリー状態となった
活性CHOによりNOxが還元浄化され、またその浄化
温度域も拡張される。
As a result, HC is partially oxidized to NOx.
Active CHO having a reducing ability is generated, and this active CHO is produced.
Is generated in a wide exhaust gas temperature range, and aluminosilicate adsorbs and stores a part of active CHO,
Further, since a part of the NOx is separated and supplied, NOx is reduced and purified by the active CHO that is in the free state from the beginning and the activated CHO that is in the free state from the beginning, and the purification temperature range is expanded.

【0009】前記触媒のNOx浄化能は排気ガスの低温
側で高いので、その高温側で高いNOx浄化能を発揮す
る触媒、例えばアルミノシリケートにCeO2 を担持さ
せたものと組合わせると、NOxの浄化温度範囲を一層
拡張することができる。
Since the NOx purifying ability of the catalyst is high on the low temperature side of the exhaust gas, when it is combined with a catalyst which exhibits a high NOx purifying ability on the high temperature side thereof, for example, aluminosilicate supported with CeO 2 . The purification temperature range can be further expanded.

【0010】さらに、改質アルミナは安定相であるα相
を有するので、活性アルミナにおける相変化に伴う細孔
閉塞、それによる触媒用金属の埋没等を生じにくく、し
たがって優れた耐熱性を有し、触媒能の高温劣化度合が
小さい。
Further, since the modified alumina has an α phase which is a stable phase, it is unlikely to cause pore clogging due to a phase change in activated alumina and burying of a metal for a catalyst due to it, and therefore has excellent heat resistance. The degree of deterioration of catalytic activity at high temperature is small.

【0011】ただし、改質アルミナにおいて、α化率R
がR<0.1%ではその比表面積の縮小程度が小さいた
め所期の目的を達成することができず、一方、R>95
%では、α化率の過度の進行に伴い細孔が閉塞されてそ
の比表面積が大幅に縮小され、その結果触媒用金属の分
散性か極端に悪化してNOx吸着能が激減する。また触
媒素子の重量比率A1 がA1 <11重量%であると、触
媒素子による触媒能の減退によりNOx浄化率が低くな
り、一方、A1 が≧95重量%ではアルミノシリケート
による前記吸脱作用が減退するので、同様にNOx浄化
率が低くなる。
However, in the modified alumina, the alpha conversion ratio R
However, if R <0.1%, the degree of reduction of the specific surface area is small and the intended purpose cannot be achieved. On the other hand, R> 95.
%, The specific surface area is greatly reduced by clogging the pores with excessive progress of the α conversion rate, and as a result, the dispersibility of the metal for catalyst is extremely deteriorated and the NOx adsorption capacity is drastically reduced. Further, when the weight ratio A 1 of the catalyst element is A 1 <11 wt%, the NOx purification rate becomes low due to the decrease of the catalytic ability by the catalyst element, while when A 1 ≧ 95 wt%, the absorption and desorption by the aluminosilicate is performed. Since the action is reduced, the NOx purification rate is similarly reduced.

【0012】さらに、触媒用金属の重量比率a1 がa1
≦0.1重量%では触媒能の減退によりNOx浄化率が
低くなり、一方、a1 >5重量%に設定しても触媒用金
属の担持量増に見合うだけのNOx浄化効果が得られな
い。
Further, the weight ratio a 1 of the metal for the catalyst is a 1
When ≦ 0.1% by weight, the NOx purification rate becomes low due to the decrease of the catalytic ability, while even if a 1 > 5% by weight, the NOx purification effect commensurate with the increase in the carried amount of the metal for the catalyst cannot be obtained. .

【0013】前記製造方法によれば、前記のような特性
を有する触媒を容易に量産することができる。ただし、
熱処理における加熱温度TがT<800℃では、γ相お
よび/またはη相のα相への相変化をスムーズに進行さ
せることができず、一方、T>1100℃では、α化率
Rの上限値(R=95%)の制御が困難となる。
According to the above manufacturing method, the catalyst having the above characteristics can be easily mass-produced. However,
When the heating temperature T in the heat treatment is T <800 ° C., the phase change from the γ phase and / or the η phase to the α phase cannot be smoothly progressed, while when T> 1100 ° C., the upper limit of the α conversion rate R is increased. It becomes difficult to control the value (R = 95%).

【0014】[0014]

【実施例】排気ガス浄化用触媒は、触媒素子と、固体酸
性および分子篩性を有するアルミノシリケートとの混合
物であり、その触媒素子はアルミナと、そのアルミナに
担持された触媒用金属とよりなる。
EXAMPLE An exhaust gas purifying catalyst is a mixture of a catalytic element and an aluminosilicate having solid acidity and molecular sieving property, and the catalytic element comprises alumina and a catalytic metal supported on the alumina.

【0015】アルミナとしては、α相を有する改質アル
ミナが用いられ、また触媒用金属としては、白金属から
選択される少なくとも一種、この実施例ではPtが用い
られている。さらに、アルミノシリケートとしては、未
改質ゼオライト、この実施例では未改質ZSM−5ゼオ
ライトに脱Al処理を施して得られた改質ZSM−5ゼ
オライトが用いられている。
As the alumina, modified alumina having an α phase is used, and as the metal for the catalyst, at least one selected from white metals, Pt in this embodiment is used. Further, as the aluminosilicate, unmodified zeolite, in this example, modified ZSM-5 zeolite obtained by subjecting unmodified ZSM-5 zeolite to de-Al treatment is used.

【0016】改質アルミナのα化率Rは0.1%≦R≦
95%、好ましくは45%≦R≦90%に設定される。
そのα化率Rの測定は次のような方法で行われた。 (i) 市販のα−アルミナとγ−アルミナ(活性アル
ミナ)とを所定の重量比率で配合し、各配合物を乳鉢に
て30分間粉砕しつつ混合した。表1は、各配合物
(1)〜(5)の組成を示す。
The alpha conversion rate R of the modified alumina is 0.1% ≦ R ≦
It is set to 95%, preferably 45% ≦ R ≦ 90%.
The α-ratio R was measured by the following method. (I) Commercially available α-alumina and γ-alumina (activated alumina) were blended in a predetermined weight ratio, and the respective blends were mixed while being pulverized in a mortar for 30 minutes. Table 1 shows the composition of each formulation (1)-(5).

