JPH08195402A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH08195402A
JPH08195402A JP7004776A JP477695A JPH08195402A JP H08195402 A JPH08195402 A JP H08195402A JP 7004776 A JP7004776 A JP 7004776A JP 477695 A JP477695 A JP 477695A JP H08195402 A JPH08195402 A JP H08195402A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
recess
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7004776A
Other languages
Japanese (ja)
Other versions
JP2713200B2 (en
Inventor
Takafumi Imamura
隆文 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7004776A priority Critical patent/JP2713200B2/en
Publication of JPH08195402A publication Critical patent/JPH08195402A/en
Application granted granted Critical
Publication of JP2713200B2 publication Critical patent/JP2713200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid

Abstract

PURPOSE: To reduce the warp of a pellet as far as possible when the pellet is mounted on a package. CONSTITUTION: A recessed part 18 which is opened on the rear side of a GaAs substrate 11 is formed in such a way that a substrate thickness under an FET 17 in the substrate becomes smaller than a substrate thickness under other regions. A PHS 19 which is bonded to the substrate 11 at the inner face of the recessed part 18 under the PET 17, which comprises a space part 21 not coming into contact with the substrate 11 other than this bonding region 19a and which is used to dissipate heat generated from the PET 17 is formed inside the recessed part 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に熱発生源とな
る、例えば電界効果トランジスタ等のデバイスが形成さ
れた半導体装置およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which a device such as a field effect transistor serving as a heat generation source is formed on a substrate and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、化合物半導体、特にGaAs、I
nP、またはこれらの混晶は高い電子易動度を持ち、高
電界領域での電子速度の最大飽和値が大きいことから高
い遮断周波数の電界効果トランジスタが実現できる材料
として注目されてきた。一方、この種の素子は高抵抗半
導体基板を用いるため、熱放散が悪く熱抵抗値が大きい
という欠点がある。特に、消費電力の大きい高出力Ga
As MES FETでは動作時のチャネル温度が高く、
信頼度上極めて不利である。また、特性においても高温
では易動度が低下するため好ましくない。
2. Description of the Related Art In recent years, compound semiconductors, especially GaAs and I
nP or a mixed crystal thereof has high electron mobility and has a large maximum saturation value of electron velocity in a high electric field region, and thus has been attracting attention as a material capable of realizing a field effect transistor having a high cutoff frequency. On the other hand, since this type of element uses a high-resistance semiconductor substrate, it has a drawback that the heat dissipation is poor and the thermal resistance value is large. In particular, high output Ga with large power consumption
In As MES FET, the channel temperature during operation is high,
It is extremely disadvantageous in terms of reliability. Also, in terms of characteristics, the mobility decreases at high temperatures, which is not preferable.

【0003】そこで、この問題点の対策としてPHS
(Plated Heat Sink)構造が採用され
ている。すなわち、従来の電界効果トランジスタ(以
下、FETと称する)におけるPHS構造とは、図4
(a)〜(c)に示すように、FET部1の活性領域の
直下部分のGaAs基板2の厚さを他の領域より薄くし
た凹部3と、また、この凹部3を含むGaAs基板2の
裏面をメッキにより金を充填して形成したPHS4(放
熱用金属)を有するものである(例えば、特開昭60−
46076号公報参照)。
Therefore, as a countermeasure against this problem, PHS
(Plated Heat Sink) structure is adopted. That is, the PHS structure in the conventional field effect transistor (hereinafter referred to as FET) is as shown in FIG.
As shown in (a) to (c), the recessed portion 3 in which the thickness of the GaAs substrate 2 immediately below the active region of the FET portion 1 is thinner than other regions, and the GaAs substrate 2 including this recessed portion 3 It has PHS4 (metal for heat dissipation) formed by filling the back surface with gold by plating (see, for example, JP-A-60-
46076).

【0004】前記従来のPHS構造においては、GaA
s基板2の裏面よりFET部1の活性領域形成部の直下
に設けた凹部3に金メッキを行なうことでPHS4を形
成したペレット5を、パッケージ6にマウントすること
により、FET動作時に活性領域から発生する熱の放熱
効果を高めて熱抵抗の低減を図ることと、活性領域形成
部の直下以外のGaAs基板厚を厚くすることによって
ピンセット等によりGaAs基板を取り扱う際のGaA
s基板2のクラックを防止することを特徴としている。
In the conventional PHS structure, GaA
s Pellets 5 with PHS4 formed by gold plating on the recess 3 provided directly below the active region forming portion of the FET part 1 from the back surface of the substrate 2 are mounted on the package 6 to generate from the active region during FET operation. GaA when handling a GaAs substrate by tweezers, etc. by increasing the heat dissipation effect of the heat to reduce the thermal resistance and increasing the thickness of the GaAs substrate other than immediately below the active region forming portion.
s It is characterized in that the substrate 2 is prevented from cracking.

【0005】[0005]

【発明が解決しようとする課題】上記従来のPHS構造
を有するFETのペレットにおいては、ソルダー材によ
りペレットをパッケージにマウントする際に、例えばソ
ルダー材として金・すず(Au・Sn)ソルダーを使用
する場合には350℃程度までの加熱、冷却工程が行な
われるが、基板を構成するGaAsとPHSを構成する
金の熱膨張係数の差によって反りが発生するという問題
があった。そして、この反りの発生により、GaAs基
板内に応力が加わるためFET内部にピエゾ電荷が発生
してピンチオフ電圧Vpが変動する問題、また、ゲート
−ドレイン間耐圧が変動する問題、さらに、ペレットの
電極にワイヤーをボンディングする際にペレットの反り
に起因するワイヤー長のばらつきが高周波特性を劣化さ
せる問題があった。このため、パッケージへペレットを
マウントする際に反りを少なくすることが必要とされて
いた。
In the above-mentioned conventional FET pellet having the PHS structure, when the pellet is mounted on the package by the solder material, for example, gold / tin (Au / Sn) solder is used as the solder material. In this case, heating and cooling steps up to about 350 ° C. are performed, but there is a problem that warpage occurs due to the difference in thermal expansion coefficient between GaAs forming the substrate and gold forming the PHS. Then, due to the occurrence of the warp, stress is applied to the GaAs substrate, so that piezo electric charges are generated inside the FET to change the pinch-off voltage Vp, the gate-drain breakdown voltage is changed, and the electrode of the pellet is changed. There is a problem that when the wire is bonded to the wire, the variation of the wire length due to the warp of the pellet deteriorates the high frequency characteristics. Therefore, it has been necessary to reduce the warpage when mounting the pellet on the package.

【0006】本発明は、上記の事情に鑑みてなされたも
のであって、パッケージへペレットをマウントする際に
ペレットの反りを極力低減することのできる半導体装置
およびその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a semiconductor device and a manufacturing method thereof capable of reducing the warpage of the pellet when mounting the pellet on the package. And

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の半導体装置は、半導体基板上に熱発生源
となるデバイスが形成され、前記半導体基板の裏面に前
記デバイスから生じる熱を放熱するための放熱用金属が
形成された半導体装置において、前記半導体基板に、該
半導体基板における前記デバイスの下方の基板厚が他の
領域の下方の基板厚よりも薄くなるように前記半導体基
板の裏面側に開口する凹部が形成され、該凹部の内部に
は、前記デバイスの下方の前記凹部の内面で前記半導体
基板に接合されるとともにこの接合部分以外では前記半
導体基板と接触しない空間部を有する放熱用金属が形成
されたことを特徴とするものである。また、前記半導体
基板の凹部の内面から前記デバイスのソース電極裏面ま
で貫通するバイアホールを前記半導体基板に形成すると
ともに、前記凹部の内部に形成された前記放熱用金属を
前記バイアホールの内面をも覆うように形成してもよ
い。
In order to achieve the above-mentioned object, a semiconductor device of the present invention has a device serving as a heat generation source formed on a semiconductor substrate, and the heat generated from the device is formed on the back surface of the semiconductor substrate. In a semiconductor device in which a heat-dissipating metal for dissipating heat is formed on the semiconductor substrate, the semiconductor substrate has a substrate thickness below the device in the semiconductor substrate is thinner than a substrate thickness below other regions. Is formed in the recess on the back side of the device, and a space is formed inside the recess that is bonded to the semiconductor substrate at the inner surface of the recess below the device and does not contact the semiconductor substrate except at this bonding portion. The heat-dissipating metal has is formed. Further, a via hole penetrating from the inner surface of the recess of the semiconductor substrate to the back surface of the source electrode of the device is formed in the semiconductor substrate, and the heat dissipation metal formed inside the recess also covers the inner surface of the via hole. You may form so that it may be covered.

【0008】また、本発明の半導体装置の製造方法は、
前記半導体基板の表面に前記デバイスを形成した後、そ
の半導体基板の裏面に前記デバイスの下方が開口するよ
うに形成したフォトレジストをマスクとしてエッチング
を行なうことによって前記凹部を形成し、この凹部の内
面を覆うとともに前記デバイスの下方が開口するように
形成したフォトレジストをマスクとして金めっきを行な
った後、該フォトレジストを除去することにより前記放
熱用金属を形成することを特徴とするものである。ま
た、前記凹部を形成した後、フォトレジストをマスクと
したエッチングを行なうことにより前記バイアホールを
形成し、この凹部の内面を覆うとともに前記デバイスの
下方が開口するように形成したフォトレジストをマスク
として金めっきを行なった後、該フォトレジストを除去
することにより前記放熱用金属を形成してもよい。
The method of manufacturing a semiconductor device according to the present invention is
After forming the device on the front surface of the semiconductor substrate, the recess is formed by etching using a photoresist formed on the back surface of the semiconductor substrate so that the lower side of the device is opened, and the inner surface of the recess The metal for heat dissipation is formed by performing gold plating using a photoresist formed so as to cover the device and opening the lower side of the device as a mask, and then removing the photoresist. Further, after forming the concave portion, the via hole is formed by performing etching using a photoresist as a mask, and the photoresist formed so as to cover the inner surface of the concave portion and open below the device is used as a mask. The metal for heat dissipation may be formed by removing the photoresist after performing gold plating.

【0009】[0009]

【作用】本発明の半導体装置によれば、ペレットを例え
ば金・すず(Au・Sn)ソルダー等のソルダー材によ
りパッケージにマウントする際に、350℃程度までの
加熱・冷却工程が行なわれるが、通常、GaAs等の材
料からなる半導体基板に対して熱膨張係数の大きい金等
の材料からなる放熱用金属が膨張したとしても、凹部の
内部に形成した放熱用金属と周囲の半導体基板との間に
空間部が存在するため、放熱用金属の熱膨張により生じ
る応力が周囲の半導体基板に伝わることが低減される。
According to the semiconductor device of the present invention, when the pellet is mounted on the package by a solder material such as gold / tin (Au / Sn) solder, a heating / cooling process up to about 350 ° C. is performed. Normally, even if the heat dissipation metal made of a material such as gold having a large thermal expansion coefficient expands with respect to the semiconductor substrate made of a material such as GaAs, the heat dissipation metal formed inside the recess and the surrounding semiconductor substrate Since there is a space in the structure, the stress generated by the thermal expansion of the heat-dissipating metal is prevented from being transmitted to the surrounding semiconductor substrate.

【0010】したがって、従来のPHS構造を有する半
導体装置においては、加熱工程でペレットの反りが発生
し、次の冷却工程で反りが戻る速度よりもソルダー材の
硬化速度の方が速いため、ペレットが反った状態のまま
パッケージに固定されてしまうのに対して、本発明の半
導体装置においては、上記のように放熱用金属の熱膨張
により生じる応力が周囲の半導体基板に伝わるのを低減
でき、加熱工程における反りが低減できるため、マウン
ト後のペレットがマウント前のペレットより反った状態
でパッケージに固定されることが防止される。
Therefore, in a conventional semiconductor device having a PHS structure, pellet warpage occurs in the heating step, and the curing rate of the solder material is faster than the rate at which the warpage returns in the next cooling step. In the semiconductor device of the present invention, the stress generated by the thermal expansion of the heat-dissipating metal can be reduced from being transmitted to the surrounding semiconductor substrate in the semiconductor device of the present invention, while it is fixed to the package in a warped state. Since the warpage in the process can be reduced, the pellet after mounting is prevented from being fixed to the package in a warped state as compared with the pellet before mounting.

【0011】一方、本発明の半導体装置の放熱効果につ
いては、半導体基板におけるデバイスの下方の基板厚が
他の領域の下方の基板厚よりも薄くなるように凹部を形
成したため、基板の熱抵抗が小さくなっていることに加
えて、放熱用金属がデバイスの下方の凹部の内面で半導
体基板に接合されているので、熱発生源であるデバイス
から下方に向かって流れる熱流が放熱用金属を通して充
分に放散される。
On the other hand, regarding the heat dissipation effect of the semiconductor device of the present invention, since the recess is formed so that the substrate thickness below the device in the semiconductor substrate is thinner than the substrate thickness below the other regions, the thermal resistance of the substrate is reduced. In addition to being small, the heat dissipation metal is bonded to the semiconductor substrate at the inner surface of the recess below the device, so that the heat flow flowing downward from the device, which is the heat generation source, is sufficient through the heat dissipation metal. Dissipated.

【0012】[0012]

【実施例】以下、本発明の第1の実施例について図1お
よび図2を参照して説明する。図1は本実施例の半導体
装置10を示す図であって、図1(a)は半導体装置1
0の平面図(表面)、図1(b)は平面図(裏面)、お
よび図1(c)はA−A断面図を示すものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a semiconductor device 10 of this embodiment, and FIG.
0 is a plan view (front surface), FIG. 1 (b) is a plan view (back surface), and FIG. 1 (c) is a sectional view taken along line AA.

【0013】図1(a)に示すように、GaAs基板1
1(半導体基板)上に従来の技術により活性領域12、
ドレイン電極13、ソース電極14、ゲート電極15、
絶縁膜16からなるFET17(デバイス)が形成され
ている。また、図1(b)は図1(a)のFET17部
分を裏面より見た図であり、FET17の活性領域12
の裏面にあたる位置に形成された凹部18(PHS形成
領域)の内部に金を材料としたPHS(放熱用金属)が
形成されている。
As shown in FIG. 1A, a GaAs substrate 1
1 (semiconductor substrate) on the active region 12 by a conventional technique,
Drain electrode 13, source electrode 14, gate electrode 15,
An FET 17 (device) made of the insulating film 16 is formed. Further, FIG. 1B is a view of the FET 17 portion of FIG.
A PHS (metal for heat dissipation) made of gold is formed inside the recess 18 (PHS formation region) formed at the position corresponding to the back surface of the.

【0014】そして、図1(c)は図1(a)および
(b)におけるA−A断面図であり、GaAs基板11
におけるFET17下方の基板厚が他の領域下の基板厚
よりも薄くなるようにGaAs基板11の裏面側に開口
する内面が曲面状の凹部18が形成され、この凹部18
の内面およびGaAs基板11の裏面を覆うように、例
えば膜厚50nmのチタン(Ti)と膜厚200nmの
金(Au)の2層構造からなる通電膜20が形成されて
いる。
FIG. 1C is a cross-sectional view taken along the line AA in FIGS. 1A and 1B and shows the GaAs substrate 11
In order to make the substrate thickness below the FET 17 in the region of FIG. 2 thinner than the substrate thickness under the other regions, a concave portion 18 having a curved inner surface opening to the rear surface side of the GaAs substrate 11 is formed.
A current-carrying film 20 having a two-layer structure of, for example, titanium (Ti) having a film thickness of 50 nm and gold (Au) having a film thickness of 200 nm is formed so as to cover the inner surface of the substrate and the back surface of the GaAs substrate 11.

【0015】そして、図1(c)に示すように、GaA
s基板11の前記凹部18の内面においてFET17の
活性領域12よりも若干寸法外側に至る領域で通電膜2
0を介してGaAs基板11に接合されたPHS19が
形成されている。さらに、PHS19はこの接合領域1
9a以外では通電膜20、すなわちGaAs基板11と
接触しない形状とされ、したがって、PHS19とGa
As基板11との間には空間部21が設けられている。
Then, as shown in FIG. 1 (c), GaA
In the inner surface of the recess 18 of the substrate 11, the conductive film 2 is formed in a region slightly outside the active region 12 of the FET 17 in size.
A PHS 19 joined to the GaAs substrate 11 via 0 is formed. In addition, PHS19 is this junction area 1
Except for 9a, the shape is such that it does not come into contact with the conducting film 20, that is, the GaAs substrate 11, and therefore PHS 19 and Ga
A space 21 is provided between the As substrate 11 and the As substrate 11.

【0016】次に、上記構成の半導体装置10の製造工
程を図2(a)〜(e)を参照して説明する。なお、P
HS構造を形成するに際して、ガラス板23、貼り付け
材24を使用することは従来から周知の技術であり、図
の簡略化のために図2(b)以降では省略する。まず、
図2(a)に示すように、活性領域12を有するFET
17が形成されたウエハ状のGaAs基板11の表面側
(FET17が形成された側)を、補強材としてのガラ
ス板23に例えばレジストからなる貼り付け材24を用
いて貼り付ける。そして、基板の裏面側から基板厚15
0μm程度になるまでGaAs基板11を研磨した後、
この研磨面11a上に活性領域12の裏面にあたる領域
が開口しそれ以外の領域が覆われたフォトレジスト25
を形成する。
Next, a manufacturing process of the semiconductor device 10 having the above structure will be described with reference to FIGS. Note that P
It is a well-known technique to use the glass plate 23 and the bonding material 24 when forming the HS structure, and is omitted from FIG. 2B and subsequent figures for simplification of the drawing. First,
As shown in FIG. 2A, a FET having an active region 12
The front surface side (the side where the FET 17 is formed) of the wafer-shaped GaAs substrate 11 on which 17 is formed is attached to the glass plate 23 as a reinforcing material by using an attaching material 24 made of, for example, a resist. Then, from the back side of the substrate, the substrate thickness 15
After polishing the GaAs substrate 11 to about 0 μm,
A photoresist 25 in which a region corresponding to the back surface of the active region 12 is opened and the other region is covered on the polished surface 11a.
To form.

【0017】次に、図2(b)に示すように、前記フォ
トレジスト25をマスクとして、塩素系のエッチング液
にてGaAs基板11を基板厚が30μm程度になるま
でウエットエッチングすると、エッチングが等方性に進
み内面が曲面状の凹部18が形成される。この後、前記
フォトレジスト25を除去する。次に、図2(c)に示
すように、図2(b)にて凹部18を加工したGaAs
基板11の裏面に例えばチタン(Ti)50nm、金
(Au)200nmをスパッタして通電膜20を形成す
る。そして、通電膜20上にFET17の活性領域12
よりも若干寸法外側に至る領域が開口した厚さ30μm
程度のフォトレジスト26をマスクとして形成し、前記
領域において露出した通電膜20を用いて金メッキを1
50μm程度行なうことにより、PHS19が形成され
る。この後、通電膜20とPHS19との間に介在する
フォトレジスト26を除去すると、通電膜20とPHS
19との間に空間部21が形成される。
Next, as shown in FIG. 2B, when the GaAs substrate 11 is wet-etched with a chlorine-based etching solution using the photoresist 25 as a mask until the substrate thickness reaches about 30 μm, the etching becomes uniform. The concave portion 18 having a curved inner surface is formed due to the progress of the directionality. Then, the photoresist 25 is removed. Next, as shown in FIG. 2C, GaAs having the recess 18 processed in FIG.
On the back surface of the substrate 11, for example, titanium (Ti) 50 nm and gold (Au) 200 nm are sputtered to form the conductive film 20. Then, the active region 12 of the FET 17 is formed on the conductive film 20.
Thickness of 30 μm with an area slightly outside
The photoresist 26 is formed as a mask, and gold plating is performed by using the conductive film 20 exposed in the region.
The PHS 19 is formed by carrying out about 50 μm. After that, when the photoresist 26 interposed between the conductive film 20 and the PHS 19 is removed, the conductive film 20 and the PHS 19 are removed.
A space portion 21 is formed between the space portion 19 and the space 19.

【0018】次に、図2(d)に示すように、ウエハ状
のGaAs基板11に対して個々のペレットを覆うフォ
トレジスト27をマスクとして、ペレット分離領域28
の通電膜20をイオンミリングにより除去し、ついで、
GaAs基板11自体は塩素系ガスによるエッチングに
より除去してGaAs基板11をペレット単位に分離す
る。最後に、図2(d)におけるフォトレジスト27を
除去することによって、図2(e)に示すように、Ga
As基板11とPHS19の間に空間部21を有するP
HS構造の半導体装置10が完成する。
Next, as shown in FIG. 2D, the pellet separation region 28 is formed on the wafer-shaped GaAs substrate 11 by using the photoresist 27 covering the individual pellets as a mask.
Of the current-carrying film 20 is removed by ion milling, and then,
The GaAs substrate 11 itself is removed by etching with a chlorine-based gas to separate the GaAs substrate 11 into pellet units. Finally, by removing the photoresist 27 in FIG. 2D, as shown in FIG.
P having a space portion 21 between the As substrate 11 and the PHS 19
The semiconductor device 10 having the HS structure is completed.

【0019】本実施例の半導体装置10においては、凹
部18内に形成したPHS19と周囲のGaAs基板1
1との間に空間部21が存在するため、PHS19の熱
膨張により生じる応力が周囲のGaAs基板11に伝わ
るのを低減でき、加熱工程における反りが低減できるた
め、ペレットをソルダー材を用いてパッケージにマウン
トする際に、マウント後のペレットがマウント前のペレ
ットより反った状態でパッケージに固定されるのを防止
することができる。したがって、例えばチップサイズ3
mm×0.8mmのペレットでは、従来のPHS構造の
場合、長手方向に高さ5μmの反りを有していたが、本
実施例のPHS構造を適用することにより高さ1μm以
下の反りに低減することができた。
In the semiconductor device 10 of this embodiment, the PHS 19 formed in the recess 18 and the surrounding GaAs substrate 1
Since the space 21 exists between the PHS 19 and 1, the stress generated by the thermal expansion of the PHS 19 can be reduced from being transmitted to the surrounding GaAs substrate 11, and the warpage in the heating process can be reduced. Therefore, the pellet is packaged by using the solder material. It is possible to prevent the pellets after mounting from being fixed to the package in a warped state compared to the pellets before mounting when mounting on. Therefore, for example, chip size 3
With the mm × 0.8 mm pellet, the conventional PHS structure had a warp with a height of 5 μm in the longitudinal direction, but by applying the PHS structure of the present embodiment, the warp with a height of 1 μm or less is reduced. We were able to.

【0020】そして、このペレットの反りの低減によ
り、GaAs基板11に加わる応力によってGaAs基
板11上に形成されたFET17の内部にピエゾ電荷が
発生してFETのピンチオフ電圧Vpが変動する問題
や、その他ゲート−ドレイン間耐圧が変動する問題等を
改善できるという効果と、また、ペレットの電極にワイ
ヤーをボンディングする際、ペレットの反りにより発生
するワイヤー長のばらつきが低減できることで高周波特
性の劣化を改善できるという効果を奏することができ
る。
Due to the reduction of the warp of the pellet, the stress applied to the GaAs substrate 11 causes piezo electric charges to be generated inside the FET 17 formed on the GaAs substrate 11, and the pinch-off voltage Vp of the FET fluctuates. It is possible to improve the problem that the breakdown voltage between the gate and the drain can be improved, and also, when bonding the wire to the electrode of the pellet, it is possible to reduce the variation of the wire length caused by the warp of the pellet, and thus the deterioration of the high frequency characteristics can be improved. It is possible to achieve the effect.

【0021】また、本実施例においては、FET17下
の基板厚が他の領域下の基板厚よりも薄くなるように凹
部18を形成したため、基板の熱抵抗が小さくなってい
ることに加えて、PHS19がFET17の活性領域1
2よりも若干寸法外側に至る領域でGaAs基板11に
接合されているので、熱発生源であるFET17の活性
領域12から断面視下方斜め外側に広がるように流れる
熱流をPHS19を通して充分に放散させることができ
る。したがって、本実施例のPHS構造は、ペレットの
反りを低減しながらも従来構造と同等の放熱効果を維持
することが可能である。
Further, in this embodiment, since the recess 18 is formed so that the substrate thickness under the FET 17 is thinner than the substrate thickness under the other regions, the thermal resistance of the substrate is small, and PHS19 is the active region 1 of FET17
Since it is bonded to the GaAs substrate 11 in a region slightly outside the size of 2, the heat flow flowing from the active region 12 of the FET 17, which is a heat generation source, to spread outward obliquely downward in cross section should be sufficiently dissipated through the PHS 19. You can Therefore, the PHS structure of the present embodiment can maintain the heat radiation effect equivalent to that of the conventional structure while reducing the warpage of the pellet.

【0022】さらに、PHS19を形成するために通電
膜20を設けたが、この通電膜20を最後まで除去する
ことなく用いるので、通電膜除去工程がない分だけ製造
工程の簡略化を図ることができる。また、ペレットの外
周部においてチタンと金の2層構造からなる通電膜20
によりペレットとパッケージがソルダー材を介して適度
な強度で固定されるので、FET17の各電極にワイヤ
ーボンディングを行なう際の強度を確保することができ
る。
Further, the conductive film 20 is provided to form the PHS 19, but since the conductive film 20 is used without being removed to the end, the manufacturing process can be simplified because there is no conductive film removing process. it can. In addition, the conductive film 20 having a two-layer structure of titanium and gold is formed on the outer peripheral portion of the pellet.
As a result, the pellet and the package are fixed to each other with appropriate strength through the solder material, so that the strength can be secured when wire-bonding to each electrode of the FET 17.

【0023】そして、本実施例の半導体装置10の製造
方法においては、通電膜20上にFET17の活性領域
12よりも若干寸法外側に至る領域が開口したフォトレ
ジスト26をマスクとして形成した後、金メッキを行な
うことによってGaAs基板11との間に空間部21を
有するPHS19を形成することができる。したがっ
て、本実施例のPHS構造の特徴点であるGaAs基板
11との間に空間部21を有するPHS19を、従来の
製造工程に簡単な処理工程を追加するのみで実現するこ
とができる。
In the method of manufacturing the semiconductor device 10 of this embodiment, a photoresist 26 having a region slightly outside the active region 12 of the FET 17 opened is formed on the conductive film 20 as a mask, and then gold plating is performed. By performing the above, the PHS 19 having the space portion 21 can be formed between the PHS 19 and the GaAs substrate 11. Therefore, the PHS 19 having the space portion 21 between the PHS structure and the GaAs substrate 11, which is a feature of the PHS structure of this embodiment, can be realized only by adding a simple processing step to the conventional manufacturing step.

【0024】以下、本発明の第2の実施例について図3
を参照して説明する。図3は本実施例の半導体装置30
を示す断面図であって、この半導体装置30は、第1実
施例の半導体装置10と同様、GaAs基板31の裏面
側に凹部32が形成されるとともに、熱抵抗の低減とソ
ース接地インダクタンスの低減を図るために、ソース電
極33が形成された領域直下のGaAsを取り除くこと
により凹部32内面からソース電極33裏面までを貫通
するバイアホール34が設けられたものである。
A second embodiment of the present invention will be described below with reference to FIG.
Will be described with reference to. FIG. 3 shows a semiconductor device 30 of this embodiment.
FIG. 4 is a cross-sectional view showing the semiconductor device 30 in the same manner as the semiconductor device 10 of the first embodiment, in which the recess 32 is formed on the back surface side of the GaAs substrate 31, and the thermal resistance and the source grounded inductance are reduced. In order to achieve the above, by removing the GaAs immediately below the region where the source electrode 33 is formed, a via hole 34 penetrating from the inner surface of the recess 32 to the back surface of the source electrode 33 is provided.

【0025】また、第1実施例と同様、FET35の活
性領域よりも若干寸法外側に至る領域でGaAs基板3
1に接合されたPHS36が形成されているが、それと
同時にPHS36を構成する金はバイアホール34の内
部にも充填されている。そして、PHS36はこの接合
領域36a以外ではGaAs基板31と接触しない形状
とされ、したがって、PHS36とGaAs基板31と
の間には空間部37が設けられている。
Also, as in the first embodiment, the GaAs substrate 3 is formed in a region slightly outside the active region of the FET 35.
Although the PHS 36 joined to 1 is formed, at the same time, the gold constituting the PHS 36 is also filled inside the via hole 34. The PHS 36 has a shape that does not come into contact with the GaAs substrate 31 except for the bonding region 36a, and therefore, the space 37 is provided between the PHS 36 and the GaAs substrate 31.

【0026】本実施例の半導体装置30は、図2に示し
た第1実施例の半導体装置10の製造工程にバイアホー
ル形成工程を追加するのみで製造することができる。す
なわち、図2(b)に示したように、GaAs基板に凹
部を形成し、フォトレジストを除去した後、新たなフォ
トレジスト(図示しない)をマスクとして、活性領域内
にあるFETのソース電極に対してバイアホール34を
塩素系のガスを用いたドライエッチングにより形成す
る。この後、図2(c)〜(e)と同様のプロセスを経
て、金めっきによりバイアホール34の内部に金を充填
することと同時にPHS36を形成することによって、
本実施例の半導体装置30が完成する。
The semiconductor device 30 of this embodiment can be manufactured by only adding a via hole forming process to the manufacturing process of the semiconductor device 10 of the first embodiment shown in FIG. That is, as shown in FIG. 2B, after forming a recess in the GaAs substrate and removing the photoresist, a new photoresist (not shown) is used as a mask to form the source electrode of the FET in the active region. On the other hand, the via hole 34 is formed by dry etching using a chlorine-based gas. After that, through the same process as in FIGS. 2C to 2E, by filling the inside of the via hole 34 with gold by gold plating and simultaneously forming the PHS 36,
The semiconductor device 30 of this embodiment is completed.

【0027】したがって、本実施例の半導体装置30に
よれば、第1実施例の半導体装置10の製造工程にバイ
アホール形成工程を追加するのみでバイアホールを有す
る半導体装置一般の効果、すなわち熱抵抗の低減とソー
ス接地インダクタンスの低減が図れることに加えて、第
1実施例と同様、PHS36とGaAs基板31との間
に空間部37が存在するため、PHS36の熱膨張によ
る応力がGaAs基板31に伝わることを低減でき、ペ
レットの反りを低減することができる。
Therefore, according to the semiconductor device 30 of the present embodiment, the general effect of a semiconductor device having a via hole, that is, thermal resistance, is obtained by only adding a via hole forming step to the manufacturing process of the semiconductor device 10 of the first embodiment. And the grounded source inductance can be reduced, and similarly to the first embodiment, since the space 37 exists between the PHS 36 and the GaAs substrate 31, the stress due to the thermal expansion of the PHS 36 is applied to the GaAs substrate 31. Transmission can be reduced and warpage of pellets can be reduced.

【0028】[0028]

【発明の効果】以上詳細に説明したように、本発明の半
導体装置においては、半導体基板に凹部を形成してデバ
イスの下方の基板厚を薄くしたことに加えて、凹部内に
形成した放熱用金属と周囲の半導体基板との間に空間部
が存在するため、放熱用金属の熱膨張により生じる応力
が半導体基板に伝わることを低減でき、加熱工程におけ
る反りが低減できるため、ペレットをソルダー材を用い
てパッケージにマウントする際に、マウント後のペレッ
トがマウント前のペレットより反った状態でパッケージ
に固定されるのを防止することができる。したがって、
このペレットの反りの低減により、半導体基板に加わる
応力によって半導体基板上に形成された電界効果トラン
ジスタ等のデバイスの内部にピエゾ電荷が発生してデバ
イスのピンチオフ電圧が変動する問題や、その他ゲート
−ドレイン間耐圧が変動する問題等を改善できるという
効果と、また、ペレットの電極にワイヤーをボンディン
グする際、ペレットの反りに起因するワイヤー長のばら
つきが低減でき高周波特性の劣化を改善できるという効
果を奏することができる。
As described above in detail, in the semiconductor device of the present invention, in addition to forming the recess in the semiconductor substrate to reduce the substrate thickness below the device, the heat dissipation formed in the recess Since there is a space between the metal and the surrounding semiconductor substrate, the stress generated by the thermal expansion of the heat-dissipating metal can be reduced from being transmitted to the semiconductor substrate, and the warpage in the heating process can be reduced. When used for mounting in a package, the pellet after mounting can be prevented from being fixed to the package in a warped state than the pellet before mounting. Therefore,
Due to the reduction of the warp of the pellet, the stress applied to the semiconductor substrate causes piezo electric charges inside the device such as a field effect transistor formed on the semiconductor substrate to change the pinch-off voltage of the device. It has an effect of improving the problem of fluctuation in withstand voltage, and also has an effect of reducing variation in wire length due to warpage of the pellet when bonding the wire to the electrode of the pellet and improving deterioration of high frequency characteristics. be able to.

【0029】一方、本発明の半導体装置の放熱効果につ
いては、半導体基板におけるデバイス下の基板厚が他の
領域下の基板厚よりも薄くなるように凹部を形成したた
め、基板の熱抵抗が小さくなっていることに加えて、放
熱用金属がデバイスの下方の凹部の内面で半導体基板に
接合されているので、熱発生源であるデバイスから下方
に向かって流れる熱流を放熱用金属を通して充分に放散
させることができる。したがって、本発明の半導体装置
は、ペレットの反りを低減しながらも従来の半導体装置
と同等の放熱効果を維持することが可能である。
On the other hand, regarding the heat dissipation effect of the semiconductor device of the present invention, since the recess is formed so that the substrate thickness under the device in the semiconductor substrate is thinner than the substrate thickness under the other regions, the thermal resistance of the substrate is reduced. In addition, since the heat dissipation metal is bonded to the semiconductor substrate at the inner surface of the recess below the device, the heat flow flowing downward from the device, which is the heat generation source, is sufficiently dissipated through the heat dissipation metal. be able to. Therefore, the semiconductor device of the present invention can maintain the heat radiation effect equivalent to that of the conventional semiconductor device while reducing the warpage of the pellet.

【0030】また、本発明の半導体装置の製造方法にお
いては、半導体基板に凹部を形成した後、凹部の内面を
覆うとともに前記デバイスの下方が開口するように形成
したフォトレジストをマスクとして金めっきを行なうこ
とによって半導体基板との間に空間部を有する放熱用金
属を形成することができる。したがって、本発明の特徴
点である半導体基板との間に空間部を有する放熱用金属
を、従来の製造工程に簡単な処理工程を追加するのみで
実現することができる。
Further, in the method for manufacturing a semiconductor device of the present invention, after forming a recess in a semiconductor substrate, gold plating is performed using a photoresist formed so as to cover the inner surface of the recess and open below the device. By doing so, a heat-dissipating metal having a space between the semiconductor substrate and the semiconductor substrate can be formed. Therefore, the heat-dissipating metal having the space between the semiconductor substrate and the semiconductor substrate, which is a feature of the present invention, can be realized only by adding a simple processing step to the conventional manufacturing step.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である半導体装置を示す
(a)平面図(表面)、(b)平面図(裏面)、(c)
(a)および(b)中のA−A線に沿う断面図である。
1A and 1B are plan views (front surface), (b) plan view (back surface), and (c) showing a semiconductor device according to a first embodiment of the present invention.
It is sectional drawing which follows the AA line in (a) and (b).

【図2】同、半導体装置の製造工程を順を追って示す断
面図である。
FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor device step by step.

【図3】本発明の第2の実施例である半導体装置を示す
断面図である。
FIG. 3 is a sectional view showing a semiconductor device according to a second embodiment of the present invention.

【図4】従来の一例であるPHS構造を有する半導体装
置を示す(a)平面図、(b)(a)中のB−B線に沿
う断面図、(c)(a)中のC−C線に沿う断面図であ
る。
4A is a plan view showing a semiconductor device having a PHS structure as an example of the related art, FIG. 4B is a sectional view taken along line BB in FIG. 4B, and C- in FIG. 4C. It is sectional drawing which follows the C line.

【符号の説明】[Explanation of symbols]

10,30 半導体装置 11,31 GaAs基板(半導体基板) 17,35 FET(デバイス) 18,32 凹部 19,36 PHS(放熱用金属) 21,37 空間部 25,26 フォトレジスト 33 ソース電極 34 バイアホール 10, 30 Semiconductor device 11, 31 GaAs substrate (semiconductor substrate) 17, 35 FET (device) 18, 32 Recessed portion 19, 36 PHS (metal for heat dissipation) 21, 37 Space portion 25, 26 Photoresist 33 Source electrode 34 Via hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に熱発生源となるデバイス
が形成され、前記半導体基板の裏面側に前記デバイスか
ら生じる熱を放熱するための放熱用金属が形成された半
導体装置において、 前記半導体基板に、該半導体基板における前記デバイス
下方の基板厚が他の領域下方の基板厚よりも薄くなるよ
うに前記半導体基板の裏面側に開口する凹部が形成さ
れ、該凹部の内部には、前記デバイス下方の前記凹部の
内面で前記半導体基板に接合されるとともにこの接合部
分以外では前記半導体基板と接触しない空間部を有する
放熱用金属が形成されたことを特徴とする半導体装置。
1. A semiconductor device in which a device serving as a heat generation source is formed on a semiconductor substrate, and a heat radiating metal for radiating heat generated from the device is formed on a back surface side of the semiconductor substrate. In the semiconductor substrate, a recess opening to the back side of the semiconductor substrate is formed so that the substrate thickness below the device in the semiconductor substrate is thinner than the substrate thickness below the other region. The semiconductor device is characterized in that a heat-dissipating metal is formed on the inner surface of the concave portion, the heat-dissipating metal having a space portion that is joined to the semiconductor substrate and does not contact the semiconductor substrate except the joint portion.
【請求項2】 請求項1に記載の半導体装置において、 前記半導体基板の凹部の内面から前記デバイスのソース
電極裏面まで貫通するバイアホールが前記半導体基板に
形成されるとともに、前記凹部の内部に形成された前記
放熱用金属が前記バイアホールの内面をも覆うように形
成されたことを特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein a via hole penetrating from the inner surface of the recess of the semiconductor substrate to the back surface of the source electrode of the device is formed in the semiconductor substrate and is formed inside the recess. The semiconductor device, wherein the heat-dissipating metal is formed so as to cover the inner surface of the via hole.
【請求項3】 請求項1に記載の半導体装置の製造方法
であって、 前記半導体基板の表面に前記デバイスを形成した後、そ
の半導体基板の裏面に前記デバイスの下方が開口するよ
うに形成したフォトレジストをマスクとしてエッチング
を行なうことにより前記凹部を形成し、この凹部の内面
を覆うとともに前記デバイスの下方が開口するように形
成したフォトレジストをマスクとして金めっきを行なっ
た後、該フォトレジストを除去することにより前記放熱
用金属を形成することを特徴とする半導体装置の製造方
法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein after the device is formed on the front surface of the semiconductor substrate, the device is formed on the back surface of the semiconductor substrate so that the lower side of the device is opened. The recess is formed by etching using the photoresist as a mask, gold plating is performed using the photoresist formed so as to cover the inner surface of the recess and the lower side of the device is opened, and then the photoresist is removed. A method of manufacturing a semiconductor device, wherein the heat dissipation metal is formed by removing the heat dissipation metal.
【請求項4】 請求項2に記載の半導体装置の製造方法
であって、 前記半導体基板の表面に前記デバイスを形成した後、そ
の半導体基板の裏面に前記デバイスの下方が開口するよ
うに形成したフォトレジストをマスクとしてエッチング
を行なうことにより前記凹部を形成し、ついで、フォト
レジストをマスクとしたエッチングを行なうことにより
前記バイアホールを形成した後、前記凹部の内面を覆う
とともに前記デバイスの下方が開口するように形成した
フォトレジストをマスクとして金めっきを行なった後、
該フォトレジストを除去することにより前記放熱用金属
を形成することを特徴とする半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 2, wherein the device is formed on the front surface of the semiconductor substrate, and then the lower side of the device is formed on the back surface of the semiconductor substrate. The recess is formed by etching using the photoresist as a mask, and then the via hole is formed by performing etching using the photoresist as a mask. Then, the inner surface of the recess is covered and the lower side of the device is opened. After performing gold plating using the photoresist formed as described above as a mask,
A method of manufacturing a semiconductor device, wherein the heat dissipation metal is formed by removing the photoresist.
JP7004776A 1995-01-17 1995-01-17 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2713200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7004776A JP2713200B2 (en) 1995-01-17 1995-01-17 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7004776A JP2713200B2 (en) 1995-01-17 1995-01-17 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08195402A true JPH08195402A (en) 1996-07-30
JP2713200B2 JP2713200B2 (en) 1998-02-16

Family

ID=11593242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7004776A Expired - Lifetime JP2713200B2 (en) 1995-01-17 1995-01-17 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2713200B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074948A (en) * 1998-02-19 2000-06-13 Nec Corporation Method for manufacturing thin semiconductor device
KR100311826B1 (en) * 1999-12-18 2001-10-17 이형도 Method for hermetic packaging in microsensors
US6316827B1 (en) 1997-09-12 2001-11-13 Nec Corporation Semiconductor device having improved temperature distribution
WO2010097859A1 (en) * 2009-02-26 2010-09-02 パナソニック株式会社 Mounted transistor and method of producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172721A (en) * 1983-03-22 1984-09-29 Mitsubishi Electric Corp Metal filling into through-hole of substrate
JPH04165630A (en) * 1990-10-29 1992-06-11 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0529506A (en) * 1991-07-25 1993-02-05 Nec Corp Semiconductor device
JPH06334197A (en) * 1993-05-26 1994-12-02 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172721A (en) * 1983-03-22 1984-09-29 Mitsubishi Electric Corp Metal filling into through-hole of substrate
JPH04165630A (en) * 1990-10-29 1992-06-11 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0529506A (en) * 1991-07-25 1993-02-05 Nec Corp Semiconductor device
JPH06334197A (en) * 1993-05-26 1994-12-02 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316827B1 (en) 1997-09-12 2001-11-13 Nec Corporation Semiconductor device having improved temperature distribution
US6074948A (en) * 1998-02-19 2000-06-13 Nec Corporation Method for manufacturing thin semiconductor device
KR100311826B1 (en) * 1999-12-18 2001-10-17 이형도 Method for hermetic packaging in microsensors
WO2010097859A1 (en) * 2009-02-26 2010-09-02 パナソニック株式会社 Mounted transistor and method of producing same
US8450146B2 (en) 2009-02-26 2013-05-28 Panasonic Corporation Transistor assembly and method for manufacturing the same

Also Published As

Publication number Publication date
JP2713200B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US6166436A (en) High frequency semiconductor device
JP3147048B2 (en) Semiconductor device
JP3144377B2 (en) Method for manufacturing semiconductor device
JPH08203924A (en) Semiconductor device
US11380601B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2868008B1 (en) Semiconductor device and manufacturing method thereof
JP2713200B2 (en) Semiconductor device and manufacturing method thereof
JP2002252351A (en) Semiconductor device
US6501182B2 (en) Semiconductor device and method for making the same
JPH04293268A (en) Semiconductor device and manufacture thereof
JPH09266215A (en) Semiconductor device for high frequency high output and manufacture thereof
JP7095844B2 (en) Semiconductor devices and their manufacturing methods
JP2845232B2 (en) Semiconductor device
JPH09232338A (en) Semiconductor device and manufacture thereof
JP2758888B2 (en) Semiconductor device
JP5343301B2 (en) Semiconductor device and manufacturing method thereof
JP2725696B2 (en) Semiconductor device
JP3302811B2 (en) Microwave semiconductor device
JPH05152340A (en) Field-effect transistor
JPH0529506A (en) Semiconductor device
JPH04116836A (en) Microwave semiconductor device
JPH05243396A (en) Semiconductor device and its manufacture
JP2002314036A (en) Semiconductor device
JPH06334197A (en) Semiconductor device and manufacture
JPH0362930A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930