JPH0819461B2 - High-tensile steel plate manufacturing method - Google Patents

High-tensile steel plate manufacturing method

Info

Publication number
JPH0819461B2
JPH0819461B2 JP63309850A JP30985088A JPH0819461B2 JP H0819461 B2 JPH0819461 B2 JP H0819461B2 JP 63309850 A JP63309850 A JP 63309850A JP 30985088 A JP30985088 A JP 30985088A JP H0819461 B2 JPH0819461 B2 JP H0819461B2
Authority
JP
Japan
Prior art keywords
less
steel
toughness
strength
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63309850A
Other languages
Japanese (ja)
Other versions
JPH02156021A (en
Inventor
昭宏 伊達
潔 西岡
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63309850A priority Critical patent/JPH0819461B2/en
Publication of JPH02156021A publication Critical patent/JPH02156021A/en
Publication of JPH0819461B2 publication Critical patent/JPH0819461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は特に、溶接性及び低温靭性の優れた高張力厚
鋼板の製造法に関するもので、鉄鋼業においては厚板、
ホットコイルなどに適用可能である。この方法で製造し
た鋼は低温靭性に優れ、かつ安価であるという特徴をも
ち、主にラインパイプなど大径鋼管全般に用いることが
できる。
TECHNICAL FIELD The present invention relates to a method for producing a high-strength steel plate having excellent weldability and low-temperature toughness.
It can be applied to hot coils. The steel produced by this method is characterized by being excellent in low temperature toughness and being inexpensive, and can be mainly used for large diameter steel pipes such as line pipes in general.

(従来の技術) 近年におけるエネルギー需要の増大により、石油、天
然ガスの経済的輸送手段としてのラインパイプの建設が
活発化し、さらに北極海沿岸地域やシベリアなどの寒冷
地において多数の大規模な油田、ガス田が発見されるに
至り、今日のラインパイプは長距離、大量輸送が前提と
なった。
(Prior art) With the recent increase in energy demand, the construction of line pipes as an economical means of transporting oil and natural gas has been activated, and a large number of large oil fields have been developed in the cold regions such as the Arctic coast and Siberia. With the discovery of the gas field, today's linepipes were premised on long-distance, mass transportation.

このため経済性の点からラインパイプは大口径高圧化
及び薄肉化の一途をたどり、素材に対してはAPIX70,X80
(TS60〜70kg f/mm2)クラスの高強度と優れた低温靭性
が要求されるようになった。また現地でのフィールド溶
接の効率化のため小入熱の自動溶接が普及しつつあり、
溶接部の硬化、割れ防止の観点から溶接性に対する要求
が厳格化してきた。
For this reason, from the point of economic efficiency, line pipes continue to increase in diameter and pressure and become thinner, and APIX70, X80
(TS60-70kg f / mm 2 ) class high strength and excellent low temperature toughness are now required. In addition, automatic welding with small heat input is becoming popular to improve the efficiency of field welding locally.
Requirements for weldability have become stricter from the viewpoint of hardening and crack prevention of welds.

従来寒冷地使用のラインパイプ素材はNb,V等の細粒
化、析出硬化元素を含有させたフェライト・パーライト
鋼の制御圧延によって製造していた。しかし、ラインパ
イプの高強度、高靭性化及び溶接性の厳格化傾向に対し
て、従来のNb,V等を含有させたフェライト・パーライト
鋼では要求品質特製、特に強度及び溶接性を満足するこ
とは困難となってきた。
Conventionally, line pipe materials used in cold regions have been manufactured by the controlled rolling of ferrite / pearlite steel containing Nb, V and other fine-grained and precipitation hardening elements. However, in contrast to the trend toward higher strength, higher toughness and stricter weldability of line pipes, conventional ferrite-pearlite steels containing Nb, V, etc. must satisfy the required quality special characteristics, especially strength and weldability. Has become difficult.

これに対処するため、C含有量を下げ、パーライト量
を少なくして溶接性、靭性の改善を図ったPearlite Red
uced Steel(略称PRS)や、低C,高Mn化し、Nb,Moを含有
させたAcicular Ferrite鋼(以下AF鋼と言う)が開発実
用化されている。しかしながら、これらの鋼はいずれも
フェライト・パーライト組織で強度的には厚み15mmでTS
60kg f/mm2が限界で、溶接性に関しても十分に満足でき
るものではなかった。
In order to deal with this, the Pearlite Red is designed to improve weldability and toughness by reducing the C content and reducing the amount of pearlite.
uced Steel (abbreviated as PRS) and Acicular Ferrite steel (hereinafter referred to as AF steel) that contains low carbon and high Mn and contains Nb and Mo have been developed and put to practical use. However, all of these steels have a ferrite / pearlite structure and a strength of 15 mm
The limit was 60 kg f / mm 2 , and weldability was not fully satisfactory.

そこで、TS60〜70kg f/mm2(APIX70〜80クラス)の強
度と優れた低温靭性を得るために、鋼組織の微細なベイ
ナイト化を図るNb−B複合添加鋼が開発された(特開昭
58−77528号公報)。
Therefore, in order to obtain strength of TS60 to 70 kg f / mm 2 (APIX70 to 80 class) and excellent low temperature toughness, Nb-B composite additive steel has been developed which aims to make the steel structure fine bainite.
58-77528).

しかしこの鋼では、微細なベイナイト組織を得るため
にはスラブ再加熱時に固溶Nbを充分に確保する必要があ
った。その結果Cを非常に低くしなければならず、製鋼
コストの増大を招いていた。
However, in this steel, in order to obtain a fine bainite structure, it was necessary to secure a sufficient amount of solute Nb during reheating of the slab. As a result, C has to be made extremely low, resulting in an increase in steelmaking cost.

そのため高強度で低温靭性に優れ、かつ大量生産可能
な安価な鋼材の開発が強く望まれていた。
Therefore, it has been strongly desired to develop an inexpensive steel material having high strength, excellent low temperature toughness, and capable of mass production.

(発明が解決しようとする課題) 本発明はラインパイプなど大径鋼管用高張力鋼材を安
価に提供するためのものである。この方法で製造した鋼
は高強度で低温靭性に優れ、かつ安価であるという特徴
をもち、工業的な大量生産に適している。
(Problems to be Solved by the Invention) The present invention is to provide a high-strength steel material for a large-diameter steel pipe such as a line pipe at a low cost. The steel produced by this method is characterized by high strength, excellent low temperature toughness, and low cost, and is suitable for industrial mass production.

(課題を解決するための手段) 本発明の要旨は重量%でC:0.04〜0.12%、Si:0.5%以
下、Mn:1.0〜2.0%、P:0.03%以下、S:0.01%以下、Ti:
0.03〜0.10%、B:0.0005〜0.0020%、Al:0.05%以下、
N:0.005%以下に、必要に応じてCr:0.05〜0.30%、Cu:
0.05〜0.30%の一種または二種を含有し、残部が鉄及び
不可避的不純物からなる鋼片を1100〜1250℃の温度範囲
に加熱して、900℃以下の累積圧下量60%以上、終了温
度680〜800℃で圧延を行なった後、空冷または冷却速度
10〜40℃/secで550〜350℃の温度まで加速冷却、その後
空冷することである。
(Means for Solving the Problems) The gist of the present invention is, by weight%, C: 0.04 to 0.12%, Si: 0.5% or less, Mn: 1.0 to 2.0%, P: 0.03% or less, S: 0.01% or less, Ti. :
0.03-0.10%, B: 0.0005-0.0020%, Al: 0.05% or less,
N: 0.005% or less, Cr: 0.05 to 0.30%, Cu:
A steel slab containing 0.05 to 0.30% of one or two kinds, the balance of which is iron and unavoidable impurities, is heated to a temperature range of 1100 to 1250 ° C, and the cumulative reduction amount of 900 ° C or less is 60% or more, and the end temperature. After rolling at 680-800 ℃, air cooling or cooling rate
Accelerated cooling to a temperature of 550 to 350 ° C at 10 to 40 ° C / sec, followed by air cooling.

(作用) 以下、本発明について詳細に説明する。(Operation) Hereinafter, the present invention will be described in detail.

本発明鋼の著しい特徴は、(1)Nbの代わりにTiを用
い、かつ微量Bを複合添加して圧延組織のベイナイト化
と微細析出TiC,TiNによる母材及び溶接部の強度、、靭
性の向上、(2)Nbよりγ(オーステナイト)相に固溶
し易いTiを用いているため高C化が可能で、Ti以外の合
金成分が少ないことによる製鋼コストの低減、(3)加
熱後のCRによる圧延組織の細粒化にある。
The remarkable features of the steel of the present invention are: (1) Ti is used in place of Nb, and a trace amount of B is added in combination to bainite the rolled structure and the strength and toughness of the base metal and welded portion due to fine precipitation TiC and TiN. Improved, (2) Ti is used because it is more likely to form a solid solution in the γ (austenite) phase than Nb, so high C can be achieved, and the steelmaking cost is reduced due to the small amount of alloy components other than Ti. (3) After heating There is a refinement of rolling structure by CR.

従来のフェライト・パーライト組織では、安価に高強
度を得ることは不可能であり、圧延組織のベイナイト化
によって、強度の向上を図る必要がある。この目的のた
め焼入性向上効果のあるBの利用が極めて有効である。
With the conventional ferrite / pearlite structure, it is impossible to obtain high strength at low cost, and it is necessary to improve the strength by making the rolling structure bainite. For this purpose, the use of B, which has the effect of improving hardenability, is extremely effective.

Bは微量(5〜20ppm)で圧延組織のベイナイト化に
有効でかつ安価なため本発明鋼にとって必須の元素であ
る。しかし、Bは溶接部靭性、溶接性にとって極めて有
害であるため、Bの含有量についてはとりわけ十分な配
慮が必要である。B量が0.0020%より多いとHAZが硬化
するだけでなく、オーステナイト粒界にB化合物が生成
する。したがってB量の上限を0.0020%とすることが必
要である。
A small amount (5 to 20 ppm) of B is effective for bainizing a rolled structure and is inexpensive, so it is an essential element for the steel of the present invention. However, since B is extremely harmful to the weld toughness and weldability, it is necessary to pay particular attention to the B content. When the amount of B is more than 0.0020%, not only the HAZ is hardened, but also the B compound is formed at the austenite grain boundary. Therefore, it is necessary to set the upper limit of the amount of B to 0.0020%.

一方Bの焼入性の安定確保のためには少なくとも0.00
05%が必要であり、この量は通常の焼入焼戻処理におけ
る場合より多い。最も好ましい含有量は0.0010〜0.0015
%である。
On the other hand, at least 0.00 is required to secure the stable hardenability of B.
05% is required, and this amount is larger than that in the usual quenching and tempering process. The most preferable content is 0.0010 to 0.0015
%.

焼入性に効果のあるBの存在形態は圧延終了後の冷却
時にオーステナイト粒界に均一に偏析した状態であり、
析出物になると効果がなくなる。したがって固溶Bの適
性確保が焼入性を安定して向上させるために必要である
が、Bは窒化物BNを形成し易いため、より強力な窒化物
形成元素でNを固定しておく必要がある。このためTiを
添加することは非常に有効である。
The existing form of B, which has an effect on hardenability, is a state in which it is uniformly segregated at the austenite grain boundaries during cooling after the completion of rolling,
The effect disappears when it becomes a precipitate. Therefore, it is necessary to secure the suitability of solid solution B in order to stably improve the hardenability, but since B easily forms nitride BN, it is necessary to fix N with a stronger nitride forming element. There is. Therefore, it is very effective to add Ti.

さらにベイナイト鋼の靭性は結晶粒度依存性が極めて
強いことから、ベイナイト鋼の母材、HAZ靭性を向上さ
せ、ラインパイプ素材としてふさわしい低温靭性を確保
するためには、圧延組織及びHAZの徹底的な細粒化を図
る必要がある。このためには後述する加熱圧延条件の限
定と合せて、合金元素としてのTiの有効利用を図ること
が重要である。
Furthermore, since the toughness of bainite steel has a very strong grain size dependency, in order to improve the base metal and HAZ toughness of bainite steel and to secure the low temperature toughness suitable for line pipe materials, the rolling structure and HAZ must be thoroughly It is necessary to reduce the grain size. For this purpose, it is important to make effective use of Ti as an alloying element together with the limitation of heating and rolling conditions described later.

上述の如くTiはNをTiNとして固定しBの焼入性向上
効果を十分に発揮させる他、鋼片中に微細析出したTiN,
TiC(0.05μ以下)は加熱時のオーステナイト粒(以下
加熱γ粒と言う)を細粒化し、圧延組織の細粒化に有効
であり、また鋼板中に存在する微細TiN,TiCは溶接時にH
AZ組織を細粒化する。
As described above, Ti fixes N as TiN to sufficiently exert the effect of improving the hardenability of B, and TiN finely precipitated in the steel slab,
TiC (0.05μ or less) refines austenite grains during heating (hereinafter referred to as heated γ grains) and is effective for grain refinement of the rolling structure. Fine TiN and TiC present in the steel sheet are
The AZ structure is refined.

しかしながら、通常の製鋼法で生成する粗大なTiNは
靭性に対し悪影響を与える。従ってTiを添加し、これを
逆に母材及びHAZの靭性向上に役立てるためには、TiNを
微細析出させることが、この鋼をラインパイプに適用す
る上で必須である。
However, the coarse TiN produced by the conventional steelmaking process adversely affects the toughness. Therefore, in order to add Ti and to use it to improve the toughness of the base material and HAZ, fine precipitation of TiN is essential for applying this steel to line pipes.

また高強度鋼を大量にしかも安価に製造するには、他
の高価な合金成分の添加を極力避ける必要があるため、
Tiを化学量論的にNを固定するのに十分である以上に添
加し、TiCを析出させ強度を確保する必要がある。
Also, in order to produce high-strength steel in large quantities and at low cost, it is necessary to avoid the addition of other expensive alloy components as much as possible,
It is necessary to add Ti in an amount more than stoichiometrically to fix N to precipitate TiC and secure the strength.

このためにはTi,N量を合せて制限することが有効であ
り、Ti,N量をそれぞれ0.03〜0.10%,0.005%以下に限定
する。Tiの下限はそれ以下であるとTiC不足で母材の強
度の確保が困難であり、また母材とHAZの靭性を向上さ
せるための必要最小量である。一方Ti,N量の上限は、こ
れを超えると通常の製鋼工程では微細なTiNが得られ
ず、また過剰のTiCが析出し母材及びHAZ靭性を劣化させ
るためである。
For this purpose, it is effective to limit the amounts of Ti and N together, and the amounts of Ti and N are limited to 0.03 to 0.10% and 0.005% or less, respectively. If the lower limit of Ti is less than that, it is difficult to secure the strength of the base metal due to lack of TiC, and it is the minimum amount necessary to improve the toughness of the base metal and HAZ. On the other hand, the upper limit of the amount of Ti, N is that if it exceeds this, fine TiN cannot be obtained in the ordinary steelmaking process, and excessive TiC precipitates to deteriorate the base metal and HAZ toughness.

以下成分範囲限定理由について説明する。 The reasons for limiting the component ranges will be described below.

前記特徴をもつ本発明鋼中、第1の発明の鋼の成分範
囲はC:0.04〜0.12%、Si:0.5%以下、Mn:1.0〜2.0%、
P:0.03%以下、S:0.01%以下、Ti:0.03〜0.10%、B:0.0
005〜0.0020%、Al:0.05%以下、N:0.005%以下を含有
させたものである。
In the steel of the present invention having the above characteristics, the composition range of the steel of the first invention is C: 0.04 to 0.12%, Si: 0.5% or less, Mn: 1.0 to 2.0%,
P: 0.03% or less, S: 0.01% or less, Ti: 0.03 to 0.10%, B: 0.0
005 to 0.0020%, Al: 0.05% or less, N: 0.005% or less.

Ti,B,Nについては前述した通りである。 Ti, B and N are as described above.

C含有量を0.04〜0.12%に限定した理由は、溶接性の
向上と強度の確保及び製鋼コスト低減のためである。即
ちラインパイプでは中継溶接のため小入熱の現地溶接が
行われるが、この溶接部は硬化し易く、各種の溶接割れ
が発生し、これを起点としてラインパイプが破壊する場
合がある。しかし無数の割れを完全に補修溶接するには
莫大な費用を必要とし、溶接時にできる限り発生しない
ように配慮することが肝要である。
The reason for limiting the C content to 0.04 to 0.12% is to improve weldability, ensure strength, and reduce steelmaking costs. That is, in the line pipe, field welding with a small heat input is performed due to relay welding, but this weld portion is easily hardened and various weld cracks occur, which may cause the line pipe to break. However, in order to completely repair and weld a myriad of cracks, enormous cost is required, and it is important to consider so as not to occur during welding.

このためには溶接棒、溶接条件等の選定も重要である
が、まず第1に硬化性が少ないラインパイプ素材を使用
することが極めて重要である。そのためC含有量の上限
を0.12%とした。
For this purpose, it is important to select a welding rod, welding conditions and the like, but first of all, it is extremely important to use a line pipe material having a low hardening property. Therefore, the upper limit of the C content is 0.12%.

またベイナイト鋼では母材及び溶接部に高炭素島状マ
ルテンサイトが多量に生成し、靭性、対水素誘起割れ性
を劣化させるが、島状マルテンサイトの量を低減し、微
細に分散させ、これらの特性を向上させるためにも低C
化は有効である。
Also, in bainitic steel, a large amount of high-carbon island martensite is generated in the base material and the welded portion, which deteriorates toughness and hydrogen-induced cracking resistance, but reduces the amount of island martensite and finely disperses them. Low C to improve the characteristics of
The conversion is effective.

しかしながら余りにも極端なC含有量の低減は、Tiの
炭窒化物による析出強化、微細化効果を弱め、また母材
及び溶接部の強度確保が困難となり、さらに製鋼コスト
の上昇を招くため下限を0.04%に限定する。
However, too extreme reduction of the C content weakens the precipitation strengthening and refinement effects of Ti carbonitrides, and it becomes difficult to secure the strength of the base metal and welded parts, which further increases the steelmaking cost. Limited to 0.04%.

Siは脱酸上、鋼に必然的に含有される元素であるが、
Siは溶接性及び溶接部の靭性対策上好ましくない元素で
あるため、その上限を0.5%とした。
Si is an element necessarily contained in steel for deoxidation,
Since Si is an element that is not preferable in terms of weldability and toughness of the weld zone, its upper limit was made 0.5%.

Mnは本発明鋼の変態点を低下させ、CRによる材質向上
効果を高め、また圧延組織のベイナイト化を図って強
度、靭性を同時に向上せしめる極めて重要な元素であ
る。しかし、1.0%未満ではベイナイト化が不十分とな
り目的とする強度、靭性が得られないため下限を1.0%
とした。
Mn is an extremely important element that lowers the transformation point of the steel of the present invention, enhances the material improvement effect by CR, and bainites the rolled structure to simultaneously improve strength and toughness. However, if it is less than 1.0%, bainite is insufficient and the desired strength and toughness cannot be obtained, so the lower limit is 1.0%.
And

一方Mnが多過ぎると焼入性が増加し、島状マルテンサ
イトが生成し、母材及びHAZの靭性が劣化するばかり
か、炭素当量が高くなって溶接性を阻害するため上限を
2.0%とした。望ましいMnの範囲は1.4〜1.7%である。
On the other hand, if Mn is too much, hardenability increases, island martensite is formed, not only the toughness of the base metal and HAZ deteriorates, but also the carbon equivalent increases and the weldability is impaired, so the upper limit is set.
It was set to 2.0%. A desirable Mn range is 1.4 to 1.7%.

Alは脱酸上、この種のキルド鋼に必然的に含有される
元素であるが、Al totalが0.05%を超えると、HAZの靭
性が劣化するため上限を0.05%とした。尚、加熱時にAl
Nが固溶せず、NがAlによって固定される場合にはAlはT
iと同様、Bの焼入性向上に役立つ。
Al is an element that is inevitably contained in this type of killed steel in terms of deoxidation, but if Al total exceeds 0.05%, the toughness of HAZ deteriorates, so the upper limit was made 0.05%. When heating, Al
If N does not form a solid solution and N is fixed by Al, Al is T
Like i, it helps to improve the hardenability of B.

不純物であるSを0.01%以下に限定した理由は、寒冷
地で使用される大径高圧ガスラインパイプでは、不安定
延性破壊防止の点から母材及び溶接部に高吸収エネルギ
ーが要求される。
The reason why S, which is an impurity, is limited to 0.01% or less is that a large-diameter high-pressure gas line pipe used in a cold region requires high absorbed energy in the base material and the welded portion from the viewpoint of preventing unstable ductile fracture.

本発明ではかなり低い温度域での圧下を行っており、
一般に衝撃値は低下する。このため衝撃値の向上対策と
してSを0.01%以下とした。この場合Sが低い程靭性は
改善されるが、特に0.001%以下とすることによって大
幅に向上する。
In the present invention, the rolling is performed in a considerably low temperature range,
Generally, the impact value decreases. Therefore, S is set to 0.01% or less as a measure for improving the impact value. In this case, the lower the S is, the more the toughness is improved, but the content is particularly improved by setting the S to 0.001% or less.

また本発明鋼は不純物としてPを含有するが通常0.03
%以下であり、低い程母材、溶接部靭性、溶接性は向上
する。
Further, the steel of the present invention contains P as an impurity, but it is usually 0.03
% Or less, and the lower the value, the higher the base metal, weld zone toughness, and weldability.

第2の発明においては、第1の発明の鋼の成分及び製
造プロセスに、さらにCr:0.05〜0.30%、Cu:0.05〜0.30
%の一種または二種を含有させたものである。
In the second invention, the composition and manufacturing process of the steel of the first invention further includes Cr: 0.05 to 0.30%, Cu: 0.05 to 0.30.
% Of one type or two types.

これらの元素を含有させる主たる目的は本発明鋼の母
材強度、靭性の向上と製造可能な板厚の拡大を可能とす
るところにあり、その含有量は自ら制限されるべき性質
のものである。
The main purpose of containing these elements is to improve the base metal strength and toughness of the steel of the present invention and to increase the plate thickness that can be manufactured, and the content is a property that should be limited by itself. .

Crは圧延組織のベイナイト化を促進し、強度、靭性を
向上させる他、対環境腐食性を有し安価な元素であるた
め、その利用価値は高い。しかし、0.05%未満では十分
にその効果が得られず、また多量に添加すると溶接部の
硬化性を増大させ、靭性及び対割れ性の低下を招くた
め、その上限を0.30%とした。
Cr is a valuable element because it accelerates bainization of the rolled structure, improves strength and toughness, and is an inexpensive element having corrosion resistance to the environment. However, if it is less than 0.05%, the effect is not sufficiently obtained, and if it is added in a large amount, the hardenability of the welded portion is increased and the toughness and crack resistance are deteriorated, so the upper limit was made 0.30%.

Cuは溶接性に悪影響を与えることなしに母材の強度、
靭性、溶接部靭性を向上させる極めて好ましい元素であ
り、ベイナイト鋼においても析出硬化により強度を上昇
させる。さらに対環境腐食性、対水素誘起割れ性などに
効果がある。しかし、0.05%未満では十分にその効果が
得られず、また多量に添加すると、鋼の熱間圧延中にCu
−クラックが発生し、製造が難しくなる。そのため上限
を0.30%とした。
Cu is the strength of the base metal without adversely affecting the weldability,
It is an extremely preferable element that improves the toughness and toughness of the weld zone, and also increases the strength of bainitic steel by precipitation hardening. Further, it is effective in corrosion resistance to the environment and hydrogen-induced cracking resistance. However, if less than 0.05%, the effect is not sufficiently obtained, and if added in a large amount, Cu is added during hot rolling of steel.
-Cracks occur, making manufacturing difficult. Therefore, the upper limit was made 0.30%.

以上の如く成分系を限定しても加熱圧延条件が不適当
であれば、優れた強度、靭性を得ることができないため
加熱圧延条件も合せて限定する。
Even if the component system is limited as described above, if the heating and rolling conditions are unsuitable, excellent strength and toughness cannot be obtained, so the heating and rolling conditions are also limited.

前述の如く、ベイナイト鋼の靭性は結晶粒度依存性が
強く、十分に圧延組織を細粒化しなければ、十分な低温
靭性を確保することができない。
As described above, the toughness of bainite steel is highly dependent on the grain size, and unless the rolling structure is sufficiently refined, sufficient low temperature toughness cannot be secured.

このためにはまず加熱温度の下限を1100℃に限定し
た。この理由は1100℃未満であると、Tiが十分固溶せず
圧延中に再析出するTiC(N)が少なく、γ粒再結晶抑
制効果が期待できないためである。
For this purpose, the lower limit of the heating temperature was first limited to 1100 ° C. The reason for this is that if the temperature is lower than 1100 ° C., Ti does not form a solid solution sufficiently and the amount of TiC (N) reprecipitated during rolling is small, so that the γ-grain recrystallization suppressing effect cannot be expected.

一方上限を1250℃としたのはこの温度以上になると鋼
片中の微細析出したTiNが粗大化し始め、加熱γ粒及びH
AZの微細化効果が十分に望めなくなるためである。
On the other hand, the upper limit was set to 1250 ° C. Above this temperature, the finely precipitated TiN in the steel slab began to coarsen, and heated γ grains and H
This is because the miniaturization effect of AZ cannot be expected sufficiently.

しかし、加熱γ粒を如何に細粒化しても単に圧延した
だけでは、高強度と優れた低温靭性を持った鋼板を製造
するのは難しい。それ故、圧延条件についても制限を加
える。
However, it is difficult to manufacture a steel sheet having high strength and excellent low temperature toughness simply by rolling, no matter how fine the heated γ grains are. Therefore, the rolling conditions are also limited.

本発明では圧延条件として900℃以下の累積圧下率を6
0%以上かつ仕上温度を680〜800℃と限定した。この条
件に従えば鋼板の強度、靭性は大幅に向上する。
In the present invention, as a rolling condition, a cumulative rolling reduction of 900 ° C or less is set to 6
0% or more and finishing temperature limited to 680-800 ℃. If this condition is followed, the strength and toughness of the steel sheet will be greatly improved.

以下圧延条件の限定理由について述べる。 The reasons for limiting the rolling conditions will be described below.

まず900℃以下の累積圧下率を60%以上であると、フ
ェライト粒の細粒化が著しくなり強度と靭性が大幅に向
上する。しかし、累積圧下率が60%未満であると高強度
と優れた靭性を確保できない。一方、900℃以下の累積
圧下率が60%以上であっても、仕上温度が800℃以上で
は著しく優れた強度と靭性をもつ鋼板が製造できない。
First, when the cumulative rolling reduction at 900 ° C or lower is 60% or more, the ferrite grains are remarkably refined and the strength and toughness are significantly improved. However, if the cumulative rolling reduction is less than 60%, high strength and excellent toughness cannot be secured. On the other hand, even if the cumulative rolling reduction at 900 ° C or lower is 60% or more, a steel sheet having remarkably excellent strength and toughness cannot be manufactured at a finishing temperature of 800 ° C or higher.

仕上温度を800℃未満とすることによって、フェライ
ト粒の細粒化は著しく促進され、強度、靭性の両方の向
上または靭性を劣化させずに強度を向上させることがで
きる。
By setting the finishing temperature to less than 800 ° C., the refining of ferrite grains is remarkably promoted, and both strength and toughness can be improved or the strength can be improved without degrading the toughness.

また、本発明鋼の成分範囲、加熱圧延条件であれば、
フェライト・オーステナイト域あるいはフェライト域で
の相当量の圧延を行っても低温靭性は良好であり、強度
を高めるために有効であるが、仕上温度の下限が680℃
以下になると加工硬化が著しくなり、靭性が劣化し始め
る。このため仕上温度を680〜800℃に限定した。
Further, if the composition range of the steel of the present invention, the heating and rolling conditions,
The low temperature toughness is good even after rolling a considerable amount in the ferrite / austenite region or in the ferrite region, and it is effective for increasing strength, but the lower limit of the finishing temperature is 680 ° C.
When it is below, work hardening becomes remarkable and toughness starts to deteriorate. Therefore, the finishing temperature was limited to 680-800 ° C.

圧延後の冷却については空冷で強度、伸び、靭性に優
れたAPIX70クラスの鋼板が製造できるが、スプレー水、
ミストあるいは空気で加速冷却することは圧延組織のベ
イナイト化、細粒化を図る上で効果的である。この場
合、10〜40℃/secの冷却速度が望ましい。
Regarding cooling after rolling, APIX70 class steel sheets with excellent strength, elongation and toughness can be produced by air cooling, but spray water,
Accelerated cooling with mist or air is effective for bainite and grain refinement of the rolling structure. In this case, a cooling rate of 10-40 ° C / sec is desirable.

しかし水冷停止温度が550℃以上ではAPIX80クラスの
強度の確保が困難であり、350℃以下では靭性の確保が
難しくなる。このため加速冷却する場合、550〜350℃で
冷却を停止し、その後空冷すれば強度、靭性共に優れた
鋼板が製造できるため、水冷停止温度を550〜350℃に限
定した。
However, if the water cooling stop temperature is 550 ° C or higher, it is difficult to secure APIX80 class strength, and if it is 350 ° C or lower, it is difficult to secure toughness. For this reason, in the case of accelerated cooling, if cooling is stopped at 550 to 350 ° C and then air cooling is performed, a steel sheet excellent in strength and toughness can be produced, so the water cooling stop temperature was limited to 550 to 350 ° C.

尚、本発明の鋼片製造法としては造塊法、連続鋳造法
いずれでも可能であるが、連続鋳造法は冷却速度が速く
微細なTiNを多く得られるためより好ましい。また、熱
間圧延法としてホットストリップ圧延、厚板圧延、形鋼
圧延等が採用される。
The method for producing the billet of the present invention may be either an ingot method or a continuous casting method, but the continuous casting method is more preferable because the cooling rate is fast and a large amount of fine TiN can be obtained. Further, as the hot rolling method, hot strip rolling, thick plate rolling, shaped steel rolling and the like are adopted.

(実 施 例) 転炉−連続連鋳−圧延工程で製造した種々の鋼成分の
鋼板(厚み15〜17mm)を製造し、母材及び溶接部の機械
的性質を調べた結果を表1に示す。
(Examples) Table 1 shows the results of examining the mechanical properties of the base metal and welds by producing steel plates (thickness: 15 to 17 mm) of various steel components produced by the converter-continuous continuous casting-rolling process. Show.

表1での鋼1〜12は本発明鋼、鋼13〜18は比較鋼であ
る。鋼13はCが上限値より高いもの、鋼14はTiが下限値
より少ないもの、鋼15はBが下限値より少ないもの、鋼
16は900℃以下の累積圧下率が下限値以下のもの、鋼17
は水冷停止温度が低いもの、鋼18は900℃以下の累積圧
下率が下限値以下でかつ仕上温度が高いものである。
Steels 1 to 12 in Table 1 are steels of the present invention, and steels 13 to 18 are comparative steels. Steel 13 has C higher than the upper limit, Steel 14 has Ti less than the lower limit, Steel 15 has B less than the lower limit, Steel 15
16 is steel with a cumulative rolling reduction of 900 ° C or less below the lower limit, steel 17
Indicates that the water-cooling stop temperature is low, and Steel 18 indicates that the cumulative rolling reduction of 900 ° C or lower is lower than the lower limit and the finishing temperature is high.

尚、溶接部の靭性は入熱30kJ/cm相当の内外面造管溶
接を行い、溶接金属と熱影響部が50対50となっている部
分の−20℃での値である。
The toughness of the welded portion is the value at -20 ° C at the portion where the weld metal and the heat-affected zone are 50:50 after performing the inner and outer surface pipe welding corresponding to the heat input of 30 kJ / cm.

本発明鋼は高強度にもかかわらず低温靭性及び溶接部
の靭性が良好である。これに対し比較鋼では強度と靭性
両者を満足させてはいない。
The steel of the present invention has good low temperature toughness and weld toughness despite high strength. On the other hand, the comparative steel does not satisfy both strength and toughness.

(発明の効果) 本発明により大径鋼管用鋼を大量、かつ安価に製造す
ることが可能になった。その結果ラインパイプの工期が
短縮すると共に寒冷地における石油、天然ガスの経済的
輸送ができるようになった。
(Effects of the Invention) The present invention makes it possible to mass-produce large-diameter steel pipe at low cost. As a result, the construction period of line pipes has been shortened and oil and natural gas can be economically transported in cold regions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 為広 博 千葉県君津市君津1 新日本製鐵株式会社 君津製鐵所内 (56)参考文献 特開 昭58−77528(JP,A) 特開 昭61−127814(JP,A) 特開 昭60−56019(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Taehiro 1 Kimitsu, Chiba Prefecture Kimitsu 1 Nippon Steel Co., Ltd. Kimitsu Works (56) References JP-A-58-77528 (JP, A) JP-A-SHO 61-127814 (JP, A) JP-A-60-56019 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で C:0.04〜0.12%、 Si:0.5%以下、 Mn:1.0〜2.0%、 P:0.03%以下、 S:0.01%以下、 Ti:0.03〜0.10%、 B:0.0005〜0.0020%、 Al:0.05%以下、 N:0.005%以下、 を含有し、残部が鉄及び不可避的不純物からなる鋼片を
1100〜1250℃の温度範囲に加熱して、900℃以下の累積
圧下量60%以上、終了温度680〜800℃で圧延を行なった
後、空冷または冷却速度10〜40℃/secで550〜350℃の温
度まで加速冷却、その後空冷することを特徴とする高張
力鋼板の製造法。
1. By weight%, C: 0.04 to 0.12%, Si: 0.5% or less, Mn: 1.0 to 2.0%, P: 0.03% or less, S: 0.01% or less, Ti: 0.03 to 0.10%, B: 0.0005 ~ 0.0020%, Al: 0.05% or less, N: 0.005% or less, with the balance being steel and unavoidable impurities.
After heating to a temperature range of 1100 to 1250 ° C and rolling at a cumulative reduction of 60% or more at 900 ° C or less and a finishing temperature of 680 to 800 ° C, air cooling or 550 to 350 at a cooling rate of 10 to 40 ° C / sec. A method for producing a high-strength steel sheet, which comprises accelerating cooling to a temperature of ℃, and then performing air cooling.
【請求項2】重量%で C:0.04〜0.12%、 Si:0.5%以下、 Mn:1.0〜2.0%、 P:0.03%以下、 S:0.01%以下、 Ti:0.03〜0.10%、 B:0.0005〜0.0020%、 Al:0.05%以下、 N:0.005%以下、 にさらに Cr:0.05〜0.30%、 Cu:0.05〜0.30% の一種または二種を含有させ、残部が鉄及び不可避的不
純物からなる鋼片を1100〜1250℃の温度範囲に加熱し
て、900℃以下の累積圧下量60%以上、終了温度680〜80
0℃で圧延を行なった後、空冷または冷却速度10〜40℃/
secで550〜350℃の温度まで加速冷却、その後空冷する
ことを特徴とする高張力鋼板の製造法。
2. C: 0.04 to 0.12% by weight, Si: 0.5% or less, Mn: 1.0 to 2.0%, P: 0.03% or less, S: 0.01% or less, Ti: 0.03 to 0.10%, B: 0.0005 ~ 0.0020%, Al: 0.05% or less, N: 0.005% or less, and Cr: 0.05 to 0.30%, Cu: 0.05 to 0.30%, one or two kinds, with the balance being iron and inevitable impurities. The piece is heated to a temperature range of 1100 to 1250 ℃, and the cumulative rolling reduction of 900 ℃ or less is 60% or more, and the end temperature is 680 to 80.
After rolling at 0 ℃, air cooling or cooling rate 10-40 ℃ /
A method for producing a high-strength steel sheet, which comprises accelerating cooling to a temperature of 550 to 350 ° C in sec and then air cooling.
JP63309850A 1988-12-09 1988-12-09 High-tensile steel plate manufacturing method Expired - Lifetime JPH0819461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63309850A JPH0819461B2 (en) 1988-12-09 1988-12-09 High-tensile steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63309850A JPH0819461B2 (en) 1988-12-09 1988-12-09 High-tensile steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JPH02156021A JPH02156021A (en) 1990-06-15
JPH0819461B2 true JPH0819461B2 (en) 1996-02-28

Family

ID=17998039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63309850A Expired - Lifetime JPH0819461B2 (en) 1988-12-09 1988-12-09 High-tensile steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JPH0819461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304538A (en) * 2020-03-31 2020-06-19 武汉钢铁有限公司 Low-cost hot-rolled ultrahigh-strength steel and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2307058A (en) * 1995-11-13 1997-05-14 Thomson Multimedia Sa Stereoscopic display with lens,prism and barrier arrays
CN103757538B (en) * 2013-12-28 2017-01-25 首钢总公司 Wide-thick steel plate for high-Ti 700MPa-level engineering machine and production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877528A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of high tensile steel with superior toughness at low temperature
JPS6056019A (en) * 1983-09-07 1985-04-01 Sumitomo Metal Ind Ltd Production of strong and tough steel
JPS61127814A (en) * 1984-11-24 1986-06-16 Sumitomo Metal Ind Ltd Manufacture of high tension steel plate having excellent low-temperature toughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304538A (en) * 2020-03-31 2020-06-19 武汉钢铁有限公司 Low-cost hot-rolled ultrahigh-strength steel and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02156021A (en) 1990-06-15

Similar Documents

Publication Publication Date Title
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP2005213566A (en) High strength thin sheet steel excellent in workability, surface property and plate flatness and its manufacturing method
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JPH0819461B2 (en) High-tensile steel plate manufacturing method
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JPH11172374A (en) Bent pipe with high strength and high toughness, and its production
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
JP3752078B2 (en) High strength steel plate excellent in sour resistance and manufacturing method thereof
CN116162855B (en) 600 MPa-level thick-specification phosphorus-containing hot-rolled weather-resistant steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080228

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 13