JPH08191315A - Multiplex transmission equipment - Google Patents

Multiplex transmission equipment

Info

Publication number
JPH08191315A
JPH08191315A JP7001560A JP156095A JPH08191315A JP H08191315 A JPH08191315 A JP H08191315A JP 7001560 A JP7001560 A JP 7001560A JP 156095 A JP156095 A JP 156095A JP H08191315 A JPH08191315 A JP H08191315A
Authority
JP
Japan
Prior art keywords
potential
transmission line
transmission
predetermined
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7001560A
Other languages
Japanese (ja)
Other versions
JP3354329B2 (en
Inventor
Yuichi Watanabe
勇一 渡辺
Kyosuke Hashimoto
恭介 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP00156095A priority Critical patent/JP3354329B2/en
Publication of JPH08191315A publication Critical patent/JPH08191315A/en
Application granted granted Critical
Publication of JP3354329B2 publication Critical patent/JP3354329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc Digital Transmission (AREA)
  • Small-Scale Networks (AREA)

Abstract

PURPOSE: To accurately receive a signal from a transmission line at low cost and with simple constitution even if such a fault that the transmission line is disconnected occurs. CONSTITUTION: If a 1st transmission line 10 is disconnected, a potential Va which is converted by a 1st potential converting circuit 21 connected to this transmission line is so converted that (reference potential Vc) < (potential Va) > (potential Vb at passive time). If a disconnection fault occurs to a 2nd transmission line 11, a potential Vb which is converted by a 2nd potential converting circuit 22 connected to this transmission line is so converted that (reference potential Vd) > (potential Vb) < (potential Va at passive time). One of comparators 23-25, therefore, outputs a normal signal at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、伝送路に多重伝送され
る信号を検知する多重伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multiplex transmission device for detecting signals that are multiplex-transmitted on a transmission line.

【0002】[0002]

【従来の技術】従来、この種の多重伝送装置には、CS
MA/CD(Carrier Sense MultipleAccess/Collision
Detection)方式とNDA(Non Destructive Arbitrat
ion)方式を組み合わせた伝送システム、又はトークン
を用いたLAN(Local Area Network)の伝送システム
に使用されるものがあった。さらに、上記装置では、N
RZ符号を使用して、ベースバンドで通信を行う場合に
は、論理がハイレベル(以下、「“H”」という。)又
はローレベル(以下、「“L”」という。)が何ビット
も続くと、多重伝送装置間のビット同期がずれてしまう
ため、ビットスタッフ則を用いている。すなわち、上記
ビットスタッフ則では、論理“H”がある一定長(例え
ば5ビット)続くと論理“L”のスタッフビットを、ま
た論理“L”がある一定長続くと論理“H”のスタッフ
ビットを挿入し、このスタッフビットのエッジで同期を
合わせるものがあった。この伝送方式によって、正常通
信時に一定時間(例えば6ビット)以上“H”状態にな
るのを防ぐことができた。このような多重伝送装置に
は、例えば特開平5−284135号に記載されたもの
がある。上記多重伝送装置では、図5(a)に示すよう
な第1、第2の伝送路の信号を所定電位Va,Vb(図5
(b)参照)に変換する第1、第2の電位変換回路と、
上記変換された両電位Va,Vbを比較する第1の比較器
(図5(d)参照)と、上記変換された第1の伝送路の
電位Vaと基準電位Vcを比較する第2の比較器と(図5
(e)参照)、上記変換された第2の伝送路の電位Vb
と基準電位Vdを比較する第3の比較器(図5(f)参
照)を有し、2本の第1、第2の伝送路の片方が故障し
た場合、論理合成回路により、各比較器の和を受信デー
タとする故障通信モードを選択し、上記受信データを多
重伝送制御回路へ出力することで、いずれかの伝送路が
故障した場合においても受信を可能としていた。
2. Description of the Related Art Conventionally, this type of multiplex transmission device has a CS
MA / CD (Carrier Sense Multiple Access / Collision)
Detection) method and NDA (Non Destructive Arbitrat)
There has been a system used in a transmission system in which an ion (Ion) method is combined or a transmission system in a LAN (Local Area Network) using a token. Further, in the above device, N
When communication is performed in the baseband using the RZ code, the logic has a high level (hereinafter referred to as “H”) or a low level (hereinafter referred to as “L”) as many bits. Since then, the bit synchronization between the multiplex transmission devices is deviated, so the bit stuff rule is used. That is, according to the bit stuffing rule, the stuff bit of logic "L" is given when the logic "H" continues for a certain length (for example, 5 bits), and the stuff bit of logic "H" when the logic "L" continues for a certain length. , And there was a thing that synchronizes at the edge of this stuff bit. By this transmission method, it was possible to prevent the "H" state for a certain time (for example, 6 bits) or more during normal communication. An example of such a multiplex transmission device is described in Japanese Patent Laid-Open No. 5-284135. In the above-mentioned multiplex transmission device, signals on the first and second transmission lines as shown in FIG. 5A are transmitted to predetermined potentials Va and Vb (see FIG.
(B)) first and second potential conversion circuits,
A first comparator (see FIG. 5D) that compares the converted potentials Va and Vb with a second comparator that compares the converted potential Va of the first transmission path with a reference potential Vc. Vessel (Fig. 5
(See (e)), the converted potential Vb of the second transmission line
And a third comparator (see FIG. 5 (f)) that compares the reference potential Vd with the reference potential Vd, and when one of the two first and second transmission lines fails, each comparator is configured by the logic synthesis circuit. By selecting the failure communication mode in which the sum of the above is used as the reception data and outputting the reception data to the multiplex transmission control circuit, reception is possible even if one of the transmission paths fails.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記多重伝
送装置を備えたシステムでは、例えば多重伝送装置が伝
送路と支線を介して接続され、受信側多重伝送装置の支
線の一方(例えば第1の伝送路に接続された支線)が切
断された故障状態で、上記受信側多重伝送装置が信号を
受信する場合、上記受信側多重伝送装置では、伝送路の
故障を検知して故障通信モードでデータを受信できる
が、変換された電位と基準電位の関係は、図5(c)に
示すようになるため、図5(d),(f)に示すように
第1、第3の比較器から出力される信号の幅に大きく相
違が生じてしまう。
However, in a system provided with the above-mentioned multiplex transmission device, for example, the multiplex transmission device is connected to a transmission line via a branch line, and one of the branch lines of the receiving-side multiplex transmission device (for example, the first line). When the receiving side multiplex transmission device receives a signal in a failure state in which a branch line connected to the transmission line is disconnected, the receiving side multiplex transmission device detects a failure of the transmission line and transmits data in the failure communication mode. However, since the relationship between the converted potential and the reference potential is as shown in FIG. 5C, the first and third comparators can be used as shown in FIGS. 5D and 5F. There is a large difference in the width of the output signal.