【0017】[0017]

【表1】 (ii) 各配合物(2)〜(5)について粉末X線回折を
行い、CuKα線における2θ=43.4±0.2°に
現出するα−アルミナの{113}面のX線反射強度を
測定した。 (iii) 配合物(5)のX線反射強度を100%とし
て、配合物(2)〜(4)のX線反射強度比率を求め、
α−アルミナの重量比率とX線反射強度比率との関係を
求めたところ、図1の結果を得た。
[Table 1] (ii) Powder X-ray diffraction was performed on each of the blends (2) to (5), and X-ray reflection on the {113} plane of α-alumina appeared at 2θ = 43.4 ± 0.2 ° in CuKα ray. The strength was measured. (iii) Assuming that the X-ray reflection intensity of the compound (5) is 100%, the X-ray reflection intensity ratios of the compounds (2) to (4) are calculated,
When the relationship between the weight ratio of α-alumina and the X-ray reflection intensity ratio was determined, the results shown in FIG. 1 were obtained.

【0018】図1から明らかなように、α−アルミナの
重量比率とX線反射強度比率とは正比例関係にあり、し
たがってα−アルミナの重量比率をα化率Rとし、改質
アルミナのα化率Rの決定に当っては、その改質アルミ
ナにおけるα−アルミナの{113}面のX線反射強度
を測定して、配合物(5)のX線反射強度からX線反射
強度比率を求め、そのX線反射強度比率に基づき図1よ
りα化率Rを求める。
As is apparent from FIG. 1, the weight ratio of α-alumina and the X-ray reflection intensity ratio are in direct proportion to each other. Therefore, the weight ratio of α-alumina is defined as the α conversion rate R, and the modified alumina is converted into α conversion. In determining the rate R, the X-ray reflection intensity of the {113} plane of α-alumina in the modified alumina was measured, and the X-ray reflection intensity ratio was calculated from the X-ray reflection intensity of the compound (5). The α conversion rate R is obtained from FIG. 1 based on the X-ray reflection intensity ratio.

【0019】α化率Rを前記のように設定すると、改質
アルミナの比表面積は、それがα相を有することから、
γ相等を持つ活性アルミナのそれに比べて小さくなる。
したがって、この改質アルミナにPtを担持させると、
活性アルミナに比べてPtの分散性が抑制されるので、
触媒はHCに対して比較的弱い酸化能を発揮する。
When the α-ratio R is set as described above, the specific surface area of the modified alumina is as follows because it has an α phase.
It becomes smaller than that of activated alumina having γ phase and the like.
Therefore, when Pt is supported on this modified alumina,
Since the dispersibility of Pt is suppressed as compared with activated alumina,
The catalyst exhibits a relatively weak oxidizing ability with respect to HC.

【0020】これにより、HCが部分酸化されてNOx
還元能を有する活性CHOが生成され、この活性CHO
の生成は広い排気ガス温度範囲で行われると共に改質Z
SM−5ゼオライトが活性CHOの一部を吸着して貯蔵
し、またその一部を離脱して供給するので、その活性C
HOによりNOxが還元浄化され、またその浄化温度域
も拡張される。
As a result, HC is partially oxidized to NOx.
Active CHO having a reducing ability is generated, and this active CHO is produced.
Is generated in a wide exhaust gas temperature range and reformed Z
The SM-5 zeolite adsorbs and stores a part of the active CHO, and also releases a part of the active CHO to supply the active CHO.
NOx is reduced and purified by HO, and its purification temperature range is expanded.

【0021】さらに、改質アルミナは、安定相であるα
相を有するので、活性アルミナにおける相変化に伴う細
孔閉塞、それによるPtの埋没等を生じにくく、したが
って優れた耐熱性を有し、触媒能の高温劣化度合が小さ
い。
Further, the modified alumina is a stable phase α
Since it has a phase, it does not easily cause pore closure and Pt burial due to phase change in the activated alumina, and thus has excellent heat resistance and a low degree of deterioration of catalytic activity at high temperature.

【0022】未改質ZSM−5ゼオライトに対する脱A
l処理としては、酸処理、スチーム処理または沸騰水処
理の少なくとも一つの処理が適用される。
De-A for unmodified ZSM-5 zeolite
As the l treatment, at least one treatment of acid treatment, steam treatment and boiling water treatment is applied.

【0023】酸処理としては、0.5〜5NのHCl溶
液を70〜90℃に昇温し、そのHCl溶液中に未改質
ZSM−5ゼオライトを投入して1〜20時間攪拌す
る、といった方法が採用される。
As the acid treatment, a 0.5 to 5N HCl solution is heated to 70 to 90 ° C., unmodified ZSM-5 zeolite is added to the HCl solution, and the mixture is stirred for 1 to 20 hours. The method is adopted.

【0024】また沸騰水処理としては、未改質ZSM−
5ゼオライトに含水処理を施し、その含水状態の未改質
ZSM−5ゼオライト周りの雰囲気温度を550〜60
0℃まで昇温し、その高温雰囲気下に未改質ZSM−5
ゼオライトを4時間程度保持する、といった方法が採用
される。
For boiling water treatment, unmodified ZSM-
5 zeolite is treated with water, and the ambient temperature around the unmodified ZSM-5 zeolite in the water containing state is set to 550 to 60.
The temperature was raised to 0 ° C., and unmodified ZSM-5 was added to the high temperature atmosphere.
A method of holding the zeolite for about 4 hours is adopted.

【0025】さらにスチーム処理としては、未改質ZS
M−5ゼオライトを、10%程度の水分を含む750〜
900℃の雰囲気下に10〜20時間保持する、といっ
た方法が採用される。
Further, as steam treatment, unmodified ZS
M-5 zeolite containing 750 to 10% water content
A method of holding in an atmosphere of 900 ° C. for 10 to 20 hours is adopted.

【0026】これら酸処理、沸騰水処理およびスチーム
処理は、単独または2以上組合わせて適用され、また必
要に応じて繰返される。これにより改質ZSM−5ゼオ
ライトが得られ、そのSiO2 /Al2 3 モル比は2
5〜800である。
These acid treatment, boiling water treatment and steam treatment are applied singly or in combination of two or more, and are repeated as necessary. Thus modified ZSM-5 zeolite is obtained, its SiO 2 / Al 2 O 3 molar ratio of 2
5 to 800.

