JPH07176826A - Gallium nitride compound semiconductor laser element - Google Patents

Gallium nitride compound semiconductor laser element

Info

Publication number
JPH07176826A
JPH07176826A JP31827593A JP31827593A JPH07176826A JP H07176826 A JPH07176826 A JP H07176826A JP 31827593 A JP31827593 A JP 31827593A JP 31827593 A JP31827593 A JP 31827593A JP H07176826 A JPH07176826 A JP H07176826A
Authority
JP
Japan
Prior art keywords
layer
type
doped
gallium nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31827593A
Other languages
Japanese (ja)
Other versions
JP2800666B2 (en
Inventor
Takao Yamada
孝夫 山田
Masayuki Senoo
雅之 妹尾
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18097390&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07176826(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP31827593A priority Critical patent/JP2800666B2/en
Publication of JPH07176826A publication Critical patent/JPH07176826A/en
Application granted granted Critical
Publication of JP2800666B2 publication Critical patent/JP2800666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To form a P-type GaN layer and a P-type GaAlN layer, which are brought into a low resistance state evenly within their surfaces, by a method wherein the width of the waveguide of a gallium nitride compound semiconductor laser element is specified and an annealing is performed. CONSTITUTION:A GaN buffer layer 2 is formed on a sapphire substrate 1. An N-type GaN contact layer 3, an N-type GaAlN clad layer 4 and an N-type InGaN active layer 5 are each doped with Si and are formed on the layer 2. Moreover, a P-type GaAlN clad layer 6 and a P-type GaN contact layer 7 are each doped with Mg and are formed. Then, a mask is formed on the uppermost P-type Mg-doped GaN layer 7 and an etching is performed until the layer 3 is exposed to form a waveguide of a stripe width formed in a width of 50mum. After the etching, the mask is peeled from the layer 7 and an annealing is performed, whereby hydrogen gas in a semiconductor layer doped with a P-type dopant is discharged from the side surfaces of the semiconductor layer and an Mg-doped GaN layer 7 and a GaAlN layer 6, which are brought into a low resistance state evenly within their surfaces, can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、p−n接合を有する窒
化ガリウム系化合物半導体レーザ素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride-based compound semiconductor laser device having a pn junction.

【0002】[0002]

【従来の技術】現在実用化されている半導体レーザは、
可視光領域の赤色領域で発光するものしかなく、青色紫
外領域で発光する半導体レーザは未だ得られておらず、
早期実現が望まれている。その中で、Ga1-x-yInx
yN(0≦x≦1、0≦y≦1)で表される窒化ガリウム系化
合物半導体は直接遷移型で可視領域に禁制帯幅を有する
ことから、青色の半導体レーザの有望な材料として期待
されている。
2. Description of the Related Art Semiconductor lasers currently in practical use are
There are only those that emit in the red region of the visible light region, semiconductor lasers that emit in the blue ultraviolet region have not yet been obtained,
Early realization is desired. Among them, Ga 1-xy In x A
since it has a band gap in the visible region in a direct transition-type gallium nitride compound semiconductor is represented by l y N (0 ≦ x ≦ 1,0 ≦ y ≦ 1), as a promising material for blue semiconductor laser Is expected.

【0003】従来、p型ドーパントがドープされた窒化
ガリウム系化合物半導体は高抵抗なi型にしかならず、
p型ができなかったためレーザ素子を得ることは不可能
であった。しかし、最近になってp型化が可能となり
(特開平2−257679号公報、特開平3−2183
25号公報、特開平5−183189号公報等)、p−
n接合型の半導体レーザ素子が実現できる可能性がでて
きた。
Conventionally, a gallium nitride-based compound semiconductor doped with a p-type dopant has only to be a high resistance i-type,
It was impossible to obtain a laser device because the p-type could not be formed. However, recently, p-type conversion has become possible (Japanese Patent Laid-Open Nos. 2-257679 and 3-2183).
25, JP-A-5-183189, etc.), p-
There is a possibility of realizing an n-junction type semiconductor laser device.

【0004】p型窒化ガリウム系化合物半導体を得るに
は、特開平5−183189号公報に記載のアニーリン
グが有用な方法である。しかし、この方法でp型化が実
現されたにも関わらず、窒化ガリウム系化合物半導体を
用いたレーザ素子は未だ実現されていない。
Annealing described in JP-A-5-183189 is a useful method for obtaining a p-type gallium nitride compound semiconductor. However, a laser device using a gallium nitride-based compound semiconductor has not yet been realized, although the p-type conversion was realized by this method.

【0005】[0005]

【発明が解決しようとする課題】上記で述べたように、
窒化ガリウム系化合物半導体を用いたレーザ素子は実現
されていないが、この短波長のレーザ素子が実現できれ
ば情報処理、書き込み光源等に非常に有用である。従っ
て本発明の目的とするところは、窒化ガリウム系化合物
半導体を用いた短波長のレーザ素子を実現可能とするこ
とにある。
DISCLOSURE OF THE INVENTION As described above,
Although a laser device using a gallium nitride-based compound semiconductor has not been realized, if a laser device of this short wavelength can be realized, it will be very useful for information processing, a writing light source and the like. Therefore, it is an object of the present invention to realize a short wavelength laser device using a gallium nitride compound semiconductor.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、本発明者らは特開平5−183189号公報に示し
たアニーリングの技術を用いて、導波路の幅を細くする
ことにより半導体層を均一に低抵抗化させ半導体レーザ
素子を実現可能とした。
In order to solve the above problems, the inventors of the present invention use the annealing technique disclosed in Japanese Patent Laid-Open No. 5-183189 to reduce the width of the waveguide to form a semiconductor layer. We have made it possible to realize a semiconductor laser device by uniformly reducing the resistance.

【0007】すなわち、本発明の窒化ガリウム系化合物
半導体レーザ素子は、n型GaN層の表面に導波路とし
て少なくともn型窒化ガリウム系化合物半導体よりなる
nクラッド層と、n型あるいはp型の窒化ガリウム系化
合物半導体よりなる活性層と、p型窒化ガリウム系化合
物半導体よりなるpクラッド層とが順にストライプ形状
で積層されて成るダブルヘテロ構造のレーザ素子であ
り、前記導波路のストライプ幅が50μm以下であるこ
とを特徴とする。
That is, in the gallium nitride-based compound semiconductor laser device of the present invention, an n-clad layer made of at least an n-type gallium nitride-based compound semiconductor is formed as a waveguide on the surface of the n-type GaN layer, and an n-type or p-type gallium nitride. A double-heterostructure laser device in which an active layer made of a compound semiconductor and a p-clad layer made of a p-type gallium nitride compound semiconductor are sequentially laminated in a stripe shape, and the stripe width of the waveguide is 50 μm or less. It is characterized by being.

【0008】図1は本発明の窒化ガリウム系化合物半導
体レーザ素子を表す断面図であり、サファイア基板1上
にGaNよりなるバッファ層2、Siをドープしたn型
GaNコンタクト層3が形成されている。そのSiドー
プn型GaNコンタクト層3上に、導波路として順に、
Siをドープしたn型GaAlNクラッド層4、Siを
ドープしたn型InGaN活性層5、Mgをドープした
p型GaAlNクラッド層6、Mgをドープしたp型G
aNコンタクト層7が形成されたダブルヘテロ構造を有
し、更に電極として、p型GaNコンタクト層7の上に
p層オーミック電極8、n型GaNコンタクト層3の上
にn層オーミック電極9が形成されて成るものである。
FIG. 1 is a cross-sectional view showing a gallium nitride-based compound semiconductor laser device of the present invention, in which a buffer layer 2 made of GaN and an n-type GaN contact layer 3 doped with Si are formed on a sapphire substrate 1. . On the Si-doped n-type GaN contact layer 3, as a waveguide,
Si-doped n-type GaAlN cladding layer 4, Si-doped n-type InGaN active layer 5, Mg-doped p-type GaAlN cladding layer 6, Mg-doped p-type G
It has a double hetero structure in which the aN contact layer 7 is formed, and as the electrodes, a p-layer ohmic electrode 8 is formed on the p-type GaN contact layer 7 and an n-layer ohmic electrode 9 is formed on the n-type GaN contact layer 3. It is made up of

【0009】また、図2は図1のレーザ素子の断面図を
電極側から見た図である。このように、本発明のレーザ
素子は、導波路をストライプ形状として、その幅を細く
している。
FIG. 2 is a sectional view of the laser device shown in FIG. 1 viewed from the electrode side. As described above, in the laser device of the present invention, the waveguide has a stripe shape and the width thereof is narrowed.

【0010】前記導波路を形成するには、n型とp型の
窒化ガリウム系化合物半導体層を積層した後、図1に示
した形状となるようにエッチングを行う。エッチング法
としては、ドライエッチングを用いる。ドライエッチン
グには、例えば、イオンミリング、ECRエッチング、
反応性イオンエッチング(RIE)、イオンビームアシ
ストエッチング等がある。この時、導波路のストライプ
の幅dは50μm以下、更に好ましくは20〜5μmの
範囲とする。
To form the above-mentioned waveguide, after stacking n-type and p-type gallium nitride-based compound semiconductor layers, etching is performed so as to obtain the shape shown in FIG. Dry etching is used as the etching method. For dry etching, for example, ion milling, ECR etching,
There are reactive ion etching (RIE), ion beam assisted etching and the like. At this time, the width d of the waveguide stripe is 50 μm or less, and more preferably 20 to 5 μm.

【0011】このようにして所望の形状に得られた半導
体を、アニーリングすることによりp型ドーパントをド
ープした窒化ガリウム系化合物半導体層をp型化する。
この時のアニーリングの詳しい条件は、先に示した特開
平5−183189号公報で述べてある。
The semiconductor thus obtained in a desired shape is annealed to make the gallium nitride-based compound semiconductor layer doped with a p-type dopant p-type.
The detailed conditions of the annealing at this time are described in the above-mentioned Japanese Patent Laid-Open No. 5-183189.

【0012】[0012]

【作用】本発明の半導体レーザ素子において、前述した
ように導波路の幅を50μm以下にして、アニーリング
を行うと、p型ドーパントをドープした半導体層内の水
素ガスが放出されやすくなるという利点がある。従来の
ようにアニーリングだけでもp型化はできるが、水素ガ
スは半導体層側面から放出されるため、導波路の幅を細
くしてアニーリングを行った方が半導体層内の水素ガス
が放出されやすくなり、p型ドーパントをドープした半
導体層全面を面内均一にp型化でき、発光出力の高い半
導体レーザ素子を得ることができる。尚、アニーリング
の詳しい作用は、先に示した特開平5−183189号
公報に示してある。
In the semiconductor laser device of the present invention, when the width of the waveguide is 50 μm or less and annealing is performed as described above, hydrogen gas in the semiconductor layer doped with the p-type dopant is easily released. is there. Although p-type can be obtained only by annealing as in the conventional case, hydrogen gas is released from the side surface of the semiconductor layer. Therefore, it is easier to release hydrogen gas in the semiconductor layer when annealing is performed by narrowing the width of the waveguide. Therefore, the entire surface of the semiconductor layer doped with the p-type dopant can be made in-plane uniformly into the p-type, and a semiconductor laser device having a high light emission output can be obtained. The detailed operation of the annealing is shown in the above-mentioned Japanese Patent Laid-Open No. 5-183189.

【0013】導波路の幅を細くすると、更にもう一つの
利点がある。半導体レーザはp層とn層間の電子の授受
により電流が流れ発光するものであるが、導波路の幅を
細くすると、そこに電子が集中して入ってくるので半導
体層内の電流密度が大きくなり発振しきい値電流が減少
する。
There is another advantage in reducing the width of the waveguide. A semiconductor laser emits a current by exchanging electrons between the p-layer and the n-layer, and emits light. However, if the width of the waveguide is narrowed, electrons are concentrated and enter there, so that the current density in the semiconductor layer is large. The oscillation threshold current decreases.

【0014】[0014]

【実施例】以下の実施例で、本発明の窒化ガリウム系半
導体レーザ素子について図面に基づき詳しく述べる。
The gallium nitride-based semiconductor laser device of the present invention will be described in detail in the following examples with reference to the drawings.

【0015】[実施例]まず、MOCVD装置を用いて
サファイア基板1上にGaNバッファ層2を200オン
グストローム成長させる。続いて、バッファ層2上にS
iをドープしたn型GaNコンタクト層3を4μm、S
iをドープしたn型GaAlNクラッド層4を0.2μ
m、Siをドープしたn型InGaN活性層5を200
オングストローム、更にMgをドープしたp型GaAl
Nクラッド層6を0.2μm、Mgをドープしたp型G
aNコンタクト層7を0.5μmの膜厚で順次成長させ
る。
[First Embodiment] First, a GaN buffer layer 2 is grown to 200 angstroms on a sapphire substrate 1 using an MOCVD apparatus. Then, S on the buffer layer 2
i-doped n-type GaN contact layer 3 having a thickness of 4 μm and S
The i-doped n-type GaAlN cladding layer 4 is 0.2 μm.
200 n-type InGaN active layer 5 doped with m and Si
Angstrom and p-type GaAl doped with Mg
N-clad layer 6 of 0.2 μm, Mg-doped p-type G
The aN contact layer 7 is sequentially grown to a film thickness of 0.5 μm.

【0016】次いで、最上層のMgドープp型GaN層
7上に所望の形状のマスクを形成し、図1に示したよう
にn型GaN層3が露出されるまでエッチングし、スト
ライプ幅dを50μmとした導波路を得る。
Next, a mask having a desired shape is formed on the uppermost Mg-doped p-type GaN layer 7, and etching is performed until the n-type GaN layer 3 is exposed as shown in FIG. A waveguide having a thickness of 50 μm is obtained.

【0017】エッチング終了後、マスクを剥離し、60
0℃で10分間アニーリングを行いMgドープGaNコ
ンタクト層7及びMgドープGaAlNクラッド層6を
低抵抗化させ、p−n接合を得る。
After the etching is completed, the mask is peeled off, and 60
Annealing is performed at 0 ° C. for 10 minutes to reduce the resistance of the Mg-doped GaN contact layer 7 and the Mg-doped GaAlN cladding layer 6 to obtain a pn junction.

【0018】アニーリング後、p電極形成用マスクを形
成し、図1に示すように、p層上にNi/Auを蒸着さ
せp層オーミック電極8とする。蒸着後、マスクを剥離
し、続いてn電極形成用のマスクを形成し、図1に示す
ように、n層上にAlを蒸着させ、n層オーミック電極
9とする。
After annealing, a p-electrode forming mask is formed, and Ni / Au is vapor-deposited on the p-layer to form a p-layer ohmic electrode 8 as shown in FIG. After vapor deposition, the mask is peeled off, a mask for forming an n electrode is subsequently formed, and Al is vapor deposited on the n layer to form an n layer ohmic electrode 9, as shown in FIG.

【0019】以上のようにして得られたウエハーを、チ
ップ状にカットして半導体レーザ素子を得た。
The wafer thus obtained was cut into chips to obtain a semiconductor laser device.

【0020】[比較例]上記実施例と同様に、基板上に
バッファ層、n型及びp型半導体層を成長させる。半導
体層成長後、導波路のストライプ幅が60μmとなるよ
うに、p型GaNコンタクト層上にマスクを形成し、n
型GaNコンタクト層に達するまでエッチングを行う。
それ以外は、上記実施例と同様にして半導体レーザ素子
を形成した。
COMPARATIVE EXAMPLE A buffer layer and n-type and p-type semiconductor layers are grown on a substrate in the same manner as in the above example. After growth of the semiconductor layer, a mask is formed on the p-type GaN contact layer so that the stripe width of the waveguide becomes 60 μm, and n
Etching is performed until the type GaN contact layer is reached.
A semiconductor laser device was formed in the same manner as in the above example except for the above.

【0021】以上のようにして形成されたものについて
レーザ発振を行い、発振しきい値電流密度、発振波長、
素子寿命について比較を行った。すると、導波路の幅を
60μmとした従来のものは発振しきい値電流密度3k
A/cm2で発振波長420nm、素子寿命が約1時間
であったのに対し、本実施例により得られた半導体レー
ザ素子では、発振しきい値電流密度2kA/cm2で発
振波長420nm、素子寿命が約100時間と著しく向
上した。
Laser oscillation is performed on the thus-formed material to obtain an oscillation threshold current density, an oscillation wavelength,
The device life was compared. Then, the oscillation threshold current density of 3 k is obtained in the conventional case where the width of the waveguide is 60 μm.
While the oscillation wavelength was 420 nm at A / cm 2 and the device lifetime was about 1 hour, the semiconductor laser device obtained in this example has an oscillation wavelength of 420 nm at an oscillation threshold current density of 2 kA / cm 2. The life was remarkably improved to about 100 hours.

【0022】[0022]

【発明の効果】以上説明したように、窒化ガリウム系化
合物半導体レーザ素子の導波路の幅を50μm以下にし
てアニーリングすることにより、p型ドーパントをドー
プした半導体層内の水素ガスが半導体層側面から放出さ
れやすくなり、面内均一に低抵抗化されたp型GaN層
及びp型GaAlN層を得ることが可能となる。従って
本発明によれば、発光強度の増加した高輝度な窒化ガリ
ウム系化合物半導体レーザ素子を実現できる。
As described above, by annealing the gallium nitride-based compound semiconductor laser device with the waveguide width of 50 μm or less, the hydrogen gas in the semiconductor layer doped with the p-type dopant is transferred from the side surface of the semiconductor layer. It is easy to emit, and it becomes possible to obtain a p-type GaN layer and a p-type GaAlN layer whose in-plane uniform resistance is reduced. Therefore, according to the present invention, a high-luminance gallium nitride-based compound semiconductor laser device with increased emission intensity can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の工程において得られる半導
体レーザ素子の概略断面図。
FIG. 1 is a schematic sectional view of a semiconductor laser device obtained in a process of an embodiment of the present invention.

【図2】 本発明の実施例の工程において得られる半導
体レーザ素子を電極側から見た図。
FIG. 2 is a view of the semiconductor laser device obtained in the process of the embodiment of the present invention as seen from the electrode side.

【符号の説明】[Explanation of symbols]

1・・・・サファイア基板 2・・・・バッファ層 3・・・・Siドープn型GaNコンタクト層 4・・・・Siドープn型GaAlNクラッド層 5・・・・Siドープn型InGaN活性層 6・・・・Mgドープp型GaAlNクラッド層 7・・・・Mgドープp型GaNコンタクト層 8・・・・p層オーミック電極 9・・・・n層オーミック電極 d・・・・導波路のストライプ幅 1 ... Sapphire substrate 2 ... Buffer layer 3 ... Si-doped n-type GaN contact layer 4 ... Si-doped n-type GaAlN cladding layer 5 ... Si-doped n-type InGaN active layer 6 ... Mg-doped p-type GaAlN cladding layer 7 ... Mg-doped p-type GaN contact layer 8 ... p-layer ohmic electrode 9 ... n-layer ohmic electrode d ... Waveguide Stripe width

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 n型GaN層の表面に導波路として少な
くともn型窒化ガリウ系化合物半導体よりなるnクラッ
ド層と、n型あるいはp型の窒化ガリウム系化合物半導
体よりなる活性層と、p型窒化ガリウム系化合物半導体
よりなるpクラッド層とが順にストライプ形状で積層さ
れて成るダブルヘテロ構造のレーザ素子であり、前記導
波路のストライプ幅が50μm以下であることを特徴と
する窒化ガリウム系化合物半導体レーザ素子。
1. An n-clad layer made of at least an n-type Gallium nitride compound semiconductor as a waveguide on the surface of an n-type GaN layer, an active layer made of an n-type or p-type gallium nitride compound semiconductor, and a p-type nitride. A gallium nitride-based compound semiconductor laser, which is a laser element having a double hetero structure in which a p-clad layer made of a gallium-based compound semiconductor is sequentially laminated in a stripe shape, and the waveguide has a stripe width of 50 μm or less. element.
JP31827593A 1993-12-17 1993-12-17 Gallium nitride based compound semiconductor laser device Expired - Lifetime JP2800666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31827593A JP2800666B2 (en) 1993-12-17 1993-12-17 Gallium nitride based compound semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31827593A JP2800666B2 (en) 1993-12-17 1993-12-17 Gallium nitride based compound semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH07176826A true JPH07176826A (en) 1995-07-14
JP2800666B2 JP2800666B2 (en) 1998-09-21

Family

ID=18097390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31827593A Expired - Lifetime JP2800666B2 (en) 1993-12-17 1993-12-17 Gallium nitride based compound semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2800666B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003776A1 (en) * 1994-07-21 1996-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
JPH1154831A (en) * 1997-08-05 1999-02-26 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
JP2004214666A (en) * 2002-12-30 2004-07-29 Osram Opto Semiconductors Gmbh Semiconductor laser diode
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8344398B2 (en) 2007-01-19 2013-01-01 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US8507924B2 (en) 2004-07-02 2013-08-13 Cree, Inc. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming
US8519437B2 (en) 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
US8679876B2 (en) 2006-11-15 2014-03-25 Cree, Inc. Laser diode and method for fabricating same
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
WO1996003776A1 (en) * 1994-07-21 1996-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US5751013A (en) * 1994-07-21 1998-05-12 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US5895225A (en) * 1994-07-21 1999-04-20 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPH1154831A (en) * 1997-08-05 1999-02-26 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
US8044384B2 (en) 2001-05-30 2011-10-25 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8546787B2 (en) 2001-05-30 2013-10-01 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US8227268B2 (en) 2001-05-30 2012-07-24 Cree, Inc. Methods of fabricating group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US9112083B2 (en) 2001-05-30 2015-08-18 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US9054253B2 (en) 2001-05-30 2015-06-09 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US7312474B2 (en) 2001-05-30 2007-12-25 Cree, Inc. Group III nitride based superlattice structures
JP2004214666A (en) * 2002-12-30 2004-07-29 Osram Opto Semiconductors Gmbh Semiconductor laser diode
US8507924B2 (en) 2004-07-02 2013-08-13 Cree, Inc. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming
US8679876B2 (en) 2006-11-15 2014-03-25 Cree, Inc. Laser diode and method for fabricating same
US9041139B2 (en) 2007-01-19 2015-05-26 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US8344398B2 (en) 2007-01-19 2013-01-01 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US8519437B2 (en) 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same

Also Published As

Publication number Publication date
JP2800666B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US6617061B2 (en) Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device
US7518162B2 (en) Semiconductor light emitting device
US7485902B2 (en) Nitride-based semiconductor light-emitting device
JP2001053339A (en) Semiconductor light-emitting device and manufacture thereof
JPH0897468A (en) Semiconductor light emitting device
JP3460581B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
JP4015865B2 (en) Manufacturing method of semiconductor device
JP2800666B2 (en) Gallium nitride based compound semiconductor laser device
US20060252165A1 (en) Electrode structure, semiconductor light-emitting device having the same and method of manufacturing the same
JP4043087B2 (en) Nitride semiconductor device manufacturing method and nitride semiconductor device
JP4493041B2 (en) Nitride semiconductor light emitting device
JPH08274414A (en) Nitride semiconductor laser element
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JP3314641B2 (en) Nitride semiconductor laser device
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2007184644A (en) Semiconductor device and method of manufacturing same
JP4481385B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2001148540A (en) Semiconductor light-emitting device
JP2000299530A (en) Semiconductor light-emitting device
JPH10303493A (en) Nitride semiconductor laser
JP3025760B2 (en) Gallium nitride based semiconductor laser device and method of manufacturing the same
KR100768402B1 (en) Method for fabricating semiconductor laser diode
JP2001274095A (en) Nitride-family semiconductor device and its manufacturing method
EP1555732B1 (en) Method for manufacturing a nitride semiconductor laser diode
JP4799582B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070710

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110710

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110710

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110710

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 15

EXPY Cancellation because of completion of term