【0004】また、上記第1の電位変換回路からの電位
Vaが、図5(c)に示すように第2の電位変換回路か
らの電位Vbのパッシブ側に近ければ近いほど、この傾
向が大きくなっていた。また、この場合、第2の比較器
の出力は、図5(e)に示すように“H”状態になって
いた。この場合には、第1〜第3の比較器の各出力の論
理和が受信信号として選択されるので、この結果として
第1の比較器の出力が選択されることとになり、図5
(d)に示しようにパッシブ(Passive)信号とドミナ
ント(Dominant)信号では、パッシブ信号のパルス幅が
狭くなるため、通信制御回路は上記パッシブ信号を検出
できないことがあり、これにより通信エラーが生じると
いう問題点があった。
This tendency increases as the potential Va from the first potential conversion circuit becomes closer to the passive side of the potential Vb from the second potential conversion circuit as shown in FIG. 5C. Was becoming. Further, in this case, the output of the second comparator is in the "H" state as shown in FIG. 5 (e). In this case, the logical sum of the outputs of the first to third comparators is selected as the reception signal, and as a result, the output of the first comparator is selected.
As shown in (d), in the passive signal and the dominant signal, since the pulse width of the passive signal becomes narrow, the communication control circuit may not be able to detect the passive signal, which causes a communication error. There was a problem.

【0005】また、例えば送信側多重伝送装置の接地電
位に比べて受信側多重伝送装置の接地電位の方が高い状
態の場合に、第1の伝送路に断線故障が発生すると、第
1、第2の電位変換回路からの電位Va,Vbと基準電位
Vc,Vdの関係は、図6に示すようになり、第1の電位
変換回路の電位Vaと基準電位Vc,Vdは、発生した接
地電位差V1だけ第2の電位変換回路の出力のパッシブ
電位Vb(=V2)側へ上昇する。
Further, when a disconnection fault occurs in the first transmission line when the ground potential of the receiving-side multiplex transmission device is higher than the ground potential of the transmitting-side multiplex transmission device, for example, the first and second The relationship between the potentials Va and Vb from the second potential conversion circuit and the reference potentials Vc and Vd is as shown in FIG. 6, and the potential Va and the reference potentials Vc and Vd of the first potential conversion circuit are the generated ground potential difference. Only V1 rises to the passive potential Vb (= V2) side of the output of the second potential conversion circuit.

【0006】この時に、第1の比較器が信号を受信でき
るためには、(Va+V1<V2)である必要があり、第
3の比較器が信号を受信できるためには、(Vd+V1<
V2)である必要がある。従って、接地電位差が(V2−
Va)以上、(V2−Vd)以下では、第3の比較器の出
力が受信信号として選択されて信号の伝送が可能とな
る。
At this time, (Va + V1 <V2) is necessary for the first comparator to receive the signal, and (Vd + V1 <V2) for the third comparator to be able to receive the signal.
V2). Therefore, the ground potential difference is (V2−
Above Va) and below (V2-Vd), the output of the third comparator is selected as the received signal and the signal can be transmitted.

【0007】ところが、接地電位差が(V2−Va±VOF
F)(ただし、VOFFは第1の比較器のオフセット電圧の
範囲)となった場合、第1の比較器の出力は不定とな
り、この結果として受信信号には本来期待する信号が得
られず通信エラーが生じる。すなわち、信号の伝送が可
能な接地電位差の範囲は、上記(V2−Va±VOFF)の
範囲を除いた(V2−Va)以下でなければならず、この
ため信号の受信動作が不安定になるという問題点があっ
た。
However, the ground potential difference is (V2-Va ± VOF).
F) (however, VOFF is the range of the offset voltage of the first comparator), the output of the first comparator becomes indefinite, and as a result, the originally expected signal cannot be obtained in the received signal and communication is performed. An error occurs. That is, the range of the ground potential difference at which the signal can be transmitted must be less than (V2-Va) excluding the above range (V2-Va ± VOFF), which makes the signal receiving operation unstable. There was a problem.

【0008】本発明は、上記問題点に鑑みなされたもの
で、伝送路が切断されるような故障が発生しても、低コ
ストで、かつ簡単な構成で正確に伝送路上の信号を受信
できる多重伝送装置を提供することを目的とする。
The present invention has been made in view of the above problems, and even if a failure occurs such that the transmission line is disconnected, a signal on the transmission line can be accurately received at a low cost and with a simple structure. An object is to provide a multiplex transmission device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、少なくとも2本の共通の伝送路(支線
を含む)を介して相互に接続されるとともに、前記各伝
送路の信号に対応して変換させた各所定電位を比較する
第1の比較手段(比較器)と、該変換された一方の伝送
路の電位と所定の基準電位を比較する第2の比較手段
(比較器)と、該変換された他方の伝送路の電位と所定
の基準電圧を比較する第3の比較手段(比較器)と、前
記各比較器の出力を論理合成する論理合成手段(論理合
成回路)と、前記論理合成回路の合成結果を受信する通
信制御手段(通信制御回路)とを有する多重伝送装置に
おいて、前記一方の伝送路の信号を第1の所定電位に変
換する際に、該一方の伝送路が断線した場合、(第2の
比較器の基準電位)<(第1の所定電位)>(パッシブ
時の前記第2の所定電位)なる条件を満足するように電
位変換する第1の電位変換手段(電位変換回路)と、前
記他方の伝送路の信号を第2の所定電位に変換する際
に、該他方の伝送路が断線した場合、(前記第3の比較
器の基準電位)>(第2の所定電位)<(パッシブ時の
前記第1の所定電位)なる条件を満足するように電位変
換する第2の電位変換手段(電位変換回路)とを備える
多重伝送装置が提供される。
In order to achieve the above object, according to the present invention, at least two common transmission lines (including branch lines) are connected to each other and the signals of the respective transmission lines are connected. Corresponding to the first potential comparing means (comparator) for comparing the respective predetermined potentials, and the second comparing means (comparator) comparing the potential of the converted one transmission line with a predetermined reference potential. ), A third comparing means (comparator) for comparing the converted potential of the other transmission line with a predetermined reference voltage, and a logic synthesizing means (logic synthesizing circuit) for logically synthesizing the outputs of the respective comparators. And a communication control means (communication control circuit) for receiving the synthesis result of the logic synthesis circuit, in the case of converting the signal of the one transmission path to a first predetermined potential, If the transmission line is broken (reference potential of the second comparator) (First predetermined potential)> (second predetermined potential when passive) The first potential conversion means (potential conversion circuit) for converting the potential so as to satisfy the condition, and the signal of the other transmission line. When the other transmission line is disconnected during conversion to the second predetermined potential, (reference potential of the third comparator)> (second predetermined potential) <(the first predetermined when passive) A multiplex transmission device including a second potential conversion unit (potential conversion circuit) that converts a potential so as to satisfy the condition (potential).