【0027】このような改質ZSM−5ゼオライトは、
脱Al処理によってその疏水性が高められ、また未改質
ZSM−5ゼオライトが持つ基本骨格構造を備えている
上でAl離脱による比表面積の拡張が図られていること
から、その特性である吸着能が増進される。これにより
改質ZSM−5ゼオライトは、水分存在下においてもH
Cおよび活性CHOに対して良好な吸着能を発揮する。
Such modified ZSM-5 zeolite is
The hydrophobic property is enhanced by the de-Al treatment, and the specific surface area is expanded by the removal of Al in addition to the basic skeleton structure of the unmodified ZSM-5 zeolite. Noh is improved. As a result, the modified ZSM-5 zeolite is
Exhibits good adsorption capacity for C and active CHO.

【0028】さらに改質ZSM−5ゼオライトは脱Al
処理により結晶性の向上が図られ、また熱分解生成物の
核の発生が抑制されているので、その耐熱温度は100
0℃程度に高められている。
Furthermore, the modified ZSM-5 zeolite is free from Al.
Since the treatment improves the crystallinity and suppresses the generation of nuclei of thermal decomposition products, the heat resistance temperature is 100%.
It is raised to about 0 ℃.

【0029】前記触媒において、そのNOxの浄化率向
上を図るべく、触媒素子の配合重量をAとし、また改質
ZSM−5ゼオライトの配合重量をBとしたとき、触媒
素子の重量比率A1 ={A/(A+B)}×100は1
1重量%≦A1 <95重量%に設定される。
In the above catalyst, in order to improve the NOx purification rate, when the compounding weight of the catalytic element is A and the compounding weight of the modified ZSM-5 zeolite is B, the weight ratio of the catalytic element is A 1 = {A / (A + B)} × 100 is 1
It is set such that 1 % by weight ≦ A 1 <95% by weight.

【0030】前記同様にNOxの浄化率向上を図るべ
く、前記触媒において、Ptの配合重量をaとし、また
改質アルミナの配合重量をbとしたとき、Ptの重量比
率a1={a/(a+b)}×100は0.1重量%<
1 ≦5重量%に設定される。
In order to improve the NOx purification rate in the same manner as described above, when the Pt blending weight in the catalyst is a and the modified alumina blending weight is b, the Pt weight ratio a 1 = {a / (A + b)} × 100 is 0.1% by weight <
It is set to a 1 ≦ 5% by weight.

【0031】触媒の製造に当っては、基本的には、γ−
アルミナ等の活性アルミナに、加熱温度Tを800℃≦
T≦1100℃、好ましくは900℃≦T≦1050℃
に設定した熱処理を施して、その活性アルミナより、α
相を有し、且つα化率Rが0.1%≦R≦95%である
改質アルミナを得る工程と、その改質アルミナにPtを
担持させて触媒素子を得る工程と、その触媒素子と改質
ZSM−5ゼオライトとを混合する工程と、を順次行
う。
In producing the catalyst, basically, γ-
For activated alumina such as alumina, the heating temperature T is 800 ° C ≤
T ≦ 1100 ° C., preferably 900 ° C. ≦ T ≦ 1050 ° C.
The heat treatment set to
A step of obtaining a modified alumina having a phase and an α-ratio R of 0.1% ≦ R ≦ 95%, a step of supporting Pt on the modified alumina to obtain a catalytic element, and the catalytic element And the step of mixing the modified ZSM-5 zeolite with each other are sequentially performed.

【0032】この場合、改質アルミナにPtを担持させ
た後、前記同様の熱処理を行って、その活性アルミナよ
り改質アルミナを得るようにしてもよい。また触媒の形
態は前記混合物に限らず、触媒素子よりなる上層と改質
ZSM−5ゼオライトよりなる下層とを有する積層構造
にすることも可能である。
In this case, after Pt is loaded on the modified alumina, the same heat treatment as described above may be performed to obtain the modified alumina from the activated alumina. Further, the form of the catalyst is not limited to the above mixture, and it is also possible to have a laminated structure having an upper layer made of a catalytic element and a lower layer made of modified ZSM-5 zeolite.

【0033】改質アルミナまたは活性アルミナに対する
Ptの担持は、改質アルミナ等をヘキサクロロ白金酸
(H2 PtCl6 )溶液中に浸漬することによって行わ
れる。この場合、Ptの重量比率a1 が0.1重量%<
1 ≦5重量%となるように、ヘキサクロロ白金酸溶液
のPt濃度を調整する。白金化合物としては、Pt(N
3 2 (NO2 2 等のPtを含む各種化合物が適用
可能である。
The loading of Pt on the modified alumina or activated alumina is carried out by immersing the modified alumina or the like in a hexachloroplatinic acid (H 2 PtCl 6 ) solution. In this case, the Pt weight ratio a 1 is 0.1% by weight <
The Pt concentration of the hexachloroplatinic acid solution is adjusted so that a 1 ≦ 5% by weight. As a platinum compound, Pt (N
Various compounds containing Pt such as H 3 ) 2 (NO 2 ) 2 are applicable.

【0034】以下、具体例について説明する。 A.改質アルミナの製造 市販の活性アルミナ(γ−アルミナ、α化率R=0%)
に、電気炉を用い、大気下にて加熱温度Tおよび加熱時
間を変えて熱処理を施し、α化率を異にする各種改質ア
ルミナを得た。
Specific examples will be described below. A. Production of modified alumina Commercially available activated alumina (γ-alumina, α conversion R = 0%)
Then, using an electric furnace, heat treatment was performed in the atmosphere while changing the heating temperature T and the heating time to obtain various modified aluminas having different α conversion rates.

【0035】表2は、改質アルミナの例1〜11に関す
る熱処理条件およびα化率Rを示す。
Table 2 shows the heat treatment conditions and the α conversion R for Examples 1 to 11 of modified alumina.

【0036】[0036]

【表2】 B.改質ZSM−5ゼオライトの製造 (a) SiO2 /Al2 3 モル比=33.7のNa
型未改質ZSM−5ゼオライト500gを90℃の5N
HCl溶液中に投入し、次いで20時間攪拌を行って
スラリー状物を得た。 (b) スラリー状物から固形分を濾別し、その固形分
をそれの20倍量の純水で洗浄した。 (c) 固形分に、大気中、100℃、5時間の条件で
乾燥処理を施し、次いで乾燥後の固形分に、大気中、4
00℃、12時間の焼成処理を施して塊状の改質ZSM
−5ゼオライトを得た。 (d) 塊状改質ZSM−5ゼオライトに粉砕処理を施
して粉末状改質ZSM−5ゼオライトを得た。この改質
ZSM−5ゼオライトのSiO2 /Al2 3 モル比は
41.3であり、したがって脱Alが発生していること
が判る。また改質ZSM−5ゼオライトの耐熱温度は1
000℃であった。 〔実施例I〕 A.触媒の製造 (a) 表2における例9、したがってα化率R=81
%の改質アルミナ98.5gをヘキサクロロ白金酸溶液
21.4g(Pt濃度7.0%)に投入して十分に混合
し、次いで固形分を濾別し、その後固形分に120℃、
1時間の条件で乾燥処理を施し、さらに固形分に、大気
中、600℃、1時間の条件で焼成処理を施してPtの
重量比率a1 がa1 =1.5重量%の触媒素子を得た。 (b) 触媒素子90g、改質ZSM−5ゼオライト9
0g、20%シリカゾル100gおよびエタノール24
0gと、アルミナボールとをポットに投入して、12時
間の湿式粉砕を行ってスラリー状触媒を調製した。この
場合、触媒素子の重量比率A1 はA1 =50重量%であ
る。
[Table 2] B. Production of Modified ZSM-5 Zeolite (a) Na 2 SiO 2 / Al 2 O 3 Molar Ratio = 33.7
Type unmodified ZSM-5 zeolite 500g at 90 ° C for 5N
It was put into an HCl solution and then stirred for 20 hours to obtain a slurry. (B) The solid content was filtered off from the slurry, and the solid content was washed with 20 times the amount of pure water. (C) The solid content is subjected to a drying treatment in the atmosphere at 100 ° C. for 5 hours, and then the solid content after drying is dried in the air at 4
Lumped modified ZSM that has been subjected to calcination at 00 ° C for 12 hours
-5 zeolite was obtained. (D) The pulverized modified ZSM-5 zeolite was pulverized to obtain a powdered modified ZSM-5 zeolite. The modified SiO 2 / Al 2 O 3 molar ratio of ZSM-5 zeolite is 41.3, thus it can be seen that the de-Al is occurring. The heat resistant temperature of the modified ZSM-5 zeolite is 1
It was 000 ° C. Example I A. Preparation of catalyst (a) Example 9 in Table 2, therefore the alpha conversion R = 81
% Modified alumina 98.5 g was added to a hexachloroplatinic acid solution 21.4 g (Pt concentration 7.0%) and mixed well, then the solid content was filtered off, and then the solid content was 120 ° C.,
A drying treatment under the conditions of 1 hour, more solids, in the atmosphere, 600 ° C., the weight ratio a 1 of Pt subjected to baking treatment under conditions of 1 hour a 1 = 1.5% by weight of the catalyst element Obtained. (B) 90 g of catalytic element, modified ZSM-5 zeolite 9
0 g, 20% silica sol 100 g and ethanol 24
0 g and alumina balls were placed in a pot and wet-milled for 12 hours to prepare a slurry catalyst. In this case, the weight ratio A 1 of the catalyst element is A 1 = 50% by weight.

【0037】このスラリー状触媒に直径25.5mm、長
さ60mm、300セル−10.5ミルのコージエライト
製ハニカム支持体を浸漬し、次いでそのハニカム支持体
をスラリー状触媒より取出して過剰分をエア噴射により
除去し、その後ハニカム支持体を120℃の加熱下に保
持してスラリー状触媒を乾燥し、さらにハニカム支持体
に、大気中、600℃、1時間の条件で焼成処理を施し
て、触媒をハニカム支持体に保持させた。この場合、ハ
ニカム支持体における触媒の保持量は150g/リット
ルであった。この触媒を実施例1とする。
A cordierite honeycomb support having a diameter of 25.5 mm, a length of 60 mm, and a size of 300 cells-10.5 mil was immersed in this slurry catalyst, and then the honeycomb support was taken out from the slurry catalyst to remove excess air. The catalyst is removed by spraying, then the honeycomb support is kept under heating at 120 ° C. to dry the slurry catalyst, and the honeycomb support is further subjected to a calcination treatment in the atmosphere at 600 ° C. for 1 hour to obtain the catalyst. Were held on the honeycomb support. In this case, the amount of catalyst retained on the honeycomb support was 150 g / liter. This catalyst is referred to as Example 1.

【0038】比較のため、アルミナとして前記市販の活
性アルミナを用いた以外は前記同様の方法でスラリー状
触媒を調製し、そのスラリー状触媒と前記同様のハニカ
ム支持体とを用い、前記同様の方法で触媒をハニカム支
持体に保持させた。この場合、ハニカム支持体における
触媒の保持量は前記と同じであり、この触媒を比較例1
とする。 B.排気ガス想定浄化テスト 理論空燃比A/F=14.6および酸素過剰雰囲気での
空燃比A/F=24.3に対応する排気ガスを想定して
表3に示す組成を備えた二種のテスト用第1,第2ガス
を調製した。
For comparison, a slurry catalyst was prepared by the same method as above except that the commercially available activated alumina was used as alumina, and the slurry catalyst and the same honeycomb support were used, and the same method as above. The catalyst was held on the honeycomb support. In this case, the amount of catalyst retained on the honeycomb support was the same as that described above, and this catalyst was used in Comparative Example 1
And B. Exhaust Gas Assumption Purification Test Assuming exhaust gas corresponding to the theoretical air-fuel ratio A / F = 14.6 and the air-fuel ratio A / F = 24.3 in an oxygen excess atmosphere, two types of compositions having the compositions shown in Table 3 are provided. First and second test gases were prepared.

【0039】[0039]

【表3】 浄化テストは、先ず、実施例1の触媒を固定床流通式反
応装置に設置し、次いでその装置内にテスト用第1ガス
を空間速度S.V.=5×104 -1で流通させると共
にテスト用第1ガスの温度を常温より20℃/min で上
昇させ、所定のガス温度にてHC,COおよひNOの浄
化率を測定した。またテスト用第2ガスを用いて前記と
同様の方法でHC等の浄化率を測定した。さらに同様の
浄化テストを比較例1の触媒についても行った。
[Table 3] In the purification test, first, the catalyst of Example 1 was installed in a fixed-bed flow reactor, and then the first test gas was fed into the reactor with a space velocity S.V. V. = 5 × 10 4 h −1 , the temperature of the first test gas was raised from room temperature at 20 ° C./min, and the purification rates of HC, CO, and NO were measured at a predetermined gas temperature. Further, the purification rate of HC and the like was measured by the same method as described above using the second test gas. Further, the same purification test was conducted on the catalyst of Comparative Example 1.

【0040】表4は各種条件および測定結果を示す。Table 4 shows various conditions and measurement results.

【0041】[0041]

【表4】 表4から明らかなように、実施例1の触媒はHC等の浄
化率が高く、特に空燃比A/F=24.3といった酸素
過剰雰囲気におけるNO浄化率は比較例1の触媒の約2
倍である。これは、前記のようにα化率R=81%の改
質アルミナとα化率R=0%の活性アルミナとの物性差
に起因する。 〔実施例II〕実施例Iと同様の方法で各種触媒を製造し
た。この場合、触媒素子と改質ZSM−5ゼオライトと
の合計配合重量は実施例Iと同様に180gに設定され
た。
[Table 4] As is clear from Table 4, the catalyst of Example 1 has a high purification rate of HC and the like, and in particular, the NO purification rate in an oxygen excess atmosphere such as the air-fuel ratio A / F = 24.3 is about 2 that of the catalyst of Comparative Example 1.
It is twice. This is due to the difference in the physical properties between the modified alumina having the α conversion rate R = 81% and the activated alumina having the α conversion rate R = 0% as described above. Example II Various catalysts were produced in the same manner as in Example I. In this case, the total compounding weight of the catalytic element and the modified ZSM-5 zeolite was set to 180 g as in Example I.

【0042】表5は、実施例1〜6の触媒と比較例1,
2の触媒における改質アルミナのα化率R、組成、最大
NO浄化率rおよびその浄化率rが得られるときのガス
温度を示す。
Table 5 shows the catalysts of Examples 1 to 6 and Comparative Example 1,
2 shows the α conversion rate R of reformed alumina, the composition, the maximum NO purification rate r, and the gas temperature when the purification rate r is obtained in the catalyst of No. 2.

【0043】これら触媒においては、Ptの重量比率a
1 がa1 =1.5重量%(一定)、また触媒素子の重量
比率A1 がA1 =25重量%(一定)であって、改質ア
ルミナのα化率Rが変化している。
In these catalysts, the Pt weight ratio a
1 is a 1 = 1.5% by weight (constant), and the weight ratio A 1 of the catalytic element is A 1 = 25% by weight (constant), and the α conversion rate R of the modified alumina changes.

【0044】浄化テストは、実施例Iにおけるテスト用
第2ガス(A/F=24.3)を用いて、実施例Iと同
一の方法で行われた。これは後述する他の触媒について
も同じである。
The purification test was performed in the same manner as in Example I, using the test second gas (A / F = 24.3) in Example I. This also applies to other catalysts described later.

【0045】[0045]

【表5】 表6は実施例7〜14の触媒と比較例3,4の触媒にお
ける改質アルミナのα化率R、組成、最大NO浄化率r
およびその浄化率rが得られるときのガス温度を示す。
[Table 5] Table 6 shows the α conversion rate R, composition, and maximum NO purification rate r of the modified alumina in the catalysts of Examples 7 to 14 and the catalysts of Comparative Examples 3 and 4.
And the gas temperature at which the purification rate r is obtained.

【0046】これら触媒においては、Ptの重量比率a
1 がa1 =1.5重量%(一定)、また触媒素子の重量
比率A1 がA1 =50重量%(一定)であって、改質ア
ルミナのα化率Rが変化している。
In these catalysts, the Pt weight ratio a
1 is a 1 = 1.5% by weight (constant), and the weight ratio A 1 of the catalyst element is A 1 = 50% by weight (constant), and the α conversion rate R of the modified alumina changes.

【0047】[0047]

【表6】 表7は実施例15〜19の触媒と比較例5,6の触媒に
おける改質アルミナのα化率R、組成、最大NO浄化率
rおよびその浄化率rが得られるときのガス温度を示
す。
[Table 6] Table 7 shows the α conversion rate R, the composition, the maximum NO purification rate r and the gas temperature when the purification rate r is obtained for the modified alumina in the catalysts of Examples 15 to 19 and the catalysts of Comparative Examples 5 and 6.

【0048】これら触媒においては、Ptの重量比率a
1 がa1 =1.5重量%(一定)、また触媒素子の重量
比率A1 がA1 =75重量%(一定)であって、改質ア
ルミナのα化率Rが変化している。
In these catalysts, the Pt weight ratio a
1 is a 1 = 1.5% by weight (constant), and the weight ratio A 1 of the catalytic element is A 1 = 75% by weight (constant), and the α conversion rate R of the modified alumina changes.

【0049】[0049]

【表7】 図2は、表5〜7に基づいて、改質アルミナのα化率R
と最大NO浄化率rとの関係をグラフ化したものであ
る。図中、点1〜19は実施例1〜19にそれぞれ対応
し、また点(1)〜(6)は比較例1〜6にそれぞれ対
応する。
[Table 7] FIG. 2 is based on Tables 5 to 7, and shows the α conversion rate R of the modified alumina.
2 is a graph showing the relationship between the maximum NO purification rate r and the maximum NO purification rate r. In the figure, points 1 to 19 correspond to Examples 1 to 19, respectively, and points (1) to (6) correspond to Comparative Examples 1 to 6, respectively.

【0050】図2および表5〜7から明らかなように、
比較例1,3,5の触媒におけるアルミナは活性アルミ
ナであって、そのα化率RはR=0%である。また比較
例2,4,6の触媒におけるアルミナはα−アルミナで
あって、そのα化率RはR=100%である。この場合
の最大NO浄化率rの最高値は比較例1,3の触媒にお
ける22%であり、したがって実施例1〜19の触媒の
ように、触媒素子の重量比率A1 が11重量%≦A1
95重量%、またPtの重量比率a1 が0.1重量%<
1 ≦5重量%において、改質アルミナのα化率Rを
0.1%≦R≦95%に設定することによって最大NO
浄化率rを酸素過剰雰囲気においてr>22%に向上さ
せることができる。図2より、改質アルミナのα化率R
を45%≦R≦90%に設定すると、最大NO浄化率r
を32%≦r≦55%といったように一層向上させるこ
とが可能であり、このことから、改質アルミナのα化率
Rの好ましい範囲は45%≦R≦90%であることが判
る。
As is clear from FIG. 2 and Tables 5-7,
Alumina in the catalysts of Comparative Examples 1, 3 and 5 was activated alumina, and the α conversion rate R was R = 0%. Alumina in the catalysts of Comparative Examples 2, 4 and 6 was α-alumina, and the α conversion rate R was R = 100%. The maximum value of the maximum NO purification rate r in this case is 22% in the catalysts of Comparative Examples 1 and 3, and therefore, like the catalysts of Examples 1 to 19, the weight ratio A 1 of the catalyst element is 11% by weight ≦ A. 1 <
95% by weight, and the Pt weight ratio a 1 is 0.1% by weight <
When a 1 ≦ 5% by weight, the maximum NO is set by setting the α conversion ratio R of the modified alumina to 0.1% ≦ R ≦ 95%.
The purification rate r can be improved to r> 22% in an oxygen excess atmosphere. From Fig. 2, the alpha conversion rate R of the modified alumina
Is set to 45% ≦ R ≦ 90%, the maximum NO purification rate r
Can be further improved to 32% ≦ r ≦ 55%. From this, it is understood that the preferable range of the α conversion rate R of the modified alumina is 45% ≦ R ≦ 90%.

【0051】表8は実施例20〜25の触媒と比較例
7,8の触媒における改質アルミナのα化率R、組成、
最大NO浄化率rおよびその浄化率rが得られるときの
ガス温度を示す。
Table 8 shows the α conversion ratio R, composition of the modified alumina in the catalysts of Examples 20 to 25 and the catalysts of Comparative Examples 7 and 8.
The maximum NO purification rate r and the gas temperature when the purification rate r is obtained are shown.

【0052】これら触媒においては、改質アルミナのα
化率RがR=81%(一定)、またPtの重量比率a1
がa1 =1.5重量%(一定)であって、触媒素子の重
量比率A1 が変化している。
In these catalysts, α of modified alumina is used.
The conversion rate R is R = 81% (constant), and the Pt weight ratio a 1
Is a 1 = 1.5% by weight (constant), and the weight ratio A 1 of the catalyst element changes.

【0053】[0053]

【表8】 図3は表5〜8に基づき、改質アルミナのα化率R=8
1%およびPtの重量比率a1 =1.5重量%におい
て、触媒素子の重量比率A1 と最大NO浄化率rとの関
係をグラフ化したものである。図中、点6,12,1
9,20〜25は実施例6,12,19,20〜25に
それぞれ対応し、また点(7),(8)は比較例7,8
にそれぞれ対応する。
[Table 8] FIG. 3 is based on Tables 5-8, and the alpha conversion rate R = 8 of the modified alumina.
2 is a graph showing the relationship between the weight ratio A 1 of the catalytic element and the maximum NO purification rate r at 1% and Pt weight ratio a 1 = 1.5 wt%. In the figure, points 6, 12, 1
9, 20 to 25 correspond to Examples 6, 12, 19, 20 to 25, respectively, and points (7) and (8) are Comparative Examples 7 and 8.
Respectively correspond to.

【0054】図3および表8から明らかなように比較例
7の触媒における触媒素子の重量比率A1 はA1 =10
重量%であり、また比較例8の触媒におけるそれはA1
=95重量%である。この場合の最大NO浄化率rの最
高値は比較例8の触媒における22%であり、したがっ
て実施例6,12,19,20〜25の触媒のように、
改質アルミナのα化率Rが0.1%≦R≦95%、また
Ptの重量比率a1 が0.1重量%<a1 ≦5重量%に
おいて、触媒素子の重量比率A1 を11重量%≦A1
95重量%に設定することによって最大NO浄化率r
を、酸素過剰雰囲気において、r>22%に向上させる
ことができる。図3より、触媒素子の重量比率A1 を1
2重量%≦A1 ≦80重量%に設定すると最大NO浄化
率rをr≧36%に向上させることが可能であり、この
ことから触媒素子の重量比率A1 の好ましい範囲は12
重量%≦A1 ≦80重量%であることが判る。
As is clear from FIG. 3 and Table 8, the weight ratio A 1 of the catalyst element in the catalyst of Comparative Example 7 was A 1 = 10.
% By weight, and that in the catalyst of Comparative Example 8 is A 1
= 95% by weight. The maximum value of the maximum NO purification rate r in this case is 22% in the catalyst of Comparative Example 8, and therefore, like the catalysts of Examples 6, 12, 19, 20 to 25,
When the α conversion ratio R of the modified alumina is 0.1% ≦ R ≦ 95% and the Pt weight ratio a 1 is 0.1% by weight <a 1 ≦ 5% by weight, the weight ratio A 1 of the catalytic element is 11%. Weight% ≤ A 1 <
Maximum NO purification rate r by setting to 95% by weight
Can be improved to r> 22% in an oxygen excess atmosphere. From FIG. 3, the weight ratio A 1 of the catalytic element is 1
By setting 2% by weight ≦ A 1 ≦ 80% by weight, it is possible to improve the maximum NO purification rate r to r ≧ 36%. From this, the preferable range of the weight ratio A 1 of the catalyst element is 12
It can be seen that weight% ≦ A 1 ≦ 80% by weight.

【0055】表9は実施例26,27の触媒と比較例9
の触媒における改質アルミナのα化率R、組成、最大N
O浄化率rおよびその浄化率rが得られるときのガス温
度を示す。
Table 9 shows the catalysts of Examples 26 and 27 and Comparative Example 9
Ratio of modified alumina, composition, maximum N
The O purification rate r and the gas temperature when the purification rate r is obtained are shown.

【0056】これら触媒においては、改質アルミナのα
化率RがR=81%(一定)、また触媒素子の重量比率
1 がA1 =50重量%(一定)であって、Ptの重量
比率a1 が変化している。
In these catalysts, α of modified alumina is used.
The conversion rate R is R = 81% (constant), the weight ratio A 1 of the catalyst element is A 1 = 50% by weight (constant), and the Pt weight ratio a 1 changes.

【0057】[0057]

【表9】 表9から明らかなように比較例9の触媒におけるPtの
重量比率a1 はa1 =0.1重量%である。この場合の
最大NO浄化率rの最高値は22%であり、したがって
実施例26,27の触媒のように、改質アルミナのα化
率が0.1%≦R≦95%、また触媒素子の重量比率A
1 が11重量%≦A1 <95重量%において、Ptの重
量比率a1 を0.1重量%<a1 ≦5重量%に設定する
ことによって最大NO浄化率rを、酸素過剰雰囲気にお
いて、r>22%に向上させることができる。
[Table 9] As is clear from Table 9, the Pt weight ratio a 1 in the catalyst of Comparative Example 9 is a 1 = 0.1% by weight. The maximum value of the maximum NO purification rate r in this case is 22%. Therefore, as in the catalysts of Examples 26 and 27, the α conversion rate of the modified alumina is 0.1% ≦ R ≦ 95%, and the catalytic element Weight ratio A
When 1 is 11% by weight ≦ A 1 <95% by weight, the Pt weight ratio a 1 is set to 0.1% by weight <a 1 ≦ 5% by weight to obtain the maximum NO purification rate r in the oxygen excess atmosphere. It can be improved to r> 22%.

【0058】[0058]

【発明の効果】本発明によれば、改質アルミナのα化率
R、触媒素子の重量比率A1 および触媒用金属の重量比
率a1 を前記のように特定することによって、酸素過剰
雰囲気においてもNOx浄化率の高い排気ガス浄化用触
媒を提供することができる。
According to the present invention, by specifying the alpha conversion rate R of the modified alumina, the weight ratio A 1 of the catalytic element and the weight ratio a 1 of the metal for the catalyst as described above, it is possible to achieve Can provide an exhaust gas purification catalyst having a high NOx purification rate.

【0059】また本発明によれば、前記のような特性を
有する触媒を容易に量産することが可能な製造方法を提
供することができる。
Further, according to the present invention, it is possible to provide a manufacturing method capable of easily mass-producing the catalyst having the above characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】α−アルミナの重量比率とX線反射強度比率と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the weight ratio of α-alumina and the X-ray reflection intensity ratio.

【図2】改質アルミナのα化率と最大NO浄化率との関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between the alpha conversion rate of modified alumina and the maximum NO purification rate.

【図3】触媒素子の重量比率と最大NO浄化率との関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the weight ratio of catalyst elements and the maximum NO purification rate.

【手続補正書】[Procedure amendment]

【提出日】平成7年4月13日[Submission date] April 13, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【発明が解決しようとする課題】しかしながら、活性ア
ルミナにPtを担持させると、その活性アルミナが多孔
質であって大きな比表面積を持つことから、Ptが高分
散されるため、PtによるHC吸着能およびNOx吸着
能は向上するが、その反面、酸素過剰雰囲気(例えば、
空燃比A/F≒24)においては、触媒によってHC
(炭化水素)の完全酸化、つまりHC→CO2 +H2
の酸化反応が進行し、HCの部分酸化物であってNOx
還元能を有する活性CHOの生成量が不足すると共にP
t表面に吸着した酸素による還元阻害作用が生じ易いた
め、NOxの還元浄化を十分に行うことができず、また
NOxに対する触媒の浄化温度域が狭くなる、という問
題がある。
However, when Pt is supported on activated alumina, since the activated alumina is porous and has a large specific surface area, Pt is highly dispersed, so that the HC adsorption capacity by Pt is high. Although the NOx adsorption capacity is improved, the oxygen excess atmosphere (for example,
When the air-fuel ratio A / F≈24), the catalyst causes HC
Complete oxidation of (hydrocarbon), that is, HC → CO 2 + H 2 O
Oxidation reaction of NOx progresses, and it is a partial oxide of HC and NOx
Insufficient production of active CHO with reducing ability
There is a problem that the reduction inhibitory action of oxygen adsorbed on the t surface is likely to occur, so that reduction and purification of NOx cannot be sufficiently performed , and the purification temperature range of the catalyst for NOx becomes narrow.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】この場合、活性アルミナにPtを担持させ
た後、前記同様の熱処理を行って、その活性アルミナよ
り改質アルミナを得るようにしてもよい。また触媒の形
態は前記混合物に限らず、触媒素子よりなる上層と改質
ZSM−5ゼオライトよりなる下層とを有する積層構造
にすることも可能である。
In this case, after Pt is supported on the activated alumina, the same heat treatment as described above may be performed to obtain the modified alumina from the activated alumina. Further, the form of the catalyst is not limited to the above mixture, and it is also possible to have a laminated structure having an upper layer made of a catalytic element and a lower layer made of modified ZSM-5 zeolite.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 20/18 ZAB D B01D 53/36 104 A (72)発明者 中西 義幸 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 20/18 ZAB D B01D 53/36 104 A (72) Inventor Yoshiyuki Nakanishi Central 1 Wako, Saitama Prefecture 4-1-1 Stock Company Honda Technical Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒素子と、固体酸性および分子篩性を
有するアルミノシリケートとを備え、前記触媒素子はア
ルミナとそのアルミナに担持された触媒用金属とよりな
る排気ガス浄化用触媒において、前記アルミナはα化率
Rを0.1%≦R≦95%に設定された改質アルミナで
あり、また前記触媒素子の配合重量をAとし、一方、前
記アルミノシリケートの配合重量をBとしたとき、前記
触媒素子の重量比率A1 ={A/(A+B)}×100
は11重量%≦A1 <95重量%に設定され、さらに前
記触媒用金属は白金族から選択される少なくとも一種の
金属であり、前記触媒素子における前記触媒用金属の重
量比率a1 は0.1重量%<a1 ≦5重量%に設定され
ることを特徴とする排気ガス浄化用触媒。
1. An exhaust gas purifying catalyst comprising a catalyst element and an aluminosilicate having solid acidity and molecular sieving property, wherein the catalyst element is an exhaust gas purifying catalyst comprising alumina and a catalyst metal supported on the alumina. Assuming that the modified alumina has an alpha conversion rate R set to 0.1% ≦ R ≦ 95%, the compounding weight of the catalyst element is A, and the compounding weight of the aluminosilicate is B, Weight ratio of catalyst element A 1 = {A / (A + B)} × 100
Is set to 11% by weight ≦ A 1 <95% by weight, the metal for catalyst is at least one metal selected from the platinum group, and the weight ratio a 1 of the metal for catalyst in the catalyst element is 0. An exhaust gas purifying catalyst, characterized in that 1 wt% <a 1 ≤ 5 wt%.
【請求項2】 前記アルミノシリケートは、未改質ゼオ
ライトに脱Al処理を施して得られた改質ゼオライトで
ある、請求項1記載の排気ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the aluminosilicate is a modified zeolite obtained by subjecting an unmodified zeolite to a de-Al treatment.
【請求項3】 前記触媒用金属はPtである、請求項1
または2記載の排気ガス浄化用触媒。
3. The catalyst metal is Pt.
Or the exhaust gas purifying catalyst according to 2.
【請求項4】 活性アルミナに、加熱温度Tを800℃
≦T≦1100℃に設定した熱処理を施して、その活性
アルミナよりα化率Rが0.1%≦R≦95%である改
質アルミナを得る工程と、その改質アルミナに、白金属
から選択される少なくとも一種の触媒用金属を担持させ
て触媒素子を作製し、その際、前記触媒素子における前
記触媒用金属の重量比率a1 を0.1重量%<a1 ≦5
重量%に設定する工程と、前記触媒素子と、固体酸性お
よび分子篩性を有するアルミノシリケートとを混合し、
その際、前記触媒素子の配合重量をAとし、一方、前記
アルミノシリケートの配合重量をBとしたとき、前記触
媒素子の重量比率A1 ={A/(A+B)}×100を
11重量%≦A1 <95重量%に設定する工程と、を順
次行うことを特徴とする排気ガス浄化用触媒の製造方
法。
4. A heating temperature T of 800 ° C. is applied to activated alumina.
A step of performing a heat treatment set to ≦ T ≦ 1100 ° C. to obtain a modified alumina having an α conversion R of 0.1% ≦ R ≦ 95% from the activated alumina; A catalyst element is manufactured by supporting at least one selected catalyst metal, and the weight ratio a 1 of the catalyst metal in the catalyst element is 0.1% by weight <a 1 ≦ 5.
Mixing the step of setting to the weight%, the catalyst element, and aluminosilicate having solid acidity and molecular sieving property,
At that time, when the compounding weight of the catalyst element is A and the compounding weight of the aluminosilicate is B, the weight ratio A 1 = {A / (A + B)} × 100 of the catalyst element is 11% by weight ≦ A method for producing an exhaust gas purifying catalyst, which comprises sequentially performing the step of setting A 1 <95% by weight.
JP15750294A 1993-09-29 1994-07-08 Exhaust gas purification catalyst and method for producing the same Expired - Fee Related JP3669640B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15750294A JP3669640B2 (en) 1994-07-08 1994-07-08 Exhaust gas purification catalyst and method for producing the same
CA002150379A CA2150379C (en) 1993-09-29 1994-09-29 Exhaust emission control catalyst and process for producing the same
EP94927803A EP0671211B1 (en) 1993-09-29 1994-09-29 Catalyst for exhaust emission control and method for producing the same
DE69421796T DE69421796T2 (en) 1993-09-29 1994-09-29 CATALYST FOR CONTROLLING THE EXHAUST GAS EMISSION AND METHOD FOR THE PRODUCTION THEREOF
PCT/JP1994/001614 WO1995009048A1 (en) 1993-09-29 1994-09-29 Catalyst for exhaust emission control and method for producing the same
US08/919,482 US6008155A (en) 1993-09-29 1997-08-28 Exhaust emission control catalyst and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15750294A JP3669640B2 (en) 1994-07-08 1994-07-08 Exhaust gas purification catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0819740A true JPH0819740A (en) 1996-01-23
JP3669640B2 JP3669640B2 (en) 2005-07-13

Family

ID=15651093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15750294A Expired - Fee Related JP3669640B2 (en) 1993-09-29 1994-07-08 Exhaust gas purification catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3669640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160057342A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Gas Adsorbing Material, and Vacuum Insulation Material Including Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160057342A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Gas Adsorbing Material, and Vacuum Insulation Material Including Same

Also Published As

Publication number Publication date
JP3669640B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP2909553B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4725034B2 (en) Method for producing palladium three-way catalyst with double layer coating structure
JP3130903B2 (en) Catalyst for purifying waste gas from internal combustion engine, method for producing catalyst and method for purifying waste gas
JPH08192030A (en) Method and catalyst for decreasing simultaneously huydrocarbon,oxygenated organic compound,carbon monoxide andnitrogen oxide included in internal combustion engine
JP4319222B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPS5933023B2 (en) Method for producing catalyst composition
JPH1033986A (en) Catalyst for purifying exhaust gas from diesel engine
JPH07163871A (en) Nitrogen oxide adsorbent and exhaust gas purifying catalyst
US5002920A (en) Catalyst for ozone decomposition
JPH01135541A (en) Catalyst for purifying exhaust gas
JPH08155303A (en) Exhaust gas purification catalyst carrier, production of the same and exhaust gas purification catalyst using the same and method for purifying exhaust gas
EP1249266B1 (en) Exhaust gas emission control catalyst
JPH0796178A (en) Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JPH0819740A (en) Catalyst for exhaust gas purification and manufacturing method therefor
JPH02293050A (en) Catalyst for purification of exhaust gas
JPH0398644A (en) Preparation of catalyst for purifying exhaust gas
JPS63116742A (en) Catalyst for purifying exhaust gas
JPH08131838A (en) Catalyst for purification of exhaust gas
JPH11226391A (en) Zeolite for cleaning exhaust gas and manufacturing thereof
JP3794035B2 (en) Catalyst for exhaust gas purification of internal combustion engine
JPH11226414A (en) Exhaust gas purification catalyst
WO1995009048A1 (en) Catalyst for exhaust emission control and method for producing the same
JPH07194973A (en) Exhaust gas purifying catalyst
CN114939418B (en) Pd-containing device 1 Monoatomic catalyst with M/carrier structure and application thereof
JPH0884931A (en) Catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees