JP2540029B2 - Semiconductor porcelain composition - Google Patents

Semiconductor porcelain composition

Info

Publication number
JP2540029B2
JP2540029B2 JP61041841A JP4184186A JP2540029B2 JP 2540029 B2 JP2540029 B2 JP 2540029B2 JP 61041841 A JP61041841 A JP 61041841A JP 4184186 A JP4184186 A JP 4184186A JP 2540029 B2 JP2540029 B2 JP 2540029B2
Authority
JP
Japan
Prior art keywords
mol
semiconductor porcelain
sio
semiconductor
porcelain composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61041841A
Other languages
Japanese (ja)
Other versions
JPS62202858A (en
Inventor
秀一 小野
秋一 板垣
正博 矢作
喜代志 古川
忍 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61041841A priority Critical patent/JP2540029B2/en
Publication of JPS62202858A publication Critical patent/JPS62202858A/en
Application granted granted Critical
Publication of JP2540029B2 publication Critical patent/JP2540029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体磁器コンデンサ、特に粒界絶縁形半
導体磁器コンデンサに適したSrTiO3-Y2O3-Nb2O5系磁器
組成物に関する。
TECHNICAL FIELD The present invention relates to a SrTiO 3 —Y 2 O 3 —Nb 2 O 5 based porcelain composition suitable for a semiconductor ceramic capacitor, particularly a grain boundary insulation type semiconductor ceramic capacitor. .

〔従来の技術〕[Conventional technology]

従来の半導体磁器コンデンサは表面層形として還元再
酸化型、堰層容量型があり、また粒界層形として粒界絶
縁型に大別される。
Conventional semiconductor porcelain capacitors are classified into surface layer types such as reduction / reoxidation type and weir layer capacitance type, and grain boundary layer types are roughly classified into grain boundary insulating types.

しかし、これら各種半導体磁器コンデンサの中粒界絶
縁型は堰層容量型に比べて容量の大きいものが得られ
ず、また還元再酸化型に比べて耐電圧が小さい。堰層容
量型は周波数特性が悪く、誘電体損失tanδが大きく、
耐電圧が小さい。還元再酸化型は周波数特性が悪く温度
特性が大きく誘電体損失tanδが大きい。という欠点が
夫々あった。
However, the medium grain boundary insulation type of these various semiconductor porcelain capacitors does not have a larger capacity than the weir layer capacity type, and has a lower withstand voltage than the reduction / reoxidation type. The weir layer capacitive type has poor frequency characteristics and a large dielectric loss tan δ,
Withstand voltage is small. The reductive reoxidation type has poor frequency characteristics, large temperature characteristics, and large dielectric loss tan δ. There were drawbacks.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のように従来の各種半導体磁器コンデンサは夫々
種々の欠点があった。
As described above, the various conventional semiconductor ceramic capacitors have various drawbacks.

本発明は、半導体磁器コンデンサでも特に粒界絶縁形
半導体磁器コンデンサにおいて、誘電率が高く、周波数
特性,温度特性が良好で、誘電体損失tanδが小さい半
導体磁器組成物を得ようとするものである。さらにMnO
を添加することにより絶縁抵抗の高い半導体磁器組成物
が、また、さらにSiO2添加することにより、SrO/TiO2
の適正範囲を広げることができるものである。
The present invention is intended to obtain a semiconductor ceramic composition, particularly a grain boundary insulation type semiconductor ceramic capacitor, which has a high dielectric constant, good frequency characteristics and temperature characteristics, and a small dielectric loss tan δ. . MnO
Is added, a semiconductor porcelain composition having a high insulation resistance can be added, and by addition of SiO 2 , the appropriate range of the SrO / TiO 2 ratio can be expanded.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は半導体磁器組成物として、(100−x−y)
・SrTiO3を主成分とし、副成分としてx・Y2O3およびy
・Nb2O5をそれぞれ0.1〜0.4mol%含有することを特徴と
する(100−x−y)・SrTiO3+x・Y2O3+y・Nb2O5
半導体磁器組成物を用いる。
The present invention provides a semiconductor porcelain composition having (100-xy)
・ SrTiO 3 as a main component and x ・ Y 2 O 3 and y as secondary components
· Nb 2 O 5, respectively, characterized in that it contains 0.1~0.4mol% (100-x-y ) · SrTiO 3 + x · Y 2 O 3 + y · Nb 2 O 5 system using the semiconductor ceramic composition.

また、上記主成分に対してマンガンをMnOに換算して
0.02〜0.2mol%含有すること、さらにまた、上記主成分
に対してSiO2を0.01〜0.1mol%含有することを特徴とし
た半導体磁器組成物を用いることができる。
In addition, converting manganese to MnO for the above main components
A semiconductor porcelain composition characterized by containing 0.02 to 0.2 mol% and further containing 0.01 to 0.1 mol% of SiO 2 with respect to the above main component can be used.

〔実施例〕〔Example〕

出発原料としてSrCO3,TiO2,MnCO3,SiO2および半導体
化剤としてY2O3,Nb2O5を用い、第1表または第2表に示
した配合組成比となるように秤量し、これらの原料配合
物を合成樹脂ボールミルで、水,玉石を入れて湿式混合
攪拌を20時間行う。その後脱水乾燥し、1200℃,昇降温
度200℃/hr安定化2時間で仮焼成し、化学反応を行わせ
た。これを再びボールミルで水,玉石を入れて16時間粉
砕混合する。これを脱水乾燥して2重量%の有機結合剤
としてPVAを添加し、造粒整粒を行い顆粒粉末としこの
粉末を約3ton/cm2の成型圧力で10φ×0.5tmm円板状に成
形する。この成形物を800℃で1時間脱バインダし、こ
れを還元気流中(H2+N2雰囲気)において1450℃で約2
時間本焼成して半導体化する。こうして得られた半導体
磁器素子は8.5φ×0.4tmmとなっており、これの両面に
拡散物質としてBi2O3−CuO系フリットペーストを3mgス
クリーン印刷で塗布し、これを空気中で1150℃で2時間
焼成して結晶粒界に絶縁層の形成された半導体磁器とす
る。この磁器素子の両面にAgペーストを800℃程度で焼
付けて電極が形成された粒界絶縁形半導体磁器組成物を
得た。
Using SrCO 3 , TiO 2 , MnCO 3 and SiO 2 as starting materials and Y 2 O 3 and Nb 2 O 5 as semiconducting agents, weigh them so that the blending composition ratio shown in Table 1 or 2 is obtained. In a synthetic resin ball mill, water and boulders are added to these raw material mixtures, and wet mixing and stirring are performed for 20 hours. Then, it was dehydrated and dried, and calcined at 1200 ° C. and a rising / lowering temperature of 200 ° C./hr for 2 hours for stabilization to cause a chemical reaction. Add water and boulders again in a ball mill and crush and mix for 16 hours. This is dehydrated and dried, PVA is added as an organic binder of 2% by weight, and granulated and sized to obtain granule powder, and the powder is molded into a disk shape of 10φ × 0.5tmm at a molding pressure of about 3 ton / cm 2. . This molded product was debindered at 800 ° C for 1 hour, and it was removed in a reducing gas stream (H 2 + N 2 atmosphere) at 1450 ° C for about 2 times.
It is fired for a time to become a semiconductor. The semiconductor porcelain element thus obtained has a size of 8.5φ × 0.4tmm, and 3 mg of Bi 2 O 3 --CuO system frit paste was applied as a diffusing substance by screen printing on both sides of this, and this was heated at 1150 ° C. in air. It is fired for 2 hours to obtain a semiconductor porcelain having an insulating layer formed on a crystal grain boundary. Ag paste was baked on both surfaces of this porcelain element at about 800 ° C. to obtain a grain boundary insulation type semiconductor porcelain composition having electrodes formed thereon.

このようにして得られた各試料の電気的特性を測定し
た結果を第1表および第2表に示す。ここで誘電率εs
および誘電体損失tanδは周波数1KHzで測定した。絶縁
抵抗は50Vを印加して室温20℃で測定した。
Tables 1 and 2 show the results of measuring the electrical characteristics of each sample thus obtained. Where permittivity ε s
The dielectric loss tan δ was measured at a frequency of 1 KHz. The insulation resistance was measured at room temperature of 20 ° C by applying 50V.

第1表より明らかなように、本発明の範囲のものは誘
電率εsが約75,000以上で、誘電体損失tanδは0.72%以
下、直流破壊電圧Ebは、450volt/mm以上と極めて優れた
値である。(試料No.8,9,10,13,14,16,17,18,19,21,24,
25,26が範囲内の試料である) 次に組成比の限定理由を述べる。
As is clear from Table 1, in the range of the present invention, the dielectric constant ε s is about 75,000 or more, the dielectric loss tan δ is 0.72% or less, and the DC breakdown voltage Eb is 450 volt / mm or more, which are extremely excellent values. Is. (Sample No.8,9,10,13,14,16,17,18,19,21,24,
(25 and 26 are samples within the range) Next, the reasons for limiting the composition ratio will be described.

副成分Y2O3およびNb2O5の単独添加では誘電率εsが高
い値を得ることができない試料No.は1,2,3,7,11,23、
又、直流破壊電圧Ebにおいても高い値を得ることができ
ない試料No.は3である。
Sample No. 1,2,3,7,11,23, which cannot obtain a high value of the dielectric constant ε s by adding the additional components Y 2 O 3 and Nb 2 O 5 alone,
Further, the sample No. 3 which cannot obtain a high value even in the DC breakdown voltage Eb is 3.

次に、Y2O3およびNb2O5の複合添加においても各0.1mo
l%未満では、試料No.4,5,6,12,27の試料の誘電率εs
低く、試料No.5,6は直流破壊電圧Ebも低い。Y2O3が0.4m
ol%を越えると試料No.27,28,29は誘電率εsが低くな
る。Nb2O5が0.4mol%を越えると試料No.6,22,29は直流
破壊電圧Ebが低くなる。
Next, even in the combined addition of Y 2 O 3 and Nb 2 O 5 , each
If it is less than 1%, the dielectric constant ε s of the samples No. 4, 5, 6, 12, 27 is low, and the DC breakdown voltage Eb of the samples No. 5, 6 is also low. Y 2 O 3 0.4m
When it exceeds ol%, the dielectric constants ε s of Sample Nos. 27, 28 and 29 become low. When Nb 2 O 5 exceeds 0.4 mol%, sample Nos. 6, 22, and 29 have low DC breakdown voltage Eb.

MnOの添加効果を確認した試料(No.14〜20)におい
て、0.02mol%未満では絶縁抵抗IRのアップ効果が顕著
でない(試料No.14,15)。またMnOが0.3mol%添加した
試料No.20は誘電率εsと誘電損失tanδが悪い。
In samples (Nos. 14 to 20) confirmed to have the effect of adding MnO, the effect of increasing the insulation resistance IR is not remarkable when the content is less than 0.02 mol% (Samples Nos. 14 and 15). Sample No. 20 containing 0.3 mol% of MnO has poor dielectric constant ε s and dielectric loss tan δ.

SiO2の量およびSrO/TiO2比を変えた試料の組成及び電
気的特性を第2表に示す。
Table 2 shows the composition and electrical characteristics of the samples with different amounts of SiO 2 and SrO / TiO 2 ratio.

第2表よりSiO2の添加量別にSrO/TiO2比の適正範囲を
誘電率εs(75,000以上)、誘電体損失tanδ(0.72%以
下)及び直流破壊電圧Eb(450volt/mm以上)としてこの
電気的特性を満足するものは試料はNo.31,32,35,36,39,
40,43,44,47,48である。
From Table 2 , the proper range of SrO / TiO 2 ratio according to the added amount of SiO 2 is defined as dielectric constant ε s (75,000 or more), dielectric loss tan δ (0.72% or less) and DC breakdown voltage Eb (450 volt / mm or more) Samples that satisfy the electrical characteristics are No. 31, 32, 35, 36, 39,
40,43,44,47,48.

すなわち、SiO2量が0及び0.005mol%の場合、SrO/Ti
O2比が0.999〜1.001の適正範囲となる。またSiO2が0.01
mol%の場合は、SrO/TiO2比が0.998〜1.002の適正範囲
となる。さらに、SiO2量を0.05〜0.10mol%では、SrO/T
iO2比が0.997〜1.003となり適正範囲が広がる。
That is, when the amount of SiO 2 is 0 and 0.005 mol%, SrO / Ti
The O 2 ratio is in the proper range of 0.999 to 1.001. SiO 2 is 0.01
In the case of mol%, the SrO / TiO 2 ratio is in the appropriate range of 0.998 to 1.002. Furthermore, when the amount of SiO 2 is 0.05 to 0.10 mol%, SrO / T
The iO 2 ratio is 0.997 to 1.003, which widens the appropriate range.

但し、SiO2量を0.20mol%添加したものは、誘電率εs
が低く製品の小型化に問題がある(試料No.50,51) SiO2の添加において、SrO/TiO2比の適正範囲がSiO2
加なしのものに比べて、SrO/TiO2比の適正範囲を拡大す
る(0.002を0.004または0.006にする)効果を有するSiO
2の添加量範囲は0.01mol%以上〜0.10mol%以下であ
る。
However, if the SiO 2 content is 0.20 mol%, the dielectric constant ε s
There is a problem in the miniaturization of the lower product in addition (Sample Nos. 50 and 51) SiO 2, a proper range of SrO / TiO 2 ratio than those with no SiO 2 addition, proper of SrO / TiO 2 ratio SiO with the effect of expanding the range (from 0.002 to 0.004 or 0.006)
The addition amount range of 2 is 0.01 mol% or more and 0.10 mol% or less.

〔発明の効果〕〔The invention's effect〕

以上のように本発明の(100−x−y)・SrTiO3+x
・Y2O3+y・Nb2O5系半導体磁器組成物によると、副成
分としてY2O3およびNb2O5を複合添加(0.1≦x≦0.4,0.
1≦y≦0.4)することにより誘電率εs,直流破壊電圧E
bおよびεs・Eb積の高い半導体磁器組成物が得られるの
で磁器素子の小形化が可能となり、即ち従来10φ素地で
105PFのものが8φ素地で製作できるようになった。ま
た周波数特性、温度特性および誘電体損失も良好であ
る。さらにMnOを0.02〜0.2mol%添加することにより絶
縁抵抗の高い半導体磁器組成物が得られた。さらにまた
SiO2を0.01〜0.1mol%添加することによりSrO/TiO2比の
適正範囲を拡大することができるので製造作業が容易と
なり量産が可能で製造コストの低下を図ることができ工
業上の利益が多大である。
As described above, (100-xy) .SrTiO 3 + x of the present invention
According to the Y 2 O 3 + y · Nb 2 O 5 based semiconductor porcelain composition, Y 2 O 3 and Nb 2 O 5 are added as a sub-component (0.1 ≦ x ≦ 0.4,0.
1 ≦ y ≦ 0.4), permittivity ε s , DC breakdown voltage E
Since a semiconductor porcelain composition having a high b and ε s · Eb product can be obtained, it is possible to downsize the porcelain element.
It became possible to manufacture 10 5 PF with 8φ substrate. The frequency characteristics, temperature characteristics and dielectric loss are also good. Furthermore, by adding 0.02 to 0.2 mol% of MnO, a semiconductor porcelain composition with high insulation resistance was obtained. Again
Since the appropriate range of SrO / TiO 2 ratio can be expanded by adding 0.01 to 0.1 mol% of SiO 2 , the manufacturing work becomes easy, mass production is possible, and the manufacturing cost can be reduced, which is an industrial advantage. It's a lot.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 喜代志 東京都中央区日本橋1丁目13番1号 テ イーデイーケイ株式会社内 (72)発明者 藤原 忍 東京都中央区日本橋1丁目13番1号 テ イーデイーケイ株式会社内 (56)参考文献 特開 昭57−27001(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Furukawa 1-13-1 Nihonbashi, Chuo-ku, Tokyo TEDK Corporation (72) Shinobu Fujiwara 1-13-1 Nihonbashi, Chuo-ku, Tokyo TEDK Incorporated (56) References JP-A-57-27001 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(100−x−y)・SrTiO3を主成分とし、
副成分としてx・Y2O3およびy・Nb2O5をそれぞれ0.1〜
0.4mol%含有することを特徴とする((100−x−y)
・SrTiO3+x・Y2O3+y・Nb2O5系半導体磁器組成物。
[Claim 1] as a main component (100-x-y) · SrTiO 3,
X · Y 2 O 3 and y · Nb 2 O 5 each as an accessory component are 0.1 to
It is characterized by containing 0.4 mol% ((100-xy))
· SrTiO 3 + x · Y 2 O 3 + y · Nb 2 O 5 based semiconductor ceramic composition.
【請求項2】上記主成分に対しマンガンをMnOに換算し
て0.02〜0.2mol%含有することを特徴とする特許請求の
範囲第1項記載の半導体磁器組成物。
2. The semiconductor porcelain composition according to claim 1, which contains manganese in an amount of 0.02 to 0.2 mol% in terms of MnO with respect to the main component.
【請求項3】上記主成分に対しSiO2を0.01〜0.1mol%含
有することを特徴とする特許請求の範囲第1項又は第2
項記載の半導体磁器組成物。
3. The SiO 2 content of 0.01 to 0.1 mol% with respect to the main component described in claim 1 or 2.
The semiconductor porcelain composition according to the item.
【請求項4】上記主成分および副成分からなる組成を成
形焼結してなる半導体磁器の粒界にBiが偏在しているこ
とを特徴とする特許請求の範囲第1〜3項のいずれか一
つの項記載の半導体磁器組成物。
4. Bi is unevenly distributed in a grain boundary of a semiconductor porcelain obtained by molding and sintering the composition comprising the main component and subcomponents as set forth in any one of claims 1 to 3. The semiconductor porcelain composition according to one item.
JP61041841A 1986-02-28 1986-02-28 Semiconductor porcelain composition Expired - Lifetime JP2540029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041841A JP2540029B2 (en) 1986-02-28 1986-02-28 Semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041841A JP2540029B2 (en) 1986-02-28 1986-02-28 Semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS62202858A JPS62202858A (en) 1987-09-07
JP2540029B2 true JP2540029B2 (en) 1996-10-02

Family

ID=12619479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041841A Expired - Lifetime JP2540029B2 (en) 1986-02-28 1986-02-28 Semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JP2540029B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727001A (en) * 1980-07-25 1982-02-13 Tdk Electronics Co Ltd Voltage nonlinear resistance element

Also Published As

Publication number Publication date
JPS62202858A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
JP3028503B2 (en) Non-reducing dielectric porcelain composition
EP0261419B1 (en) Semiconductive ceramic composition
EP0256405B1 (en) Semiconductive ceramic composition
EP0104257B1 (en) High dielectric constant porcelain composition
JPH0283256A (en) Dielectric material porcelain composition
JP2540029B2 (en) Semiconductor porcelain composition
JPH0687364B2 (en) High dielectric constant porcelain composition
JPH0818862B2 (en) Semiconductor porcelain composition
JPH0316773B2 (en)
JPH07114824A (en) Dielectric ceramic composition
JP2584985B2 (en) Semiconductor porcelain composition
JPS6364959A (en) Semiconductor ceramic composition
JP2967440B2 (en) Dielectric ceramic composition for temperature compensation
JPH0571538B2 (en)
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPH05266711A (en) Dielectric ceramic composition
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPS6230482B2 (en)
JP2773479B2 (en) Grain boundary insulated semiconductor porcelain material and method of manufacturing the same
JP2974172B2 (en) Dielectric porcelain composition
JPS63178409A (en) Semiconductor ceramic composition
JPS5849661A (en) High dielectric constant ceramic composition
KR910001344B1 (en) Multilayer ceramic capacitor and method for producing thereof
JPS6230483B2 (en)
JPH0687365B2 (en) High dielectric constant porcelain composition