【0010】請求項2では、前記一方の伝送路が断線し
た場合、該一方の伝送路に電源電位を与える第1のバイ
アス手段(バイアス回路)と、前記他方の伝送路が断線
した場合、該他方の伝送路に接地電位を与える第2のバ
イアス手段(バイアス回路)とを有する。
According to a second aspect of the present invention, when the one transmission line is disconnected, the first bias means (bias circuit) for applying a power supply potential to the one transmission line and the other transmission line are disconnected when the other transmission line is disconnected. Second bias means (bias circuit) for applying a ground potential to the other transmission path.

【0011】[0011]

【作用】一方の伝送路が断線した場合、この伝送路に接
続されている第1の電位変換回路によって変換される電
位は、正常な他の伝送路に接続されている第2の電位変
換回路によって変換される電位のパッシブ時電位より大
きく、かつ第2の比較器の基準電位より大きい値に変換
される。また、他の伝送路が断線した場合、この伝送路
に接続されている第2の電位変換回路によって変換され
る電位は、正常な一方の伝送路に接続されている第1の
電位変換回路によって変換される電位のパッシブ時電位
より必ず小さく、かつ第3の比較器の基準電位より小さ
い値に変換される。これにより、伝送路の片側に断線故
障が発生しても、3つの比較器のうち、常に1つの比較
器からは正常な信号が出力されて信号の通信が可能にな
る。請求項2では、第1及び第2のバイアス回路が、第
1及び第2の電位変換回路の条件を満足するように伝送
路に電位を与えることによって、さらに正常な信号の通
信を可能にする。
When one of the transmission lines is disconnected, the potential converted by the first potential conversion circuit connected to this transmission line is changed to the second potential conversion circuit which is normally connected to the other transmission line. Is converted to a value greater than the passive potential and greater than the reference potential of the second comparator. When the other transmission line is disconnected, the potential converted by the second potential conversion circuit connected to this transmission line is changed by the first potential conversion circuit connected to one normal transmission line. The converted potential is always smaller than the passive potential and smaller than the reference potential of the third comparator. As a result, even if a disconnection failure occurs on one side of the transmission path, one of the three comparators always outputs a normal signal and signal communication becomes possible. In the second aspect, the first and second bias circuits give a potential to the transmission path so as to satisfy the conditions of the first and second potential conversion circuits, thereby enabling more normal signal communication. .

【0012】[0012]

【実施例】以下、本発明に係る多重伝送装置の実施例を
図1乃至図4の図面に基づき説明する。図1は、本発明
に係る多重伝送装置の構成の第1実施例を示す構成ブロ
ック図である。なお、図において、本発明に係る多重伝
送装置20,40は、2本の第1、第2の伝送路10,
11にそれぞれ並列に接続され、かつ同一の通信機能を
有する通信系で構成されているので、ここではその通信
系のうち、代表して多重伝送装置20の受信系について
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a multiplex transmission apparatus according to the present invention will be described below with reference to the drawings of FIGS. FIG. 1 is a configuration block diagram showing a first embodiment of the configuration of a multiplex transmission device according to the present invention. In the figure, the multiplex transmission devices 20 and 40 according to the present invention include two first and second transmission lines 10 and 10.
Each of the communication systems 11 is connected in parallel and has the same communication function. Therefore, of these communication systems, the reception system of the multiplex transmission device 20 will be described as a representative.

【0013】多重伝送装置20では、第1、第2の伝送
路10,11に支線12,13を介して第1、第2の電
位変換回路21,22が接続されており、各電位変換回
路21,22には、3つの第1〜第3の比較器23〜2
5がそれぞれ接続されている。第1の電位変換回路21
は、伝送路10上の信号を所定の電位Vaに変換し、第
2の電位変換回路22は、伝送路11上の信号を所定の
電位Vbに変換している。また、第1の比較器23は、
両伝送路10,11からの電圧Va,Vbの比較を行い、
第2の比較器24は、伝送路10からの電圧Vaと、予
め設定された基準電圧Vcとの比較を行い、第3の比較
器25は、伝送路11からの電圧Vbと、予め設定され
た基準電圧Vdとの比較を行う。
In the multiplex transmission device 20, the first and second potential conversion circuits 21 and 22 are connected to the first and second transmission paths 10 and 11 via branch lines 12 and 13, respectively. There are three first to third comparators 23 to 2 in the 21 and 22.
5 are connected to each other. First potential conversion circuit 21
Converts the signal on the transmission line 10 to a predetermined potential Va, and the second potential conversion circuit 22 converts the signal on the transmission line 11 to a predetermined potential Vb. In addition, the first comparator 23,
The voltages Va and Vb from both transmission lines 10 and 11 are compared,
The second comparator 24 compares the voltage Va from the transmission line 10 with a preset reference voltage Vc, and the third comparator 25 with the voltage Vb from the transmission line 11 is preset. The reference voltage Vd is compared with the reference voltage Vd.

【0014】第1、第2の伝送路10,11の正常時の
信号は、図2(a)に示す電位の波形になっている。こ
こで、パッシブ信号とは、伝送路上に信号がない状態で
あり、後述する通信制御回路30の入力、すなわち論理
合成回路29の出力MSIに“L”が期待され、ドミナ
ント信号とは、上記伝送路上に信号がある状態であり、
出力MSIに“H”が期待される伝送路上の信号のこと
をいう。
The signals of the first and second transmission lines 10 and 11 in the normal state have the potential waveform shown in FIG. 2 (a). Here, the passive signal is a state in which there is no signal on the transmission path, "L" is expected in the input of the communication control circuit 30 described later, that is, the output MSI of the logic synthesis circuit 29, and the dominant signal is the above-mentioned transmission. There is a signal on the street,
This is a signal on the transmission line for which "H" is expected at the output MSI.

