JPH0818862B2 - Semiconductor porcelain composition - Google Patents

Semiconductor porcelain composition

Info

Publication number
JPH0818862B2
JPH0818862B2 JP61313725A JP31372586A JPH0818862B2 JP H0818862 B2 JPH0818862 B2 JP H0818862B2 JP 61313725 A JP61313725 A JP 61313725A JP 31372586 A JP31372586 A JP 31372586A JP H0818862 B2 JPH0818862 B2 JP H0818862B2
Authority
JP
Japan
Prior art keywords
mol
catio
semiconductor porcelain
porcelain composition
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61313725A
Other languages
Japanese (ja)
Other versions
JPS63166754A (en
Inventor
秀一 小野
秋一 板垣
正博 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61313725A priority Critical patent/JPH0818862B2/en
Priority to US07/088,071 priority patent/US4889837A/en
Priority to EP87112285A priority patent/EP0261419B1/en
Priority to DE8787112285T priority patent/DE3777930D1/en
Priority to KR1019870009664A priority patent/KR920003027B1/en
Priority to CN87106154A priority patent/CN1010352B/en
Publication of JPS63166754A publication Critical patent/JPS63166754A/en
Publication of JPH0818862B2 publication Critical patent/JPH0818862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体磁器コンデンサ、特に粒界絶縁形半導
体磁器コンデンサに適したSrTiO3−CaTiO3−BaTiO3−Y2
O3−Nb2O5系半導体磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is suitable for semiconductor ceramic capacitors, particularly grain boundary insulation type semiconductor ceramic capacitors, SrTiO 3 —CaTiO 3 —BaTiO 3 —Y 2
O 3 relates -Nb 2 O 5 based semiconductor ceramic composition.

〔従来の技術〕[Conventional technology]

従来の半導体磁器コンデンサは表面層形として還元再
酸化型、堰層容量型があり、また粒界層形として粒界絶
縁型に大別される。
Conventional semiconductor porcelain capacitors are classified into surface layer types such as reduction / reoxidation type and weir layer capacitance type, and grain boundary layer types are roughly classified into grain boundary insulating types.

しかし、これら各種半導体磁器コンデンサの中粒界絶
縁型は堰層容量型に比べて容量の大きいものが得られ
ず、また還元再酸化型に比べて耐電圧が小さい。堰層容
量型は周波数特性が悪く、誘電体損失tanδが大きく、
耐電圧が小さい。還元再酸化型は周波数特性が悪く温度
特性が大きく誘電体損失tanδが大きい。という欠点が
夫々あった。
However, the medium grain boundary insulation type of these various semiconductor porcelain capacitors does not have a larger capacity than the weir layer capacity type, and has a lower withstand voltage than the reduction / reoxidation type. The weir layer capacitive type has poor frequency characteristics and a large dielectric loss tan δ,
Withstand voltage is small. The reductive reoxidation type has poor frequency characteristics, large temperature characteristics, and large dielectric loss tan δ. There were drawbacks.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のように従来の各種半導体磁器コンデンサは夫々
種々の欠点があった。
As described above, the various conventional semiconductor ceramic capacitors have various drawbacks.

本発明は、半導体磁器コンデンサでも特に粒界絶縁形
半導体磁器コンデンサにおいて、誘電率εが高く、周
波数特性、温度特性が良好で、誘電体損失tanδが小さ
な半導体磁器組成物を得ようとするものである。すなわ
ち、主成分SrTiO3に対して、副成分としてCaTiO3を添加
することによりSrO/TiO2比の適性範囲幅を広げ、さらに
BaTiO3,MnO,SiO2を添加することにより絶縁抵抗IRの高
い半導体磁器組成物を得ることができたものである。
The present invention is intended to obtain a semiconductor ceramic composition having a high dielectric constant ε s , good frequency characteristics and temperature characteristics, and a small dielectric loss tan δ in a semiconductor ceramic capacitor, particularly a grain boundary insulation type semiconductor ceramic capacitor. Is. That is, with respect to the main component SrTiO 3 , by adding CaTiO 3 as a sub-component, the appropriate range width of the SrO / TiO 2 ratio is expanded, and
By adding BaTiO 3 , MnO, and SiO 2 , it was possible to obtain a semiconductor ceramic composition having a high insulation resistance IR.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は半導体磁器組成物として、(100−x−y)
・SrtiO3を主成分とし、副成分として、x・CaTiO3,y・
BaTiO3を1.0≦x≦20.0mol%、(但し、xはSrO/TiO2
により上限が変化する)1.0≦y≦3.0mol%、さらに0.1
0≦Y2O3≦1.0mol%,0.10≦Nb2O5≦0.4mol%含有するこ
とを特徴とする(100−x−y)・SrTiO3+x・CaTiO3
+y・BaTiO3+Y2O3+Nb2O5系半導体磁器組成物を用い
る。
The present invention provides a semiconductor porcelain composition having (100-xy)
・ SrtiO 3 as the main component and x ・ CaTiO 3 , y ・
BaTiO 3 1.0 ≦ x ≦ 20.0mol% (however, x changes the upper limit depending on the SrO / TiO 2 ratio) 1.0 ≦ y ≦ 3.0mol%, and 0.1
0 ≦ Y 2 O 3 ≦ 1.0 mol%, 0.10 ≦ Nb 2 O 5 ≦ 0.4 mol% (100−x−y) · SrTiO 3 + x · CaTiO 3
+ Y · BaTiO 3 + Y 2 O 3 + Nb 2 O 5 based semiconductor ceramic composition is used.

また前記半導体磁器組成物において主成分に対して、
さらにマンガンをMnOに換算して0.02〜0.2mol%およびS
iO2を0.01〜0.6mol%含有することを特徴とする半導体
磁器組成物を用いることができる。
Further, with respect to the main component in the semiconductor porcelain composition,
Furthermore, manganese is converted to MnO by 0.02 to 0.2 mol% and S
A semiconductor porcelain composition characterized by containing 0.01 to 0.6 mol% of iO 2 can be used.

〔実施例〕〔Example〕

出発原料としてSrCO3,CaCO3,BaCO3,TiO2,MnCO3,SiO2
および半導体化剤としてY2O3,Nb2O5を用い、第1表また
は第2表に示した配合組成比となるよう秤量し、これら
の原料配合物を合成樹脂ボールミルで、水,玉石を入れ
て湿式混合撹拌を20時間行う。その後脱水乾燥し、1200
℃,昇降温度200℃/hr安定化2時間で仮焼成し、化学反
応を行わせた。これを再びボールミルで水,玉石を入れ
て20時間粉砕混合する。これを脱水乾燥して2重量%の
有機結合剤としてPVAを添加し、造粒整粒を行い顆粒粉
末としこの粉末を約3ton/cm2の成型圧力で10φ×0.5tmm
の円盤状に成形する。この成形物を800℃で1時間脱バ
インダし、これを還元気流中(H2+N2雰囲気)において
1450℃で約2時間本焼成して半導体化する。こうして得
られた半導体磁器素子は8.5φ×0.4tmmとなっており、
これの両面に拡散物質としてBi2O3−CuO系フリットペー
ストを3mgスクリーン印刷で塗布し、これを空気中で115
0℃で2時間熱処理して結晶粒界に絶縁層の形成された
半導体磁器とする。この磁器素子の両面にAgペーストを
スクリーン印刷し800℃程度で焼付けて電極が形成され
た粒界絶縁形半導体磁器組成物を得た。
SrCO 3 , CaCO 3 , BaCO 3 , TiO 2 , MnCO 3 , SiO 2 as starting materials
And, Y 2 O 3 and Nb 2 O 5 were used as semiconducting agents and weighed so that the composition ratio shown in Table 1 or 2 was obtained, and these raw material compositions were mixed with water and cobblestone in a synthetic resin ball mill. Is added and wet mixing and stirring are performed for 20 hours. Then dehydrated and dried, 1200
℃, the rising and falling temperature of 200 ℃ / hr Stabilized for 2 hours, and calcined to cause chemical reaction. In a ball mill, add water and boulders again and crush and mix for 20 hours. This was dewatered and dried by adding PVA as 2% by weight of an organic binder, a granulated powder subjected to granulating sized 10φ × 0.5tmm the powder molding pressure of about 3 ton / cm 2
It is molded into a disk shape. This molded product was debindered at 800 ° C for 1 hour, and it was placed in a reducing gas stream (H 2 + N 2 atmosphere).
Main-baking is performed at 1450 ° C for about 2 hours to form a semiconductor. The semiconductor porcelain element obtained in this way is 8.5φ × 0.4tmm,
Bi 2 O 3 --CuO system frit paste was coated on both sides of this as a diffusion material by 3 mg screen printing, and this was applied in air for 115
Heat treatment is performed at 0 ° C. for 2 hours to obtain a semiconductor porcelain having an insulating layer formed on a crystal grain boundary. An Ag paste was screen-printed on both sides of this porcelain element and baked at about 800 ° C. to obtain a grain boundary insulating semiconductor porcelain composition having electrodes formed thereon.

このようにして得られた各試料の電気的特性を測定し
た結果を第1表および第2表に示す。ここで誘電率εs
および誘電体損失tanδは周波数1KHz,1Vで測定した。絶
縁抵抗IRは直流電圧25Vを印加して室温20℃で測定し
た。
Tables 1 and 2 show the results of measuring the electrical characteristics of each sample thus obtained. Where permittivity εs
And the dielectric loss tan δ was measured at a frequency of 1KHz and 1V. The insulation resistance IR was measured at room temperature of 20 ° C. by applying a DC voltage of 25V.

第1表および第2表から明らかなように、本発明の範
囲内のものは、誘電率εsが約50,000以上の高い値を示
し、誘電体損失tanδは1.0%以下と小さく、また絶縁抵
抗IRは高い値を示している。次に、組成比の限定理由を
述べる。
As is clear from Tables 1 and 2, those within the range of the present invention have a high dielectric constant εs of about 50,000 or more, a low dielectric loss tan δ of 1.0% or less, and an insulation resistance IR. Indicates a high value. Next, the reasons for limiting the composition ratio will be described.

副成分CaTiO3が1.0mol%未満では絶縁抵抗IR、直流破
壊電圧Ebが低い(No.4,5,6)。CaTiO3が1.0〜20.0mol%
の範囲でSrO/TiO2比の適正範囲(0.030)が広くなる(N
o.7,8,11,12,13,15,16,18,19)。ただし、CaTiO31.0mol
未満でSrO/TiO2比0.990、CaTiO35.0mol%未満でSrO/TiO
2比0.980、CaTiO310.0mol%未満でSrO/TiO2比0.970では
IR、Ebが低い(No.10,14,17)。CaTiO3が20.0mol%を超
えると誘電率εsが低下し、誘電体損失tanδが大きく
なる(No.9,20)。BaTiO3が1.0mol%未満の場合絶縁抵
抗IR、直流破壊電圧Ebが低い(No.23,24,25)、またこ
れが3.0mol%を超えると誘電率εsが低下し、誘電体損
失tanδが大きくなる(No.28)。Y2O3およびNb2O5の単
独添加では誘電率εsが低い(No.29,30)、またY2O3
Nb2O5の複合添加においても各0.1mol%未満では誘電率
εs、直流破壊電圧Ebのアップ効果が顕著でない(No.3
0,31,32,40)。Y2O3が1.0mol%を超えると誘電率εsが
低下する(No.44,45)。Nb2O5が0.4mol%を超えると誘
電率εsが低下する(No.35,43)。次に第2表はMnOとS
iO2をさらに添加した場合を示しNo.46は対照試料であ
る。MnOまたはSiO2の単独添加では絶縁抵抗IRのアップ
効果が顕著でない(No.47,48,49,50,51,52,53)。MnOと
SiO2の複合添加においてもMnOが0.2mol%を超えると誘
電体損失tanδが高くなる(No.61,62,63)。またSiO2
0.6mol%を超えると誘電率εsが低下する(No.56,60,6
3)。
If the content of CaTiO 3 is less than 1.0 mol%, the insulation resistance IR and DC breakdown voltage E b are low (No.4,5,6). CaTiO 3 1.0 to 20.0 mol%
The proper range of SrO / TiO 2 ratio (0.030) becomes wider in the range of (N
o.7,8,11,12,13,15,16,18,19). However, CaTiO 3 1.0 mol
Below 0.90 SrO / TiO 2 , CaTiO 3 below 5.0 mol% SrO / TiO
2 ratio 0.980, CaTiO 3 less than 10.0 mol% SrO / TiO 2 ratio 0.970
IR and Eb are low (No.10,14,17). When CaTiO 3 exceeds 20.0 mol%, the dielectric constant εs decreases and the dielectric loss tan δ increases (No. 9, 20). When BaTiO 3 is less than 1.0 mol%, insulation resistance IR and DC breakdown voltage E b are low (No.23, 24, 25), and when it exceeds 3.0 mol%, dielectric constant εs decreases and dielectric loss tan δ increases. It gets bigger (No.28). Dielectric constant εs is low in sole addition of Y 2 O 3 and Nb 2 O 5 (No.29,30), also a Y 2 O 3
Even in the case of adding Nb 2 O 5 in combination, the effect of increasing the dielectric constant εs and the DC breakdown voltage E b is not significant when the content of each is less than 0.1 mol% (No. 3
0,31,32,40). When Y 2 O 3 exceeds 1.0 mol%, the dielectric constant εs decreases (No. 44, 45). When Nb 2 O 5 exceeds 0.4 mol%, the dielectric constant εs decreases (No. 35, 43). Next, Table 2 shows MnO and S
The case where iO 2 was further added is shown, and No. 46 is a control sample. The effect of increasing the insulation resistance IR is not remarkable when MnO or SiO 2 is added alone (No. 47, 48, 49, 50, 51, 52, 53). With MnO
The dielectric loss tan δ becomes higher when MnO exceeds 0.2 mol% even when SiO 2 is added in combination (No. 61, 62, 63). In addition, SiO 2
If it exceeds 0.6 mol%, the dielectric constant εs will decrease (No.56,60,6
3).

〔発明の効果〕〔The invention's effect〕

本発明の(100−x−y)・SrtiO3+x・CaTiO3+y
・BaTiO3+Y2O3+Nb2O5系半導体磁器組成物によると、S
iO0.970〜1.000モル,TiO21.000モルの比率からなる主成
分SrTiO3に対して、副成分としてx・CaTiO3,y・BaTiO3
さらにY2O3,Nb2O5を複合添加(0.1≦x≦20.0)(但
し、xはSrO/TiO2比により上限が変化する。),(0.05
≦y≦3.0),(0.10≦Y2O3≦1.0),(0.10≦Nb2O5
0.4)することにより、誘電率εsが高く、誘電体損失t
anδが小さくて、絶縁抵抗IR、直流破壊電圧Ebの高い半
導体磁器組成物が得られるので磁器コンデンサ素子の小
形化が可能となり、即ち従来10φ素地で105PFのものが
8φ素地で製作できるようになった。さらに、SrO/TiO2
比の適性範囲を拡大することができたので製造作業が容
易となり量産が可能で製造コストの低下を図ることがで
き工業上の利益が多大である。また、さらにMnOを0.02
〜0.20mol%、SiO2を0.01〜0.6mol%複合添加するより
絶縁抵抗IRと直流破壊電圧Ebをさらに向上させることが
できたものである。
Of the present invention (100-x-y) · SrtiO 3 + x · CaTiO 3 + y
・ According to the BaTiO 3 + Y 2 O 3 + Nb 2 O 5 based semiconductor porcelain composition, S
iO 0.970 to 1.000 moles, TiO 2 1.000 moles of the main component SrTiO 3 as a sub-component x · CaTiO 3 , y · BaTiO 3
Furthermore, composite addition of Y 2 O 3 and Nb 2 O 5 (0.1 ≦ x ≦ 20.0) (however, the upper limit of x changes depending on the SrO / TiO 2 ratio), (0.05
≦ y ≦ 3.0), (0.10 ≦ Y 2 O 3 ≦ 1.0), (0.10 ≦ Nb 2 O 5
0.4), the dielectric constant εs is high and the dielectric loss t
Since an anδ is small and a semiconductor porcelain composition having a high insulation resistance IR and a high DC breakdown voltage E b can be obtained, it is possible to miniaturize the porcelain capacitor element, that is, a conventional 10φ substrate with 10 5 PF can be manufactured with 8φ substrate It became so. Furthermore, SrO / TiO 2
Since the suitable range of the ratio can be expanded, the manufacturing work is facilitated, mass production is possible, the manufacturing cost can be reduced, and the industrial advantage is great. In addition, MnO is 0.02
~0.20mol%, in which it was possible to further improve the DC breakdown voltage E b and the insulation resistance IR of SiO 2 to 0.01~0.6Mol% composite addition.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(100−x−y)・SrTiO3を主成分とし、S
rO0.970〜1.000モル、TiO21.000モルの比率からなり、
副成分として添加するCaTiO3はSrOの代表値1.000、0.99
0、0.980、0.970モルに対してそれぞれ5.0〜20.0、1.0
〜20.0、5.0〜20.0、10.0〜20.0mol%に対応するものと
し、さらにBaTiO3を1.0〜3.0mol%、イツトリウムをY2O
3に換算して0.1〜1.0mol%およびニオブをNb2O5に換算
して0.1〜0.4mol%それぞれ含有することを特徴とする
(100−x−y)・SrTiO3+x・CaTiO3+y・BaTiO3+Y
2O3+Nb2O5系半導体磁器組成物。
1. A main component of (100-xy) .SrTiO 3
rO 0.970-1.000 mol, composed of the ratio of TiO 2 1.000 mol,
CaTiO 3 added as an accessory component has a typical value of SrO of 1.000 and 0.99.
5.0-20.0, 1.0 for 0, 0.980, 0.970 mol respectively
〜20.0, 5.0〜20.0, 10.0〜20.0mol%, BaTiO 3 1.0〜3.0mol%, Yttrium Y 2 O
3 in terms of converting 0.1 to 1.0 mol% and the niobium Nb 2 O 5, characterized in that it contains, respectively 0.1~0.4Mol% by (100-x-y) · SrTiO 3 + x · CaTiO 3 + y · BaTiO 3 + Y
2 O 3 + Nb 2 O 5 based semiconductor porcelain composition.
【請求項2】前記主成分に対し、マンガンをMnOに換算
して0.02〜0.20molおよびSiO2を0.01〜0.6mol%含有す
ることを特徴とする特許請求の範囲第1項記載の半導体
磁器組成物。
2. The semiconductor porcelain composition according to claim 1, wherein the main component contains 0.02 to 0.20 mol of manganese and 0.01 to 0.6 mol% of SiO 2 in terms of MnO. Stuff.
【請求項3】前記主成分および副成分からなる組成を成
形焼結してなる半導体磁器の粒界にBiが偏在しているこ
とを特徴とする特許請求の範囲第1項または第2項記載
の半導体磁器組成物。
3. The Bi according to claim 1 or 2, wherein Bi is unevenly distributed in a grain boundary of a semiconductor ceramic formed by molding and sintering the composition containing the main component and the subcomponent. The semiconductor porcelain composition of.
JP61313725A 1986-09-02 1986-12-26 Semiconductor porcelain composition Expired - Lifetime JPH0818862B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61313725A JPH0818862B2 (en) 1986-12-26 1986-12-26 Semiconductor porcelain composition
US07/088,071 US4889837A (en) 1986-09-02 1987-08-21 Semiconductive ceramic composition
EP87112285A EP0261419B1 (en) 1986-09-02 1987-08-25 Semiconductive ceramic composition
DE8787112285T DE3777930D1 (en) 1986-09-02 1987-08-25 SEMI-CONDUCTING CERAMIC COMPOSITION.
KR1019870009664A KR920003027B1 (en) 1986-09-02 1987-09-01 Semiconductive ceramic composition
CN87106154A CN1010352B (en) 1986-09-02 1987-09-02 Semiconductive ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61313725A JPH0818862B2 (en) 1986-12-26 1986-12-26 Semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS63166754A JPS63166754A (en) 1988-07-09
JPH0818862B2 true JPH0818862B2 (en) 1996-02-28

Family

ID=18044764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313725A Expired - Lifetime JPH0818862B2 (en) 1986-09-02 1986-12-26 Semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPH0818862B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111412A (en) * 1985-11-09 1987-05-22 株式会社村田製作所 Compound for insulated grain boundary type semiconductor porcelain capacitor

Also Published As

Publication number Publication date
JPS63166754A (en) 1988-07-09

Similar Documents

Publication Publication Date Title
US4889837A (en) Semiconductive ceramic composition
KR940001654B1 (en) Semiconductive ceramic composition
EP0104257B1 (en) High dielectric constant porcelain composition
JPH0818862B2 (en) Semiconductor porcelain composition
JP2540029B2 (en) Semiconductor porcelain composition
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JP2580374B2 (en) Method for producing composite perovskite type dielectric porcelain powder
JP2795654B2 (en) High dielectric constant porcelain composition
JPH0316773B2 (en)
JPH07114824A (en) Dielectric ceramic composition
JP3588210B2 (en) Dielectric porcelain composition
JPH0687364B2 (en) High dielectric constant porcelain composition
JPH0571538B2 (en)
JP2584985B2 (en) Semiconductor porcelain composition
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPS6364959A (en) Semiconductor ceramic composition
JPS63178409A (en) Semiconductor ceramic composition
JPS6126207B2 (en)
JPS6230482B2 (en)
JPH05213666A (en) Dielectric porcelain composition and its production
JPS6230483B2 (en)
JPH0522667B2 (en)
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH09183651A (en) Dielectric ceramic composition and condenser using the same and production of the dielectric ceramic composition
JPH02106811A (en) Porcelain composition with high dielectric constant