JPH0818155A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0818155A
JPH0818155A JP15222494A JP15222494A JPH0818155A JP H0818155 A JPH0818155 A JP H0818155A JP 15222494 A JP15222494 A JP 15222494A JP 15222494 A JP15222494 A JP 15222494A JP H0818155 A JPH0818155 A JP H0818155A
Authority
JP
Japan
Prior art keywords
layer
gaas
semiconductor laser
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15222494A
Other languages
Japanese (ja)
Inventor
Norio Okubo
典雄 大久保
Tetsuro Ijichi
哲朗 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15222494A priority Critical patent/JPH0818155A/en
Publication of JPH0818155A publication Critical patent/JPH0818155A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent strain from being relaxed on the edge intersecting the laser discharging direction perpendicularly by forming a semiconductor, while matching the lattice with a substrate, on the edge intersecting the laser discharging direction perpendicularly. CONSTITUTION:A resist film 9 3mum wide is formed in a region corresponding to a stripe formed perpendicularly to a cleavage plane. The upper part of a cap layer 8 and an upper clad layer 7 is then removed by etching from the region formed with no resist film 9 using the resist trim 9 as a mask and an insulating film 10 of SiO2 is formed in that region. The used resist film 9 is then removed. An InGaP layer formed on the edge of a resonator has a lattice matching with those of a substrate 1 of GaAs, a buffer layer 2 of GaAs, the upper and lower clad layers 3, 7 of AlGaAs, and carrier confinement layers 4, 6 of GaAs, the semiconductor laser is provided with a function for preventing the compression strain in a strained quantum well layer 5 from being relaxed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ装置の改良
に関する。特に、歪量子井戸層を活性層とする半導体レ
ーザ装置の発光効率と信頼性とを向上する改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in semiconductor laser devices. In particular, it relates to an improvement in improving the emission efficiency and reliability of a semiconductor laser device having a strained quantum well layer as an active layer.

【0002】[0002]

【従来の技術】活性層をなす半導体の禁制帯幅を、活性
層を囲む層の禁制帯幅より小さくしておき、キャリヤを
活性層に閉じ込めて再結合を活発にする量子井戸におい
て、活性層をなす半導体の格子定数が、活性層を囲む層
の格子定数と僅かに相違するようにして、活性層に数%
歪が印加されるようにしておく歪量子井戸は、価電子帯
の縮退が解放されて、禁制帯幅が大きくなり、キャリヤ
の有効質量が低下して価電子帯の状態密度が低下するこ
とが知られている。そのため、このような歪量子井戸層
を活性層とする半導体レーザ装置は、しきい値電流が低
下し、価電子帯間の吸収が低下するため発光効率が向上
することになる。
2. Description of the Related Art In a quantum well in which a band gap of a semiconductor forming an active layer is made smaller than a band gap of a layer surrounding the active layer and carriers are confined in the active layer to activate recombination, The lattice constant of the semiconductor forming the active layer is slightly different from that of the layer surrounding the active layer, and the
In a strained quantum well in which strain is applied, degeneration of the valence band is released, the band gap is increased, the effective mass of carriers is reduced, and the density of states of the valence band is reduced. Are known. Therefore, in the semiconductor laser device having such a strained quantum well layer as an active layer, the threshold current is reduced and the absorption between valence bands is reduced, so that the light emission efficiency is improved.

【0003】[0003]

【発明が解決しようとする課題】しかし、歪量子井戸層
を活性層とする半導体レーザ装置は、レーザ放出方向に
直交する端面において、歪が解放されて、吸収が増加
し、所期の発光効率が得られなかったり、また、端面の
劣化が促進され、信頼性が低下しやすいと云う欠点があ
る。
However, in the semiconductor laser device using the strained quantum well layer as the active layer, the strain is released at the end face orthogonal to the laser emission direction, the absorption increases, and the desired luminous efficiency is obtained. Cannot be obtained, or the deterioration of the end face is promoted, and the reliability tends to decrease.

【0004】本発明の目的はこれらの欠点を解消するこ
とにあり、歪量子井戸層を活性層とする半導体レーザ装
置においてレーザ放出方向に直交する端面において歪が
解放されることがなく、発光効率が高く、信頼性が高い
半導体レーザ装置を提供することにある。
An object of the present invention is to eliminate these drawbacks, and in a semiconductor laser device having a strained quantum well layer as an active layer, strain is not released at the end face orthogonal to the laser emission direction, and luminous efficiency is improved. To provide a highly reliable semiconductor laser device.

【0005】[0005]

【課題を解決するための手段】上記の目的は、歪量子井
戸層を活性層とする半導体レーザ装置において、レーザ
放出方向に直交する端面に、基板に格子整合して、半導
体層が形成されている半導体レーザ装置によって達成さ
れる。
The above object is to provide a semiconductor laser device having a strained quantum well layer as an active layer, in which a semiconductor layer is formed on an end face orthogonal to a laser emission direction in lattice matching with a substrate. Is achieved by a semiconductor laser device.

【0006】[0006]

【作用】本発明に係る歪量子井戸層を活性層とする半導
体レーザ装置は、そのレーザ放出方向に直交する端面
に、基板に格子整合して、半導体層が形成されているの
で、レーザ放出方向に直交する端面においても歪が解放
されることはなく、したがって、吸収が増加することも
なく、しきい値電流は低く、発光効率は高くされる。
In the semiconductor laser device having the strained quantum well layer as the active layer according to the present invention, the semiconductor layer is formed on the end face orthogonal to the laser emission direction in lattice matching with the substrate. The strain is not released even on the end face orthogonal to the above, and therefore the absorption is not increased, the threshold current is low, and the light emission efficiency is high.

【0007】[0007]

【実施例】以下、図面を参照して、本発明の一実施例に
係る半導体レーザ装置の製造工程と本発明に特有の効果
とについて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A manufacturing process of a semiconductor laser device according to an embodiment of the present invention and effects peculiar to the present invention will be described below with reference to the drawings.

【0008】図2参照 成長温度700℃においてなす減圧有機金属気相成長法
(以下減圧MOCVD法と云う。)を使用して、n型G
aAs基板1上に、厚さ500nmのn型GaAs層よ
りなるバッファ層2と、厚さ2μmのn型AlGaAs
層よりなる下部クラッド層3と、厚さ50nmのGaA
s層よりなるキャリヤ閉じ込め層4と、厚さ9nmのI
nGaAs層よりなる歪量子井戸層5と、厚さ50nm
のGaAs層よりなるキャリヤ閉じ込め層6と、厚さ2
μmのp型AlGaAs層よりなる上部クラッド層7
と、厚さ500nmのp型GaAs層よりなるキャップ
層8とを続けて形成する。この工程によって製造される
歪量子井戸層5には1.5%の圧縮歪が与えられる。
See FIG. 2. An n-type G is formed by using a low pressure metal organic vapor phase epitaxy method (hereinafter referred to as a low pressure MOCVD method) performed at a growth temperature of 700 ° C.
A buffer layer 2 made of an n-type GaAs layer having a thickness of 500 nm and an n-type AlGaAs having a thickness of 2 μm are formed on an aAs substrate 1.
Lower clad layer 3 consisting of layers and GaA having a thickness of 50 nm
Carrier confinement layer 4 consisting of s layer and I with a thickness of 9 nm
Strained quantum well layer 5 made of nGaAs layer and having a thickness of 50 nm
Carrier confinement layer 6 made of a GaAs layer and having a thickness of 2
Upper clad layer 7 made of p-type AlGaAs layer of μm
And a cap layer 8 made of a p-type GaAs layer having a thickness of 500 nm are successively formed. A compressive strain of 1.5% is applied to the strained quantum well layer 5 manufactured by this process.

【0009】図3参照 劈開面に直交して形成されるストライプに対応する領域
に幅3μmのレジスト膜9を形成し、このレジスト膜9
をマスクとして使用して、レジスト膜9が形成されてい
ない領域から、キャップ層8と上部クラッド層7の上部
とをエッチング除去する。そして、この除去された領域
にSiO2 よりなる絶縁膜10を形成する。使用済みの
レジスト膜9を除去する。
Referring to FIG. 3, a resist film 9 having a width of 3 μm is formed in a region corresponding to a stripe formed orthogonal to the cleavage plane, and the resist film 9 is formed.
Using as a mask, the cap layer 8 and the upper portion of the upper cladding layer 7 are removed by etching from the region where the resist film 9 is not formed. Then, the insulating film 10 made of SiO 2 is formed in the removed region. The used resist film 9 is removed.

【0010】図4参照 図は、図3に示すA−A断面を示す。FIG. 4 shows a cross section taken along the line AA shown in FIG.

【0011】ストライプに直交する方向に1mm間隔に
劈開して共振器を形成する。
A resonator is formed by cleavage at 1 mm intervals in a direction orthogonal to the stripe.

【0012】成長温度600℃においてなす有機金属気
相成長法(以下MOCVD法と云う。)を使用して、厚
さ150nmのInGaP層11を、共振器端面に形成
する。このInGaP層11は、GaAsよりなる基板
1とも、GaAsよりなるバッファ層2とも、AlGa
Asよりなる上下のクラッド層3・7とも、GaAsよ
りなるキャリヤ閉じ込め層4・6とも、格子整合するの
で、歪量子井戸層5の圧縮歪が解放されることを防止す
る歪解放防止機能を有する。
An InGaP layer 11 having a thickness of 150 nm is formed on the end face of the resonator by using a metal organic chemical vapor deposition method (hereinafter referred to as MOCVD method) performed at a growth temperature of 600 ° C. The InGaP layer 11 includes the substrate 1 made of GaAs and the buffer layer 2 made of GaAs.
The upper and lower cladding layers 3 and 7 made of As and the carrier confinement layers 4 and 6 made of GaAs are lattice-matched with each other, so that the strain quantum well layer 5 has a strain release preventing function for preventing release of compressive strain. .

【0013】図1参照 キャップ層8の上面と側面と上部クラッド層7の側面と
上面とに、Ti/Pt/Au層よりなる正電極12を形
成する。
Referring to FIG. 1, a positive electrode 12 made of a Ti / Pt / Au layer is formed on the upper surface and the side surface of the cap layer 8 and on the side surface and the upper surface of the upper cladding layer 7.

【0014】基板1の厚さを100μm程度に研磨した
後、その下面にAuGeNi/Au層よりなる負電極1
3を形成する。
After polishing the substrate 1 to a thickness of about 100 μm, the negative electrode 1 made of AuGeNi / Au layer is formed on the lower surface of the substrate 1.
3 is formed.

【0015】レーザ放出端面に、反射率が5%のSiN
膜14を、レーザ反射面に反射率が95%のアモルファ
スシリコンとSiO2 との積層体15を形成する。
On the laser emitting end face, SiN having a reflectance of 5% is used.
A laminated body 15 of amorphous silicon having a reflectance of 95% and SiO 2 is formed on the film 14 on the laser reflecting surface.

【0016】以上の工程をもって製造した半導体レーザ
装置を、60℃において、200mWの電力を供給して
レーザ発振させた。駆動電流が50%増加するまでに2
00,000時間を要したので、寿命としては満足すべ
きものであった。比較例として、InGaP層12を有
しない半導体レーザ装置について同一条件をもって寿命
試験を行ったところ120,000時間であった。
The semiconductor laser device manufactured through the above steps was oscillated at 60 ° C. by supplying electric power of 200 mW. 2 by the time the drive current increases by 50%
Since it took 0,000 hours, the life was satisfactory. As a comparative example, a semiconductor laser device having no InGaP layer 12 was subjected to a life test under the same conditions, and it was 120,000 hours.

【0017】上記の実施例においては、歪解放防止機能
を有する層として、InGaP層が使用されているが、
基板がGaAs基板である場合、InGaP層の他に、
AlGaAs層、AlGaInP層、GaAs層等が、
歪解放防止機能を有する層として使用しうる。
In the above embodiment, the InGaP layer is used as the layer having the strain release preventing function.
When the substrate is a GaAs substrate, in addition to the InGaP layer,
AlGaAs layer, AlGaInP layer, GaAs layer, etc.
It can be used as a layer having a strain release preventing function.

【0018】なお、GaAs基板に、InGaP層、I
nGaAlP層が圧縮歪量子井戸層として形成されてい
る可視光レーザの場合にも使用可能であるが、少なくと
も発振波長に対して透明な半導体を、歪解放防止機能を
有する層として使用する必要があるので、この場合は、
歪量子井戸層の半導体よりAlの組成が高く、しかも、
GaAsに格子整合する混晶比を有するInGaAlP
を使用する必要がある。
In addition, the InGaP layer, I
It can be used also in the case of a visible light laser in which the nGaAlP layer is formed as a compressive strain quantum well layer, but it is necessary to use at least a semiconductor transparent to the oscillation wavelength as a layer having a strain release preventing function. So in this case
The Al composition is higher than that of the semiconductor of the strained quantum well layer, and
InGaAlP having a mixed crystal ratio that lattice-matches GaAs
Need to use.

【0019】[0019]

【発明の効果】以上説明したとおり、本発明に係る半導
体レーザ装置は、歪量子井戸層を活性層とする半導体レ
ーザ装置において、レーザ放出方向に直交する端面に、
基板に格子整合して、半導体層が形成されているので、
レーザ放出方向に直交する端面において歪が解放される
ことはなく、しきい値電流が低く、発光効率が高く、寿
命が長くなる。
As described above, in the semiconductor laser device according to the present invention, in the semiconductor laser device having the strained quantum well layer as the active layer, the end face orthogonal to the laser emission direction is
Since the semiconductor layer is formed by lattice matching with the substrate,
The strain is not released at the end surface orthogonal to the laser emission direction, the threshold current is low, the light emission efficiency is high, and the life is long.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体レーザ装置の層
構成図である。
FIG. 1 is a layer configuration diagram of a semiconductor laser device according to an embodiment of the present invention.

【図2】本発明の一実施例に係る半導体レーザ装置の製
造工程図である(エピタキシャル層の形成)。
FIG. 2 is a manufacturing process diagram of a semiconductor laser device according to an embodiment of the present invention (epitaxial layer formation).

【図3】本発明の一実施例に係る半導体レーザ装置の製
造工程図である(ストライプと絶縁層の形成)。
FIG. 3 is a manufacturing process diagram of a semiconductor laser device according to one embodiment of the present invention (stripe and insulating layer formation).

【図4】本発明の一実施例に係る半導体レーザ装置の製
造工程図である(歪解放防止機能を有する層の形成)。
FIG. 4 is a manufacturing process diagram of a semiconductor laser device according to an embodiment of the present invention (formation of a layer having a strain release preventing function).

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n型GaAsよりなるバッファ層 3 n型AlGaAsよりなる下部クラッド層 4 GaAsよりなるキャリヤ閉じ込め層 5 InGaAsよりなる歪量子井戸層 6 GaAsよりなるキャリヤ閉じ込め層 7 p型AlGaAsよりなる上部クラッド層 8 p型GaAsよりなるキャップ層 9 レジスト膜 10 SiO2 よりなる絶縁膜 11 InGaPよりなる歪解放防止機能を有する層 12 Ti/Pt/Auよりなる正電極 13 AuGeNi/Auよりなる負電極 14 SiN膜 15 アモルファスシリコンとSiO2 との積層体1 n-type GaAs substrate 2 buffer layer made of n-type GaAs 3 lower clad layer made of n-type AlGaAs 4 carrier confinement layer made of GaAs 5 strained quantum well layer made of InGaAs 6 carrier confinement layer made of GaAs 7 made of p-type AlGaAs Upper clad layer 8 Cap layer made of p-type GaAs 9 Resist film 10 Insulating film made of SiO 2 11 Layer having a strain relief preventing function made of InGaP 12 Positive electrode made of Ti / Pt / Au 13 Negative electrode made of AuGeNi / Au 14 SiN film 15 Laminated body of amorphous silicon and SiO 2

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 歪量子井戸層を活性層とする半導体レー
ザ装置において、 レーザ放出方向に直交する端面に、基板に格子整合し
て、半導体層が形成されてなることを特徴とする半導体
レーザ装置。
1. A semiconductor laser device having a strained quantum well layer as an active layer, wherein a semiconductor layer is formed on an end face orthogonal to a laser emission direction in lattice matching with a substrate. .
JP15222494A 1994-07-04 1994-07-04 Semiconductor laser Pending JPH0818155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15222494A JPH0818155A (en) 1994-07-04 1994-07-04 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15222494A JPH0818155A (en) 1994-07-04 1994-07-04 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0818155A true JPH0818155A (en) 1996-01-19

Family

ID=15535804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15222494A Pending JPH0818155A (en) 1994-07-04 1994-07-04 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0818155A (en)

Similar Documents

Publication Publication Date Title
US7485902B2 (en) Nitride-based semiconductor light-emitting device
JP2000307184A (en) Manufacture of semiconductor element
JPH03208388A (en) Semiconductor laser, manufacture thereof and diffusion of impurity
JP4015865B2 (en) Manufacturing method of semiconductor device
JP2005064328A (en) Semiconductor laser, and manufacturing method thereof
JP3467981B2 (en) Method of forming light emitting end face of semiconductor light emitting element, method of manufacturing semiconductor light emitting element, semiconductor light emitting element, method of forming end face of nitride III-V compound semiconductor layer, method of manufacturing semiconductor device, and semiconductor device
JPH07176826A (en) Gallium nitride compound semiconductor laser element
JP2822868B2 (en) Manufacturing method of semiconductor laser
JPH0815228B2 (en) Semiconductor laser device and method of manufacturing the same
JPH06268327A (en) Semiconductor light emitting element
JP2007184644A (en) Semiconductor device and method of manufacturing same
JP2002204036A (en) Nitride semiconductor laser element and its manufacturing method
JPH11340570A (en) Photoelectric conversion element and its manufacture
JP4329307B2 (en) Method of manufacturing nitride semiconductor device
JPS60101989A (en) Semiconductor laser and manufacture thereof
JPH0818155A (en) Semiconductor laser
JP3963233B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP3498577B2 (en) Nitride semiconductor laser device
JP2002270967A (en) Semiconductor laser element
US20020195608A1 (en) Light emitting device, semiconductor device, and method of manufacturing the devices
JPH06338657A (en) Semiconductor laser and its manufacture
JP4826019B2 (en) Manufacturing method of semiconductor laser device
JP3257662B2 (en) Semiconductor laser end face passivation method and jig
JPH09275239A (en) Semiconductor laser device
JP5169310B2 (en) Semiconductor laser