【0015】第1の電位変換回路21は、支線12に接
続される抵抗器21aと、抵抗器21aと各比較器間及
び電源Vccとの間に接続された抵抗器21bと、抵抗器
21aと各比較器間及びグランドGNDとの間に接続さ
れた抵抗器21cとから構成され、伝送路10上の信号
を図2(b)に示す電位Vaに変換している。上記電位
Vaは、第1の伝送路10が断線故障した場合には、抵
抗器21b,21cとの抵抗値の比によって決定されて
おり、抵抗器21b,21cでは、この電位Vaが第2
の電位変換回路22によって変換された電位Vbのパッ
シブ時の電位より大きく、かつ基準電位Vcより大きく
なるように上記各抵抗値が選ばれている。
The first potential conversion circuit 21 includes a resistor 21a connected to the branch line 12, a resistor 21b connected between the resistor 21a and each comparator and between the power source Vcc, and a resistor 21a. It is composed of a resistor 21c connected between the comparators and the ground GND, and converts the signal on the transmission line 10 into the potential Va shown in FIG. 2B. The potential Va is determined by the ratio of the resistance values of the resistors 21b and 21c when the first transmission line 10 has a disconnection failure. In the resistors 21b and 21c, the potential Va is the second value.
The resistance values are selected so that the potential Vb converted by the potential conversion circuit 22 is larger than the potential in the passive state and larger than the reference potential Vc.

【0016】第2の電位変換回路22は、支線13に接
続される抵抗器22aと、抵抗器22aと各比較器間及
びグランドGNDとの間に接続された抵抗器22bと、
抵抗器22aと各比較器間及び電源Vccとの間に接続さ
れた抵抗器22cとから構成され、伝送路11上の信号
を図2(b)に示す電位Vbに変換している。上記電位
Vbは、第2の伝送路11が断線故障した場合には、抵
抗器22b,22cとの抵抗値の比によって決定されて
おり、抵抗器22b,22cでは、この電位Vbが第1
の電位変換回路21によって変換された電位Vaのパッ
シブ時の電位より小さく、かつ基準電位Vdより小さく
なるように上記各抵抗値が選ばれている。
The second potential conversion circuit 22 includes a resistor 22a connected to the branch line 13, a resistor 22b connected between the resistor 22a and each comparator, and between the ground GND and a resistor 22b.
It is composed of a resistor 22a and a resistor 22c connected between the comparators and between the power source Vcc and converts the signal on the transmission line 11 into the potential Vb shown in FIG. 2 (b). The potential Vb is determined by the ratio of the resistance values of the resistors 22b and 22c when the second transmission line 11 has a disconnection failure. In the resistors 22b and 22c, the potential Vb is the first value.
The resistance values are selected so that the potential Va converted by the potential conversion circuit 21 is smaller than the passive potential and smaller than the reference potential Vd.

【0017】つまり、抵抗器21b,21c及び抵抗器
22b,22cの抵抗値は、以下に示す関係式を成立さ
せるような値をとる。 第1の伝送路10が断線故障した場合 (基準電位Vc)<(電位Va)>(パッシブ時の電位Vb) …(1) 第2の伝送路11が断線故障した場合 (基準電位Vd)>(電位Vb)<(パッシブ時の電位Va) …(2) 第1〜第3の各比較器23〜25の出力a〜cは、それ
ぞれ対応して接続された出力制御回路26〜28に入力
される。出力制御回路26,27,28は、それぞれカ
ウンタ部26a,27a,28aとアンドゲート26
b,27b,28bとから構成されている。各比較器2
3〜25の出力は、それぞれカウンタ部26a〜28a
とアンドゲート26b〜28bとに入力されている。
That is, the resistance values of the resistors 21b and 21c and the resistors 22b and 22c take values that satisfy the following relational expression. When the first transmission line 10 has a disconnection failure (reference potential Vc) <(potential Va)> (potential Vb when passive) (1) When the second transmission line 11 has a disconnection failure (reference potential Vd)> (Potential Vb) <(potential Va at the time of passive) (2) The outputs a to c of the first to third comparators 23 to 25 are input to the corresponding output control circuits 26 to 28. To be done. The output control circuits 26, 27, 28 include counter units 26a, 27a, 28a and an AND gate 26, respectively.
b, 27b, 28b. Each comparator 2
The outputs of 3 to 25 are counters 26a to 28a, respectively.
And AND gates 26b to 28b.

【0018】各カウンタ部26a〜28aは、通常時に
は“L”を出力しているが、比較器23〜25の出力が
一定時間、つまり伝送されるデータフレーム内で考えら
れる最長データ以上、例えばT1時間以上“H”状態に
あるかどうか検出し、上記T1時間以上“H”状態にあ
ると、“H”を出力する。カウンタ部26a〜28aの
出力は、反転されてそれぞれアンドゲート26b〜28
bに入力されるとともに、論理合成回路29に入力され
る。なお、上記時間T1は、各カウンタ部26a〜28
aごとにそれぞれ異なっていても構わない。
The counters 26a to 28a normally output "L", but the outputs of the comparators 23 to 25 are equal to or longer than the longest possible data in the data frame to be transmitted, that is, T1. Whether it is in the "H" state for a time or more is detected, and if it is in the "H" state for the T1 time or more, "H" is output. The outputs of the counter units 26a to 28a are inverted and are AND gates 26b to 28, respectively.
In addition to being input to b, it is input to the logic synthesis circuit 29. The time T1 is the same as the counter units 26a-28.
It may be different for each a.

【0019】アンドゲート26b〜28bは、比較器2
3〜25の出力とカウンタ部26a〜28aの反転出力
の論理積を論理合成回路29に出力している。論理合成
回路29は、オアゲート29a,29b,29dとアン
ドゲート29cとから構成されている。オアゲート29
aには、カウンタ部26a〜28aの出力がそれぞれ入
力しており、オアゲート29aは、これら入力の論理和
を、アンドゲート29cに出力している。また、オアゲ
ート29bには、アンドゲート27b,28bの出力
e,fがそれぞれ入力しており、オアゲート29bは、
これら入力の論理和を、アンドゲート29cに出力して
いる。
The AND gates 26b to 28b are used for the comparator 2.
The logical product of the outputs 3 to 25 and the inverted outputs of the counter units 26a to 28a is output to the logic synthesis circuit 29. The logic synthesizing circuit 29 is composed of OR gates 29a, 29b, 29d and an AND gate 29c. OR gate 29
The outputs of the counter units 26a to 28a are respectively input to a, and the OR gate 29a outputs the logical sum of these inputs to the AND gate 29c. The outputs e and f of the AND gates 27b and 28b are input to the OR gate 29b, and the OR gate 29b is
The logical sum of these inputs is output to the AND gate 29c.

【0020】アンドゲート29cは、上記オアゲート2
9a,29bの出力の論理積を、オアゲート29dに出
力している。オアゲート29dには、上記アンドゲート
29cの出力の他、アンドゲート26bの出力dがそれ
ぞれ入力しており、オアゲート29dは、これら入力の
論理和を受信信号MSIとして、通信制御回路30に出
力している。
The AND gate 29c is the OR gate 2.
The logical product of the outputs of 9a and 29b is output to the OR gate 29d. The output of the AND gate 29c and the output d of the AND gate 26b are input to the OR gate 29d, and the OR gate 29d outputs the logical sum of these inputs to the communication control circuit 30 as a reception signal MSI. There is.

【0021】通信制御回路30は、オアゲート29dの
出力(受信信号)を取り込むと、上記受信信号に応じて
データの復号等の処理を行い、例えば接続されている各
機器(図示せず)の制御を行う。次に、図1に示した多
重伝送装置の動作を表1に示した通信モードごとに説明
する。なお、表1は、第1、第2の伝送路10,11の
各状態と比較器23〜25の出力との関係を示すもので
ある。
When the communication control circuit 30 takes in the output (received signal) of the OR gate 29d, it performs processing such as data decoding according to the received signal, and controls, for example, each connected device (not shown). I do. Next, the operation of the multiplex transmission apparatus shown in FIG. 1 will be described for each communication mode shown in Table 1. Table 1 shows the relationship between the states of the first and second transmission lines 10 and 11 and the outputs of the comparators 23 to 25.

【0022】[0022]

【表1】 まず、正常通信モードの場合、第1、第2の伝送路1
0,11には、図2(a)に示す信号が伝送されてお
り、上記信号は、第1、第2の電位変換回路21,22
によって図2(b)に示すような電位Va,Vbに変換さ
れ、各比較器23〜25へ入力されている。表1に示す
ように、各比較器23〜25の出力は、パッシブ状態時
には、“L”状態、ドミナント状態時には、“H”状態
となる(図2(c)〜(e)参照)。このため、各伝送
路10,11が正常な状態では、時間T1以上の連続の
“H”信号は存在しない。従って、カウンタ部26a〜
28aは、常時“L”を出力し、アンドゲート26b〜
28bは、上記出力によって開かれ、比較器23〜25
の各出力a〜cが出力される。
[Table 1] First, in the normal communication mode, the first and second transmission lines 1
The signals shown in FIG. 2A are transmitted to 0 and 11, and the signals are the first and second potential conversion circuits 21 and 22.
Are converted into potentials Va and Vb as shown in FIG. 2B and are input to the comparators 23 to 25. As shown in Table 1, the outputs of the comparators 23 to 25 are in the "L" state in the passive state and in the "H" state in the dominant state (see FIGS. 2C to 2E). Therefore, when the transmission lines 10 and 11 are in a normal state, there is no continuous "H" signal longer than the time T1. Therefore, the counter unit 26a-
28a always outputs "L", and AND gate 26b ...
28b is opened by the above output and the comparators 23-25
The respective outputs a to c are output.

【0023】しかし、上記カウンタ部26a〜28aの
出力は、“L”であるため、オアゲート29aの出力
は、“L”となる。従って、アンドゲート29cは閉じ
られるため、第2、第3の比較器24,25の各出力
b,cは出力されず、第1の比較器23の出力aだけが
オアゲート29dを通り、受信信号MSIとして通信制
御回路30へ入力され、データ通信が行われる。
However, since the outputs of the counter sections 26a to 28a are "L", the output of the OR gate 29a is "L". Therefore, since the AND gate 29c is closed, the outputs b and c of the second and third comparators 24 and 25 are not output, and only the output a of the first comparator 23 passes through the OR gate 29d and the received signal is received. The MSI is input to the communication control circuit 30 and data communication is performed.

【0024】次に、例えば図1に示すように、第1、第
2の伝送路10,11に接続される支線12,13のう
ち、支線12が×印で断線した状態での故障通信モード
場合を説明する。この場合には、第1、第2の伝送路1
0,11上の信号は、第1、第2の電位変換回路21,
22によって図3(a)に示すような電位Va,Vbに変
換され、各比較器23〜25へ入力される。表1に示す
ように、第3の比較器25の出力cは、パッシブ状態時
には、“L”状態、ドミナント状態時には、“H”状態
となる(図3(d)参照)。
Next, for example, as shown in FIG. 1, of the branch lines 12 and 13 connected to the first and second transmission lines 10 and 11, the failure communication mode in the state where the branch line 12 is broken by an X mark. The case will be described. In this case, the first and second transmission lines 1
The signals on 0 and 11 correspond to the first and second potential conversion circuits 21 and
It is converted into potentials Va and Vb as shown in FIG. 3A by 22 and input to the comparators 23 to 25. As shown in Table 1, the output c of the third comparator 25 is in the "L" state in the passive state and in the "H" state in the dominant state (see FIG. 3 (d)).

【0025】しかし、図3(a)に示すように、電位V
aが断線によって電位Vbのパッシブ状態時より大きくな
るので、第1、第2の比較器23,24の出力a,b
は、第1、第2の伝送路10,11上の信号がパッシブ
状態時、又はドミナント状態時であるを問わず、常時
“H”状態となる(図3(b),(c)参照)。従っ
て、アンドゲート26b,27bは閉じられるため、出
力d,eには、第1、第2の比較器23,24の出力
a,bが出力されず、常に“L”状態となる。
However, as shown in FIG. 3A, the potential V
Since a becomes larger than that in the passive state of the potential Vb due to the disconnection, the outputs a and b of the first and second comparators 23 and 24 are
Is always in the “H” state regardless of whether the signals on the first and second transmission lines 10 and 11 are in the passive state or the dominant state (see FIGS. 3B and 3C). . Therefore, since the AND gates 26b and 27b are closed, the outputs a and b of the first and second comparators 23 and 24 are not output to the outputs d and e, and they are always in the "L" state.

【0026】また、第3の比較器25では、図3(d)
に示すように第2の伝送路11からの信号が受信される
ため、カウンタ部28aからは、“L”が出力されてア
ンドゲート28bが開かれ、出力fには第3の比較器2
5の出力cが出力される。また、カウンタ部26a,2
7aの出力は、“H”であるため、オアゲート29aの
出力は、“H”となる。従って、アンドゲート29cは
開かれるため、第1〜第3の比較器23〜25の各出力
a〜cの論理和がとられ、第3の比較器25の出力cが
受信信号MSIとなる。
Further, in the third comparator 25, FIG.
Since the signal from the second transmission line 11 is received as shown in FIG. 5, "L" is output from the counter unit 28a to open the AND gate 28b, and the third comparator 2 is output at the output f.
The output c of 5 is output. In addition, the counter units 26a, 2
Since the output of 7a is "H", the output of the OR gate 29a is "H". Therefore, since the AND gate 29c is opened, the outputs a to c of the first to third comparators 23 to 25 are ORed, and the output c of the third comparator 25 becomes the reception signal MSI.

【0027】これにより、第1の伝送路10が断線した
場合でも、3つの比較器から必ず1つの比較器の出力の
み、この場合には第3の比較器25の出力cがオアゲー
ト29dを通り、通信制御回路30へ入力される。すな
わち、多重伝送装置間に接地電位差が発生し、かつ第1
の伝送路10が断線した場合、第1の伝送路10に接続
する第1の電位変換回路21は、式(1)の条件を満足
する電位Vaを出力するため、正常な伝送路11に接続
されている第3の比較器25のみから正常な信号が出力
され、第1、第2の比較器23,24の出力は常に
“H”状態になる。この結果、上記接地電位差が、第2
の電位変換回路22から変換された電位Vbのパッシブ
時の電位と基準電位Vdとの差(Vb−Vd)以内であれ
ば、良好に第2の伝送路11のみによって信号の伝送が
可能となる。
As a result, even if the first transmission line 10 is broken, only the output of one of the three comparators, in this case, the output c of the third comparator 25 passes through the OR gate 29d. , To the communication control circuit 30. That is, a ground potential difference is generated between the multiplex transmission devices, and the first
When the transmission line 10 is disconnected, the first potential conversion circuit 21 connected to the first transmission line 10 outputs the potential Va satisfying the condition of the expression (1), and thus is connected to the normal transmission line 11. A normal signal is output only from the third comparator 25 which is operated, and the outputs of the first and second comparators 23 and 24 are always in the "H" state. As a result, the ground potential difference becomes the second
Within the difference (Vb-Vd) between the passive potential of the potential Vb converted from the potential conversion circuit 22 and the reference potential Vd, the signal can be satisfactorily transmitted only by the second transmission path 11. .

【0028】また、第2の伝送路11が断線した状態で
の故障通信モード場合も同様に、第2の電位変換回路2
2は、式(2)の条件を満足する電位Vbを出力するた
め、正常な伝送路10に接続されている第2の比較器2
4のみから正常な信号が出力され、第1、第3の比較器
23,25の出力は常に“H”状態になる。この結果、
上記接地電位差が、第1の電位変換回路21から変換さ
れた電位Vaのパッシブ時の電位と基準電位Vcとの差
(Va−Vc)以内であれば、良好に第1の伝送路10の
みによって信号の伝送が可能となる。
Also in the failure communication mode in the state where the second transmission line 11 is broken, the second potential conversion circuit 2 is similarly provided.
2 outputs the potential Vb that satisfies the condition of the equation (2), the second comparator 2 connected to the normal transmission line 10
A normal signal is output from only 4 and the outputs of the first and third comparators 23 and 25 are always in the "H" state. As a result,
If the ground potential difference is within the difference (Va-Vc) between the passive potential of the potential Va converted from the first potential conversion circuit 21 and the reference potential Vc, the first transmission path 10 can be used satisfactorily. It becomes possible to transmit signals.

【0029】従って、本実施例では、伝送路の片側が断
線した場合、3つの比較器のうち必ず1つのみから信号
が出力されるため、他の2つの比較器の出力の影響を受
けず、正確に通信が可能となる。また、本実施例では、
受信されるパッシブ信号とドミナント信号はパルス幅が
同一なので、伝送路上の信号を正確に受信でき、通信エ
ラーを防止できる。
Therefore, in the present embodiment, when one side of the transmission line is broken, only one of the three comparators outputs a signal, so that it is not affected by the outputs of the other two comparators. , It becomes possible to communicate accurately. Further, in this embodiment,
Since the passive signal and the dominant signal received have the same pulse width, the signal on the transmission path can be accurately received and the communication error can be prevented.

【0030】図4は、本発明に係る多重伝送装置の構成
の第2実施例を示す構成ブロック図である。図におい
て、第2実施例では、第1実施例の構成要素の他に、支
線12と電源Vccとの間に接続された第1のバイアス回
路31と、支線13とグランドGNDとの間に接続され
た第2のバイアス回路32とを有する。第1のバイアス
回路31は、第1の伝送路10が断線した場合、第1の
電位変換回路21で変換される電位Vaを電源側電位に
バイアスすることで式(1)を実現している。
FIG. 4 is a configuration block diagram showing a second embodiment of the configuration of the multiplex transmission apparatus according to the present invention. In the figure, in the second embodiment, in addition to the components of the first embodiment, a first bias circuit 31 connected between the branch line 12 and the power supply Vcc, and a connection between the branch line 13 and the ground GND. And a second bias circuit 32 that has been set. The first bias circuit 31 realizes the formula (1) by biasing the potential Va converted by the first potential conversion circuit 21 to the power supply side potential when the first transmission line 10 is disconnected. .

【0031】第2のバイアス回路32は、第2の伝送路
11が断線した場合、第2の電位変換回路22で変換さ
れる電位Vbをグランド側電位にバイアスすることで式
(2)を実現している。従って、本実施例でも、第1実
施例と同様に、伝送路の片側に断線故障が発生した場
合、1つの比較器のみから信号が出力されるため、他の
2つの比較器の出力の影響を受けず、正確に通信が可能
となる。
The second bias circuit 32 realizes the equation (2) by biasing the potential Vb converted by the second potential conversion circuit 22 to the ground side potential when the second transmission line 11 is broken. are doing. Therefore, also in this embodiment, as in the case of the first embodiment, when a disconnection failure occurs on one side of the transmission line, a signal is output from only one comparator, and the influence of the outputs of the other two comparators is affected. Communication is possible without being affected.

【0032】[0032]

【発明の効果】以上説明したように、本発明では、少な
くとも2本の共通の伝送路を介して相互に接続されると
ともに、前記各伝送路の信号に対応して変換させた各所
定電位を比較する第1の比較手段と、該変換された一方
の伝送路の電位と所定の基準電位を比較する第2の比較
手段と、該変換された他方の伝送路の電位と所定の基準
電圧を比較する第3の比較手段と、前記各比較手段の出
力を論理合成する論理合成手段と、前記論理合成手段の
合成結果を受信する通信制御手段とを有する多重伝送装
置において、前記一方の伝送路の信号を第1の所定電位
に変換する際に、該一方の伝送路が断線した場合、該第
1の所定電位が前記第2の比較手段の基準電位より大き
く、かつパッシブ時の前記第2の所定電位より大きくな
る条件を満足するように電位変換する第1の電位変換手
段と、前記他方の伝送路の信号を第2の所定電位に変換
する際に、該他方の伝送路が断線した場合、該第2の所
定電位が前記第3の比較手段の基準電位より小さく、か
つパッシブ時の前記第1の所定電位より小さくなる条件
を満足するように電位変換する第2の電位変換手段とを
備えたので、伝送路が切断されるような故障が発生して
も、低コストで、かつ簡単な構成で正確に伝送路上の信
号を受信できる。
As described above, according to the present invention, the respective predetermined potentials which are connected to each other through at least two common transmission lines and which are converted corresponding to the signals of the respective transmission lines are provided. The first comparing means for comparing, the second comparing means for comparing the converted potential of the one transmission path with a predetermined reference potential, and the second comparing means for comparing the converted potential of the other transmission path with the predetermined reference voltage. In the multiplex transmission device having third comparing means for comparing, logical synthesizing means for logically synthesizing the outputs of the respective comparing means, and communication control means for receiving the synthetic result of the logical synthesizing means, the one transmission path When the signal is converted to the first predetermined potential, if the one transmission line is broken, the first predetermined potential is larger than the reference potential of the second comparison means, and the second one when passive is used. Satisfies the condition of becoming larger than the specified potential of When converting the signal of the other transmission line to the second predetermined potential when the other transmission line is disconnected, the second predetermined potential is changed to the second potential. And the second potential conversion means for converting the potential so as to satisfy the condition of being smaller than the reference potential of the comparison means of 3 and smaller than the first predetermined potential in the passive state, so that the transmission line is disconnected. Even if such a failure occurs, the signal on the transmission path can be accurately received at a low cost and with a simple configuration.

【0033】請求項2では、前記一方の伝送路が断線し
た場合、前記第1の所定電位が前記第2の比較手段の基
準電位より大きく、かつパッシブ時の前記第2の所定電
位より小さくなる条件を満足するように、該一方の伝送
路に電源電位を与える第1のバイアス手段と、前記他方
の伝送路が断線した場合、前記第2の所定電位が前記第
3の比較手段の基準電位より小さく、かつパッシブ時の
前記第1の所定電位より小さくなる条件を満足するよう
に、該他方の伝送路に接地電位を与える第2のバイアス
手段とを備えたので、さらに正常な信号の通信を可能に
できる。
In the second aspect, when the one transmission line is broken, the first predetermined potential is higher than the reference potential of the second comparing means and is lower than the second predetermined potential in the passive state. When the first bias means for applying a power supply potential to the one transmission path and the other transmission path are disconnected so that the condition is satisfied, the second predetermined potential is the reference potential of the third comparison means. Since the second bias means for applying a ground potential to the other transmission line is provided so as to satisfy the condition of being smaller and smaller than the first predetermined potential in the passive state, communication of a more normal signal is provided. Can be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る多重伝送装置の第1実施例を示す
構成ブロック図である。
FIG. 1 is a configuration block diagram showing a first embodiment of a multiplex transmission device according to the present invention.

【図2】正常時における伝送路と多重伝送装置の各部で
の電位を示す図である。
FIG. 2 is a diagram showing potentials in a transmission line and respective parts of a multiplex transmission device in a normal state.

【図3】伝送路の断線故障時における伝送路と多重伝送
装置の各部での電位を示す図である。
FIG. 3 is a diagram showing the potentials of the transmission line and each part of the multiplex transmission device when a disconnection failure occurs in the transmission line.

【図4】本発明に係る多重伝送装置の第2実施例を示す
構成ブロック図である。
FIG. 4 is a configuration block diagram showing a second embodiment of the multiplex transmission device according to the present invention.

【図5】従来における伝送路と多重伝送装置の各部での
電位を示す図である。
FIG. 5 is a diagram showing potentials at various parts of a conventional transmission line and multiplex transmission device.

【図6】接地電位差が発生した場合の従来の電位変換回
路による変換後の電位を示す図である。
FIG. 6 is a diagram showing a potential after conversion by a conventional potential conversion circuit when a ground potential difference occurs.

【符号の説明】[Explanation of symbols]

10,11 伝送路 12,13 支線 20,40 多重伝送装置 21,22 電位変換回路 23〜25 比較器 26〜28 出力制御回路 26a〜28a カウンタ部 26b〜28b,29c アンドゲート 29 論理合成回路 29a,29b,29d オアゲート 30 通信制御回路 31,32 バイアス回路 10, 11 Transmission line 12, 13 Branch line 20, 40 Multiplex transmission device 21, 22 Potential conversion circuit 23-25 Comparator 26-28 Output control circuit 26a-28a Counter section 26b-28b, 29c AND gate 29 Logic combination circuit 29a, 29b, 29d OR gate 30 communication control circuit 31, 32 bias circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2本の共通の伝送路を介して
相互に接続されるとともに、前記各伝送路の信号に対応
して変換させた各所定電位を比較する第1の比較手段
と、該変換された一方の伝送路の電位と所定の基準電位
を比較する第2の比較手段と、該変換された他方の伝送
路の電位と所定の基準電圧を比較する第3の比較手段
と、前記各比較手段の出力を論理合成する論理合成手段
と、前記論理合成手段の合成結果を受信する通信制御手
段とを有する多重伝送装置において、 前記一方の伝送路の信号を第1の所定電位に変換する際
に、該一方の伝送路が断線した場合、該第1の所定電位
が前記第2の比較手段の基準電位より大きく、かつパッ
シブ時の前記第2の所定電位より大きくなる条件を満足
するように電位変換する第1の電位変換手段と、 前記他方の伝送路の信号を第2の所定電位に変換する際
に、該他方の伝送路が断線した場合、該第2の所定電位
が前記第3の比較手段の基準電位より小さく、かつパッ
シブ時の前記第1の所定電位より小さくなる条件を満足
するように電位変換する第2の電位変換手段とを備えた
ことを特徴とする多重伝送装置。
1. A first comparing means, which is connected to each other through at least two common transmission lines, and which compares respective predetermined potentials converted corresponding to signals of the respective transmission lines, Second comparing means for comparing the converted potential of one transmission path with a predetermined reference potential; third comparing means for comparing the converted potential of the other transmission path with a predetermined reference voltage; In a multiplex transmission apparatus having logic synthesizing means for logically synthesizing outputs of respective comparing means and communication control means for receiving a synthesis result of the logic synthesizing means, a signal of the one transmission path is converted into a first predetermined potential. In this case, when the one transmission line is disconnected, the condition that the first predetermined potential is higher than the reference potential of the second comparison means and higher than the second predetermined potential in the passive state is satisfied. Potential conversion that converts potentials And the other transmission line is disconnected when converting the signal of the other transmission line to the second predetermined potential, the second predetermined potential is smaller than the reference potential of the third comparison means. And a second electric potential converting means for converting electric potential so as to satisfy a condition of being smaller than the first predetermined electric potential in the passive state.
【請求項2】 前記多重伝送装置は、前記一方の伝送路
が断線した場合、前記第1の所定電位が前記第2の比較
手段の基準電位より大きく、かつパッシブ時の前記第2
の所定電位より大きくなる条件を満足するように、該一
方の伝送路に電源電位を与える第1のバイアス手段と、
前記他方の伝送路が断線した場合、前記第2の所定電位
が前記第3の比較手段の基準電位より小さく、かつパッ
シブ時の前記第1の所定電位より小さくなる条件を満足
するように、該他方の伝送路に接地電位を与える第2の
バイアス手段とを備えたことを特徴とする請求項1に記
載の多重伝送装置。
2. The multiplex transmission device according to claim 2, wherein when the one transmission line is broken, the first predetermined potential is higher than a reference potential of the second comparison means and the second transmission device is passive.
A first biasing means for applying a power supply potential to the one transmission path so as to satisfy the condition of becoming larger than the predetermined potential of
When the other transmission line is disconnected, the second predetermined potential is smaller than the reference potential of the third comparing means and smaller than the first predetermined potential in the passive state, so that the condition is satisfied. 2. The multiplex transmission device according to claim 1, further comprising a second bias unit that applies a ground potential to the other transmission line.
【請求項3】 前記多重伝送装置は、前記伝送路と支線
を介して接続されることを特徴とする請求項1又は2に
記載の多重伝送装置。
3. The multiplex transmission device according to claim 1, wherein the multiplex transmission device is connected to the transmission line via a branch line.
JP00156095A 1995-01-09 1995-01-09 Multiplex transmission equipment Expired - Fee Related JP3354329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00156095A JP3354329B2 (en) 1995-01-09 1995-01-09 Multiplex transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00156095A JP3354329B2 (en) 1995-01-09 1995-01-09 Multiplex transmission equipment

Publications (2)

Publication Number Publication Date
JPH08191315A true JPH08191315A (en) 1996-07-23
JP3354329B2 JP3354329B2 (en) 2002-12-09

Family

ID=11504914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00156095A Expired - Fee Related JP3354329B2 (en) 1995-01-09 1995-01-09 Multiplex transmission equipment

Country Status (1)

Country Link
JP (1) JP3354329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8094688B2 (en) 2006-11-22 2012-01-10 Denso Corporation Voltage supply unit for diagnosing electrical disconnection occurring in communication system and apparatus using the voltage supply unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8094688B2 (en) 2006-11-22 2012-01-10 Denso Corporation Voltage supply unit for diagnosing electrical disconnection occurring in communication system and apparatus using the voltage supply unit

Also Published As

Publication number Publication date
JP3354329B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
JPH06506336A (en) Differential driver/receiver circuit
US7089126B2 (en) Diode discovery power level detection
US5436934A (en) Differential high frequency level detector and data restoration circuit including squelch offset and slicing offset
US6617918B2 (en) Multi-level receiver circuit with digital output using a variable offset comparator
JP5238369B2 (en) Data receiving apparatus, data receiving method, and data receiving program
US5483639A (en) Device for detecting transmission errors in balanced two-wire bus lines and two-bus interfaces
US20020133762A1 (en) Method and apparatus for sliding window link physical error detection
US5898729A (en) Fault tolerant digital transmission system
US20070252622A1 (en) A System for Threshold Reference Voltage Compensation in Pseudo-Differential Signaling
JP2753915B2 (en) Communication control device
JPH0741232Y2 (en) Asynchronous binary data communication circuit
US7505521B2 (en) Data transmission system and method
US5315597A (en) Method and means for automatically detecting and correcting a polarlity error in twisted-pair media
EP2272163B1 (en) Electrical physical layer activity detector
JPH08191315A (en) Multiplex transmission equipment
US6664815B2 (en) Output driver circuit with current detection
US6374374B1 (en) Error processing circuit for a receiving location of a data transmission system
CA2088210A1 (en) Procedure for synchronizing circuit elements of a telecommunications system
US9019899B2 (en) Method and apparatus for synchronous communication of frames of digital information
JPH0396144A (en) Data transmission apparatus
JPH08139742A (en) Multiplex transmission device
JP3221259B2 (en) Bus type duplex transmission equipment
US6928242B1 (en) Built in self test method and circuit for parallel optical transmitters
US6757764B2 (en) Method and apparatus for transferring information using a constant frequency
JPH0795249A (en) Ternary transmission device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees