JPH08274414A - Nitride semiconductor laser element - Google Patents
Nitride semiconductor laser elementInfo
- Publication number
- JPH08274414A JPH08274414A JP31784695A JP31784695A JPH08274414A JP H08274414 A JPH08274414 A JP H08274414A JP 31784695 A JP31784695 A JP 31784695A JP 31784695 A JP31784695 A JP 31784695A JP H08274414 A JPH08274414 A JP H08274414A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- stripe
- active layer
- nitride semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、窒化物半導体(InX
AlYGa1-X-YN、0≦X、0≦Y、X+Y≦1)よりなる
レーザ素子に係り、特に電極ストライプ型のレーザ素子
に関する。The present invention relates to a nitride semiconductor (In X
The present invention relates to a laser device formed of Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1), and particularly to an electrode stripe type laser device.
【0002】[0002]
【従来の技術】窒化物半導体はバンドギャップが1.9
5eV〜6.0eVまであり、直接遷移型の材料である
ので、紫外〜赤色までの半導体レーザ素子の材料として
従来より注目されている。2. Description of the Related Art Nitride semiconductors have a band gap of 1.9.
It is 5 eV to 6.0 eV, and since it is a direct transition type material, it has been attracting attention as a material for semiconductor laser devices from ultraviolet to red.
【0003】従来の窒化物半導体レーザ素子の代表的な
構造を示す模式的な断面図を図3に示す。このレーザ素
子は電極ストライプ型の構造を示している。基本的に
は、サファイア基板31の表面にn型クラッド層32と
活性層33とp型クラッド層34とが順に積層されたダ
ブルヘテロ構造を有している。p型クラッド層34、活
性層33、およびn型クラッド層32の一部はストライ
プ状にエッチングされてn型クラッド層32の水平面が
露出されている。n型クラッド層32の水平面にはスト
ライプ状の負電極41が形成され、最上層のp型クラッ
ド層34にもストライプ状の正電極42が形成されたい
わゆるフリップチップ方式となっている。さらに、正電
極42とp型クラッド層34との間には、電流狭窄層と
してSiO 2よりなる絶縁層35が形成され、その絶縁
層35で電流を活性層33に集中させて発振を起こす構
造とされている。Typical of conventional nitride semiconductor laser devices
A schematic sectional view showing the structure is shown in FIG. This laser element
The child shows an electrode stripe type structure. fundamentally
Is an n-type cladding layer 32 on the surface of the sapphire substrate 31.
The active layer 33 and the p-type clad layer 34 are stacked in this order.
It has a bull hetero structure. p-type clad layer 34, active
Of the conductive layer 33 and part of the n-type cladding layer 32
Is etched into a strip shape so that the horizontal surface of the n-type cladding layer 32 is
Exposed. The strike on the horizontal surface of the n-type cladding layer 32
A negative electrode 41 in the form of a lip is formed, and the p-type crack of the uppermost layer is formed.
The striped positive electrode 42 should be formed also on the cathode layer 34.
It is a loose flip chip system. In addition, Seiden
A current confinement layer is provided between the pole 42 and the p-type cladding layer 34.
Then SiO 2An insulating layer 35 made of
In the layer 35, a current is concentrated in the active layer 33 to cause oscillation.
It is said to be built.
【0004】[0004]
【発明が解決しようとする課題】しかしながら図3の矢
印に示すように、従来のレーザ素子では絶縁層35で狭
窄した電流がp型クラッド層34中、あるいは活性層3
3中で広がってしまい、活性層33に部分的に電流を集
中させることが困難であった。電流が集中できないの
で、活性層33が均一に発光し、従来の構造ではLED
としての特性しか示さないのが実状であった。However, as shown by the arrow in FIG. 3, in the conventional laser device, the current confined by the insulating layer 35 is generated in the p-type cladding layer 34 or the active layer 3.
3 spread out, and it was difficult to partially concentrate the current in the active layer 33. Since the current cannot be concentrated, the active layer 33 emits light uniformly, and the LED has the conventional structure.
It was the actual situation that it only showed the characteristics as.
【0005】従って本発明はこのような事情を鑑みて成
されたものであって、その目的とするところは活性層に
電流を集中させてレーザ発振する窒化物半導体レーザ素
子を提供することにある。Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a nitride semiconductor laser device in which a current is concentrated in an active layer to cause laser oscillation. .
【0006】[0006]
【課題を解決するための手段】本発明の窒化物半導体レ
ーザ素子は、ストライプ状にエッチングされたp型層の
表面に、そのp型層のストライプ幅とほぼ同一の幅で接
するストライプ状の正電極が形成されていることを特徴
とするものである。In the nitride semiconductor laser device of the present invention, a stripe-shaped positive electrode is in contact with the surface of the stripe-shaped p-type layer with a width substantially equal to the stripe width of the p-type layer. It is characterized in that electrodes are formed.
【0007】図1に本発明の一実施例に係るレーザ素子
の形状を示す斜視図を示し、図2に図1の斜視図をスト
ライプに垂直な方向で切断した模式断面図を示す。これ
らの図に示すように、本発明のレーザ素子はストライプ
状にエッチングされたp層のストライプ幅とほぼ同一の
幅を有する正電極をp層に直接接して形成することによ
り、電流の広がりをなくして活性層に直接電流が集中す
るようにしている。その電流の広がりをなくして活性層
に電流を集中できる好ましいストライプ幅は50μm以
下、さらに好ましくは30μm以下、最も好ましくは1
0μm以下である。50μmよりも広いと、レーザ発振
のしきい値電流が高くなりレーザ発振しなくなる傾向に
あるからである。なお、本発明においてほぼ同一の幅と
は、−10%以内の幅で電極幅がp型層の幅に近似して
いることを示すものとする。FIG. 1 is a perspective view showing the shape of a laser device according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view obtained by cutting the perspective view of FIG. 1 in a direction perpendicular to a stripe. As shown in these figures, in the laser device of the present invention, a positive electrode having a stripe width substantially equal to the stripe width of a p-layer etched in a stripe shape is formed in direct contact with the p-layer to spread the current. Instead, the current is concentrated directly in the active layer. A preferable stripe width that can concentrate the current in the active layer without spreading the current is 50 μm or less, more preferably 30 μm or less, and most preferably 1
It is 0 μm or less. This is because if the width is larger than 50 μm, the threshold current for laser oscillation becomes high and the laser oscillation tends not to occur. In addition, in the present invention, the substantially same width means that the electrode width is close to the width of the p-type layer within a width of −10%.
【0008】図2はレーザ素子の基本的な構造は活性層
をn型とp型の窒化物半導体層で挟んだダブルへテロ構
造であるが、特にレーザ発振しやすい構造として図2に
示す構造を推奨する。FIG. 2 shows a basic structure of a laser device, which is a double hetero structure in which an active layer is sandwiched between n-type and p-type nitride semiconductor layers, and the structure shown in FIG. Is recommended.
【0009】図2は基板1の表面に、n型コンタクト層
2、第一のn型クラッド層3、第二のn型クラッド層
4、活性層5、第一のp型クラッド層6、p型コンタク
ト層7とを順に積層した、いわゆる分離閉じ込め型のダ
ブルへテロ構造を示している。p型コンタクト層7、第
一のp型クラッド層6、活性層5、第二のn型クラッド
層4、第一のn型クラッド層3、およびn型コンタクト
層2の一部がエッチングされてストライプ状の負電極1
1が形成され、さらに、エッチングにより残されたスト
ライプ状のp型コンタクト層7の表面に、p型コンタク
ト層7のストライプ幅とほぼ同一の幅を有する正電極1
2が直接接して形成されている。In FIG. 2, an n-type contact layer 2, a first n-type clad layer 3, a second n-type clad layer 4, an active layer 5, a first p-type clad layer 6 and a p-type layer are formed on the surface of a substrate 1. This shows a so-called separate confinement type double hetero structure in which the mold contact layer 7 is sequentially laminated. Part of the p-type contact layer 7, the first p-type cladding layer 6, the active layer 5, the second n-type cladding layer 4, the first n-type cladding layer 3 and the n-type contact layer 2 is etched. Striped negative electrode 1
1 and the positive electrode 1 having a width substantially equal to the stripe width of the p-type contact layer 7 is formed on the surface of the stripe-shaped p-type contact layer 7 left by etching.
2 are formed in direct contact with each other.
【0010】基板1にはサファイア(C面、R面、A面
を含む。)、SiC(6H、4Hを含む。)、Si、Z
nO、GaAs等が使用できるが、一般的にはサファイ
ア、またはSiCを使用する。The substrate 1 includes sapphire (including C-plane, R-plane and A-plane), SiC (including 6H and 4H), Si, Z.
Although nO, GaAs or the like can be used, sapphire or SiC is generally used.
【0011】n型コンタクト層2としてはGaN、Al
GaN等の二元混晶、または三元混晶の半導体層が結晶
性の良いものが得られる。特にGaNとすると負電極材
料と好ましいオーミックが得られる。n型とするには半
導体層にSi、Ge、S等のドナー不純物をドープす
る。また基板1とn型コンタクト層2との間に、格子定
数不整を緩和するためにGaN、AlN等がバッファ層
を形成しても良い。As the n-type contact layer 2, GaN, Al
A semiconductor layer of a binary mixed crystal such as GaN or a ternary mixed crystal having good crystallinity can be obtained. In particular, when GaN is used, a negative electrode material and a favorable ohmic property can be obtained. To make it n-type, the semiconductor layer is doped with donor impurities such as Si, Ge, and S. In addition, a buffer layer of GaN, AlN, or the like may be formed between the substrate 1 and the n-type contact layer 2 in order to relax the lattice constant irregularity.
【0012】次の第一のn型クラッド層3は第二のn型
クラッド層よりもバンドギャップが大きい窒化物半導体
を形成し、特に前記ドナー不純物をドープしたn型Al
GaNは結晶性が良く、またバンドギャップの大きい半
導体層が得られる。The next first n-type clad layer 3 forms a nitride semiconductor having a bandgap larger than that of the second n-type clad layer, and in particular, n-type Al doped with the donor impurity.
GaN has good crystallinity, and a semiconductor layer having a large band gap can be obtained.
【0013】次の第二のn型クラッド層4は活性層5よ
りもバンドギャップが大きい窒化物半導体層を形成し、
特に前記ドナー不純物をドープしたn型InGaN、ま
たはn型GaNが好ましい。また後に述べるように、第
二のn型クラッド層4は活性層5との組み合わせにおい
てもInGaN、GaNが好ましく、レーザ発振させる
ためにはInGaN、GaNよりなるこの第二のn型ク
ラッド層4を形成することは特に好ましい。Next, the second n-type cladding layer 4 forms a nitride semiconductor layer having a band gap larger than that of the active layer 5,
Particularly, n-type InGaN or n-type GaN doped with the donor impurity is preferable. As will be described later, the second n-type cladding layer 4 is preferably InGaN or GaN even in combination with the active layer 5, and the second n-type cladding layer 4 made of InGaN or GaN is used for laser oscillation. Forming is particularly preferred.
【0014】次の活性層5はノンドープのInGaNと
すると、およそ635nm〜365nm付近のバンド間
発光が得られる。好ましくはインジウムのモル比をガリ
ウムに対して半分以下にしたInGaNが結晶性が良
く、レーザ素子の寿命が長い。また、活性層を数十オン
グストロームの膜厚で2層以上積層した多層膜、つまり
多重量子井戸構造としてもよい。単一量子井戸構造、多
重量子井戸構造いずれの活性層においても、活性層はn
型、p型いずれでもよいが、特にノンドープ(無添加)
とすることにより半値幅の狭いバンド間発光、励起子発
光、あるいは量子井戸準位発光が得られ、LED素子、
LD素子を実現する上で特に好ましい。活性層を単一量
子井戸(SQW:single quantum well)構造若しくは
多重量子井戸(MQW:multi quantum well)構造とす
ると非常に出力の高い発光素子が得られる。SQW、M
QWとはノンドープのInGaNによる量子準位間の発
光が得られる活性層の構造を指し、例えばSQWでは活
性層を単一組成のInXGa1 -XN(0≦X<1)で構成
した層であり、InXGa1-XNの膜厚を100オングス
トローム以下、さらに好ましくは70オングストローム
以下とすることにより量子準位間の強い発光が得られ
る。またMQWは組成比の異なるInXGa1-XN(この
場合X=0、X=1を含む)の薄膜を複数積層した多層膜
とする。このように活性層をSQW、MQWとすること
により量子準位間発光で、約365nm〜660nmま
での発光が得られる。量子構造の井戸層の厚さとして
は、前記のように70オングストローム以下が好まし
い。多重量子井戸構造では井戸層はIn XGa1-XNで構
成し、障壁層は同じくInYGa1-YN(Y<X、この場合
Y=0を含む)で構成することが望ましい。特に好まし
くは井戸層と障壁層をInGaNで形成すると同一温度
で成長できるので結晶性のよい活性層が得られる。障壁
層の膜厚は150オングストローム以下、さらに好まし
くは120オングストローム以下にすると高出力な発光
素子が得られる。また、活性層5にドナー不純物および
/またはアクセプター不純物をドープしてもよい。不純
物をドープした活性層の結晶性がノンドープと同じであ
れば、ドナー不純物をドープするとノンドープのものに
比べてバンド間発光強度をさらに強くすることができ
る。アクセプター不純物をドープするとバンド間発光の
ピーク波長よりも約0.5eV低エネルギー側にピーク
波長を持っていくことができるが、半値幅は広くなる。
アクセプター不純物とドナー不純物を同時にドープする
と、アクセプター不純物のみドープした活性層の発光強
度をさらに大きくすることができる。特にアクセプター
不純物をドープした活性層を実現する場合、活性層の導
電型はSi等のドナー不純物を同時にドープしてn型と
することが好ましい。活性層5は例えば数オングストロ
ーム〜0.5μmの膜厚で成長させることができる。The next active layer 5 is made of non-doped InGaN.
Then, between the bands around 635 nm to 365 nm
Luminescence is obtained. Preferably, the molar ratio of indium is
The crystallinity of InGaN, which is less than half that of um, has good crystallinity.
In addition, the laser element has a long life. Also, dozens of active layers
A multi-layer film in which two or more layers are stacked with a thickness of Gstrom, that is,
It may be a multiple quantum well structure. Single quantum well structure, many
In any active layer having a quantum well structure, the active layer is n
Type or p-type may be used, but especially non-doped (no addition)
By setting, the emission between bands with narrow half width and exciton emission
Light, or quantum well level emission is obtained,
It is particularly preferable for realizing an LD element. Single amount of active layer
Child well (SQW: single quantum well) structure or
Multi quantum well (MQW) structure
As a result, a light emitting device having a very high output can be obtained. SQW, M
QW is the emission between quantum levels of undoped InGaN.
Indicates the structure of the active layer from which light can be obtained.
Of the single composition of the conductive layerXGa1 -XConsists of N (0 ≦ X <1)
In layersXGa1-XN film thickness of 100 Å
Less than or equal to Trom, more preferably 70 Angstrom
Strong emission between the quantum levels can be obtained by
It MQW is In with a different composition ratio.XGa1-XN (this
In the case of X = 0, X = 1 is included)
And In this way, the active layer should be SQW and MQW
Emits light between quantum levels, which is about 365 nm to 660 nm.
Luminescence is obtained. As the thickness of the quantum well layer
As described above, 70 angstroms or less is preferable.
Yes. In the multiple quantum well structure, the well layer is In XGa1-XConstructed with N
And the barrier layer is also InYGa1-YN (Y <X, in this case
(Including Y = 0) is desirable. Especially preferred
If the well layer and barrier layer are made of InGaN, the same temperature
Therefore, an active layer with good crystallinity can be obtained. barrier
Layer thickness less than 150 Å, more preferred
If it is 120 angstroms or less, high output light emission
The device is obtained. Further, the active layer 5 contains donor impurities and
It may be doped with an acceptor impurity. Impure
The crystallinity of the active layer doped with the same as that of non-doped
Then, if you dope donor impurities,
Compared to this, the emission intensity between bands can be made even stronger.
It Doping of the acceptor impurities results in interband emission.
Peak on the low energy side by about 0.5 eV from the peak wavelength
The wavelength can be increased, but the half-width becomes wider.
Simultaneous doping with acceptor and donor impurities
And the emission intensity of the active layer doped with only acceptor impurities.
The degree can be further increased. Especially acceptor
When implementing an active layer doped with impurities,
The electron type is n-type by simultaneously doping with donor impurities such as Si.
Is preferred. The active layer 5 is, for example, several angstroms.
It can be grown to a film thickness of 0.5 μm to 0.5 μm.
【0015】次に、第一のp型クラッド層6は活性層5
よりもバンドギャップの大きい窒化物半導体で形成し、
特に好ましくはアクセプター不純物をドープしたp型A
lGaNにすると結晶性が良く、またバンドギャップの
大きい半導体層が得られる。またアクセプター不純物ド
ープ後、さらに低抵抗なp型にする目的で400℃以上
でアニーリングを行っても良い。アクセプター不純物と
しては例えばZn、Mg、Cd等のII族元素、C(カー
ボン)等がある。Next, the first p-type cladding layer 6 is the active layer 5
Formed of a nitride semiconductor with a larger band gap than
Particularly preferably, p-type A doped with acceptor impurities
With lGaN, a semiconductor layer having good crystallinity and a large band gap can be obtained. Further, after doping the acceptor impurities, annealing may be performed at 400 ° C. or higher for the purpose of obtaining a p-type having a lower resistance. Acceptor impurities include, for example, Group II elements such as Zn, Mg, and Cd, C (carbon), and the like.
【0016】また第一のp型クラッド層6と活性層5と
の間に、活性層5よりもバンドギャップが大きく、第一
のクラッド層6よりもバンドギャップが小さい第二のp
型クラッド層を挿入しても良い。第二のp型クラッド層
はアクセプター不純物をドープしたp型InGaNが好
ましい。ここで、第二のn型クラッド層4と活性層5と
第二のp型クラッド層(第二のp型クラッド層は特に成
長しなくても良い。)との組み合わせにおいて、活性層
5を単一量子井戸構造若しくは多重量子井戸構造とし
て、活性層を構成する窒化物半導体層の膜厚を薄くする
ことにより、第二のn型クラッド層4との界面に、弾性
的な歪が発生し、歪量子井戸構造のレーザ素子が実現さ
れるので、レーザ発振が容易となる。特にこの弾性的な
歪は活性層5をInGaNとし、第二のn型クラッド層
4を活性層6よりもバンドギャップの大きいn型InG
aN、またはn型GaNとした際に発生する傾向にあ
る。Further, between the first p-type cladding layer 6 and the active layer 5, a second p-layer having a band gap larger than that of the active layer 5 and smaller than that of the first cladding layer 6 is formed.
A mold clad layer may be inserted. The second p-type cladding layer is preferably p-type InGaN doped with an acceptor impurity. Here, in the combination of the second n-type clad layer 4, the active layer 5, and the second p-type clad layer (the second p-type clad layer does not have to grow in particular), the active layer 5 is formed. By reducing the film thickness of the nitride semiconductor layer forming the active layer as a single quantum well structure or a multiple quantum well structure, elastic strain is generated at the interface with the second n-type cladding layer 4. Since a laser device having a strained quantum well structure is realized, laser oscillation becomes easy. In particular, this elastic strain causes the active layer 5 to be InGaN, and the second n-type cladding layer 4 to be an n-type InG having a band gap larger than that of the active layer 6.
It tends to occur when aN or n-type GaN is used.
【0017】次に、p型コンタクト層8は第一のp型ク
ラッド層7と同じくアクセプター不純物をドープしたp
型GaN、p型AlGaN等の二元混晶、または三元混
晶の半導体層が結晶性の良いものが得られる。特にGa
Nとすると正電極材料と好ましいオーミックが得られ
る。Next, the p-type contact layer 8 is the same as the first p-type cladding layer 7 and is p-doped with acceptor impurities.
A binary mixed crystal of GaN, p-type AlGaN, or a ternary mixed crystal having a good crystallinity can be obtained. Especially Ga
When it is N, a positive electrode material and a preferable ohmic contact can be obtained.
【0018】窒化物半導体のエッチング手段としては、
ドライエッチング、ウェットエッチング両方の手段があ
るが、エッチング端面を垂直にしたストライプを形成す
るにはドライエッチングが好ましい。ドライエッチング
では例えば、反応性イオンエッチング、イオンミリン
グ、イオンビームアシストエッチング、集束イオンビー
ムエッチング等の手段を用いることができる。As means for etching a nitride semiconductor,
There are both dry etching and wet etching methods, but dry etching is preferable to form a stripe having vertical etching end faces. In dry etching, for example, reactive ion etching, ion milling, ion beam assisted etching, focused ion beam etching, or the like can be used.
【0019】また図4は本発明の他の実施例に係るレー
ザ素子の構造を示す模式断面図であるが、図2の断面図
と異なる点は、ストライプ状にエッチングされたp型層
の側面に絶縁膜20を形成し、さらにそのp型層のスト
ライプ幅とほぼ同一の幅で接するストライプ状の正電極
12をp型層に接して形成し、さらに、正電極12をp
型層から絶縁膜20の表面に亙って形成していることで
ある。つまり正電極12にワイヤーボンディングする
際、図2に示すようなストライプ状の正電極12ではそ
の幅が狭いために、ワイヤーボンディングするのはほと
んど不可能である。そこで、正電極12の幅を広くとる
ために、p型層の側面にSiO2のような絶縁体よりな
る絶縁膜20を新たに形成し、その絶縁膜20の表面
に、p型層と電気的に接続した正電極12を形成してい
る。図1のような構造であると電極がワイヤーボンディ
ングできず、フェイスダウンの構造となるが、図4のよ
うな構造にするとフェイスアップの構造とできるので、
チップサイズを小さくすることができる。FIG. 4 is a schematic cross-sectional view showing the structure of a laser device according to another embodiment of the present invention. The difference from the cross-sectional view of FIG. 2 is the side surface of the p-type layer etched in stripes. An insulating film 20 is formed on the p-type layer, and a stripe-shaped positive electrode 12 is formed in contact with the p-type layer so as to have a width substantially equal to the stripe width of the p-type layer.
That is, it is formed over the surface of the insulating film 20 from the mold layer. That is, when wire-bonding to the positive electrode 12, the stripe-shaped positive electrode 12 as shown in FIG. 2 has a narrow width, so that wire-bonding is almost impossible. Therefore, in order to increase the width of the positive electrode 12, an insulating film 20 made of an insulating material such as SiO 2 is newly formed on the side surface of the p-type layer, and the surface of the insulating film 20 is electrically connected to the p-type layer. The positive electrode 12 that is electrically connected is formed. With the structure as shown in FIG. 1, the electrodes cannot be wire-bonded and the structure is face down. However, with the structure as shown in FIG. 4, a face up structure can be obtained.
The chip size can be reduced.
【0020】[0020]
【作用】本発明のレーザ素子ではp型層のストライプ幅
を狭くして活性層に電流が集中するようにしている。つ
まり、ストライプ状にエッチングされたp型層に、ほぼ
同一のストライプ幅を有する正電極を形成すると、p型
層中で電流が広がってもストライプ幅が狭いので活性層
の電流密度が上がり容易にレーザ発振しやすくなる。ま
た活性層から基板と平行方向に出る光に関しても、活性
層のストライプ幅が狭いので、窒化物半導体と屈折率差
の大きい大気との距離が短くなり、この狭い領域で光が
閉じ込められるので、容易にレーザ発振する。In the laser device of the present invention, the stripe width of the p-type layer is narrowed so that current concentrates on the active layer. That is, by forming a positive electrode having substantially the same stripe width on the p-type layer etched in a stripe shape, the stripe width is narrow even if the current spreads in the p-type layer, and the current density of the active layer is easily increased. Laser oscillation becomes easier. Also, regarding the light emitted from the active layer in the direction parallel to the substrate, the stripe width of the active layer is narrow, so the distance between the nitride semiconductor and the atmosphere with a large difference in refractive index is shortened, and the light is confined in this narrow region. Laser oscillation easily.
【0021】また本発明のレーザ素子であると従来のよ
うにp型層の表面に電流狭窄のための絶縁層を形成する
プロセスが必要ないので、製造工程を短縮できる。Further, the laser device of the present invention does not require a process of forming an insulating layer for current constriction on the surface of the p-type layer as in the conventional case, and therefore the manufacturing process can be shortened.
【0022】[0022]
[実施例1]厚さ350μmのサファイア基板1上に、
GaNよりなるバッファ層を200オングストローム、
Siドープn型GaNよりなるn型コンタクト層2を5
μm、Siドープn型Al0.3Ga0.7Nよりなるn型ク
ラッド層3を0.1μm、Siドープn型In0.01Ga
0.99Nよりなる第二のn型クラッド層4を500オング
ストローム、ノンドープIn0.08Ga0.92Nよりなる活
性層5を100オングストローム、Mgドープp型Al
0.3Ga0.7Nよりなるp型クラッド層6を0.1μm、
Mgドープp型GaNよりなるp型コンタクト層7を
0.5μmの膜厚で順に成長させたウェーハを用意す
る。Example 1 On a sapphire substrate 1 having a thickness of 350 μm,
200 angstrom buffer layer made of GaN,
The n-type contact layer 2 made of Si-doped n-type GaN
μm, an n-type clad layer 3 made of Si-doped n-type Al0.3Ga0.7N is 0.1 μm, and Si-doped n-type In0.01Ga
The second n-type cladding layer 4 made of 0.99N has a thickness of 500 angstroms, the active layer 5 made of non-doped In0.08Ga0.92N has a thickness of 100 angstroms, and Mg-doped p-type Al.
The p-type cladding layer 6 made of 0.3 Ga0.7 N is 0.1 μm,
A wafer is prepared in which the p-type contact layer 7 made of Mg-doped p-type GaN is sequentially grown to a film thickness of 0.5 μm.
【0023】次に、このウェーハのp型コンタクト層7
の表面に所定の形状でマスクを形成した後、RIE(反
応性イオンエッチング)を用いて、窒化物半導体層を1
0μmのストライプ幅でエッチングする。エッチング
後、露出したn型コンタクト層3にはTi/Alよりな
る負電極11を20μmの幅でストライプ状に形成し、
ストライプ状のp型コンタクト層7の全面にNi/Au
よりなる正電極12を形成する。Next, the p-type contact layer 7 of this wafer
After forming a mask on the surface of the substrate in a predetermined shape, the nitride semiconductor layer is removed by RIE (reactive ion etching).
Etching is performed with a stripe width of 0 μm. After etching, a negative electrode 11 made of Ti / Al is formed in a stripe shape with a width of 20 μm on the exposed n-type contact layer 3.
Ni / Au is formed on the entire surface of the striped p-type contact layer 7.
The positive electrode 12 is formed.
【0024】次に、サファイア基板1の窒化物半導体層
を形成していない方の面を研磨機で80μmの厚さまで
研磨する。研磨後、サファイア基板の研磨面をスクライ
バーでスクライブする。スクライブ方向はストライプ電
極と直交するラインと、もう一方のスクライブラインは
電極と平行な方向とする。スクライブライン形成後、ウ
ェーハをローラで押し割り、電極に垂直な方向で劈開し
た窒化物半導体層面を光共振器とする共振器長500μ
mのレーザチップとする。Next, the surface of the sapphire substrate 1 on which the nitride semiconductor layer is not formed is polished by a polishing machine to a thickness of 80 μm. After polishing, the polished surface of the sapphire substrate is scribed with a scriber. The scribe direction is a line orthogonal to the stripe electrode, and the other scribe line is parallel to the electrode. After forming the scribe line, the wafer is pressed by a roller and the nitride semiconductor layer surface cleaved in the direction perpendicular to the electrode is used as an optical resonator.
m laser chip.
【0025】次にレーザチップの窒化物半導体層面にマ
スクを施したのち、スパッタ装置で劈開面にSiO2と
ZrO2よりなる誘電体多層膜を形成する。この誘電体
多層膜は活性層の波長を90%以上反射させる作用を有
している。Next, after masking the surface of the nitride semiconductor layer of the laser chip, a dielectric multilayer film made of SiO 2 and ZrO 2 is formed on the cleavage surface by a sputtering device. This dielectric multilayer film has a function of reflecting 90% or more of the wavelength of the active layer.
【0026】このようにして得られたレーザチップをフ
ェースダウン(電極とヒートシンク面が対向する)して
ヒートシンクに設置した後、室温でレーザ発振を試みた
ところ、しきい値電流密度1.0kA/cm2以上で発振
波長440nmのレーザ発振が確認された。After the laser chip thus obtained was placed face down (the electrode and the heat sink surface faced each other) on the heat sink, laser oscillation was attempted at room temperature, and a threshold current density of 1.0 kA / Laser oscillation with an oscillation wavelength of 440 nm was confirmed at cm 2 or more.
【0027】[実施例2]実施例1において、窒化物半
導体層のエッチング時にストライプ幅を30μmとする
他は同様にしてレーザ素子を作製したところ、室温にお
いてしきい値電流密度3.0kA/cm2以上でレーザ発
振が確認された。Example 2 A laser device was manufactured in the same manner as in Example 1 except that the stripe width was set to 30 μm when the nitride semiconductor layer was etched. The threshold current density was 3.0 kA / cm at room temperature. Laser oscillation was confirmed at 2 or more.
【0028】[実施例3]実施例1において、窒化物半
導体層のエッチング時にストライプ幅を50μmとする
他は同様にしてレーザ素子を作製したところ、液体窒素
温度においてしきい値電流密度5.0kA/cm2以上で
レーザ発振が確認された。Example 3 A laser device was manufactured in the same manner as in Example 1 except that the stripe width was set to 50 μm when the nitride semiconductor layer was etched. The threshold current density was 5.0 kA at the liquid nitrogen temperature. Laser oscillation was confirmed at / cm 2 or more.
【0029】[実施例4]実施例1において、窒化物半
導体層のエッチング時にストライプ幅を60μmとする
他は同様にしてレーザ素子を作製したところ、液体窒素
温度においてしきい値電流密度6.0kA/cm2以上で
レーザ発振が確認されたが、すぐに素子が破壊してしま
った。Example 4 A laser device was manufactured in the same manner as in Example 1 except that the stripe width was set to 60 μm when etching the nitride semiconductor layer. The threshold current density was 6.0 kA at the liquid nitrogen temperature. Laser oscillation was confirmed at / cm 2 or more, but the element was destroyed immediately.
【0030】[実施例5]実施例1において、活性層5
の組成をノンドープIn0.08Ga0.92Nよりなる井戸層
を25オングストロームと、ノンドープIn0.01Ga0.
99Nよりなる障壁層を50オングストロームの膜厚で成
長させる。この操作を13回繰り返し、最後に井戸層を
積層して総厚1000オングストロームの活性層6を成
長させた。後は実施例1と同様にして室温でレーザ発振
を試みたところ、同じくしきい値電流密度1.0kA/
cm2以上で発振波長440nmのレーザ発振が確認され
た。[Fifth Embodiment] In the first embodiment, the active layer 5 is used.
The composition of the well layer is made of non-doped In0.08Ga0.92N with a thickness of 25 angstroms, and the undoped In0.01Ga0.
A barrier layer of 99N is grown to a thickness of 50 Å. This operation was repeated 13 times, and finally well layers were laminated to grow the active layer 6 having a total thickness of 1000 angstroms. After that, when laser oscillation was tried at room temperature in the same manner as in Example 1, the threshold current density was 1.0 kA /
Laser oscillation with an oscillation wavelength of 440 nm was confirmed at cm 2 or more.
【0031】[比較例]実施例1において、窒化物半導
体層のエッチング時にストライプ幅を100μmとする
他は同様にしてレーザ素子を作製したところ、液体窒素
温度においてもレーザ発振を示さず、すぐに素子が破壊
してしまった。[Comparative Example] A laser device was manufactured in the same manner as in Example 1 except that the stripe width was set to 100 μm when the nitride semiconductor layer was etched. As a result, no laser oscillation was observed even at the liquid nitrogen temperature and immediately The element has been destroyed.
【0032】[0032]
【発明の効果】以上説明したように、本発明のレーザ素
子ではストライプ状にエッチングされたp型層の表面
に、ストライプと同一の幅で接する正電極が形成されて
おり、この電極が直接電流狭窄の作用をする。つまりp
型層に電流が広がってもレーザ発振するのに十分電流密
度が上昇するだけのストライプ幅を有しているため、容
易に光閉じ込めができて、常温で発振する。また、従来
のように、p型層の表面に絶縁体で電流狭窄層を形成す
る必要がなくなる。従って、絶縁体形成時の細かいマス
ク合わせの技術が必要なくなるので、製造歩留が向上す
る。このように窒化物半導体で常温で短波長域のレーザ
素子が実現されたことにより、書き込み用光源、コンパ
クトディスクの光源として記録密度が飛躍的に向上し、
その産業上の利用価値は非常に大きい。As described above, in the laser device of the present invention, the positive electrode contacting with the same width as the stripe is formed on the surface of the p-type layer etched in the stripe shape, and this electrode is used for direct current flow. Acts as a stenosis. That is p
Since the stripe width is such that the current density rises enough to cause laser oscillation even when the current spreads in the mold layer, light can be easily confined and oscillation occurs at room temperature. Further, unlike the conventional case, it is not necessary to form a current confinement layer on the surface of the p-type layer with an insulator. Therefore, the technique of fine mask alignment at the time of forming the insulator is not required, and the manufacturing yield is improved. In this way, the realization of a laser device in the short wavelength region at room temperature with a nitride semiconductor has dramatically improved the recording density as a light source for writing and a light source for a compact disc,
Its industrial utility value is extremely high.
【図1】 本発明の一実施例に係るレーザ素子の形状を
示す斜視図。FIG. 1 is a perspective view showing the shape of a laser element according to an embodiment of the present invention.
【図2】 図1のレーザ素子をストライプに垂直な方向
で切断した模式断面図。2 is a schematic cross-sectional view of the laser device of FIG. 1 cut in a direction perpendicular to a stripe.
【図3】 従来のレーザ素子の構造を示す模式断面図。FIG. 3 is a schematic cross-sectional view showing the structure of a conventional laser element.
【図4】 本発明の他の実施例に係るレーザ素子の構造
を示す模式断面図。FIG. 4 is a schematic sectional view showing the structure of a laser device according to another embodiment of the present invention.
1・・・・基板 2・・・・n型コンタクト層 3・・・・第一のn型クラッド層 4・・・・第二のn型クラッド層 5・・・・活性層 6・・・・第一のp型クラッド層 7・・・・p型コンタクト層 12・・・・正電極 11・・・・負電極 1 ... Substrate 2 ... N-type contact layer 3 ... First n-type cladding layer 4 ... Second n-type cladding layer 5 ... Active layer 6 ... -First p-type cladding layer 7 --- p-type contact layer 12 --- Positive electrode 11 --- Negative electrode
Claims (2)
の表面に、そのp型層のストライプ幅とほぼ同一の幅で
接するストライプ状の正電極が形成されていることを特
徴とする窒化物半導体レーザ素子。1. A nitride semiconductor, wherein a stripe-shaped positive electrode is formed on the surface of a p-type layer etched in a stripe shape and is in contact with the stripe width of the p-type layer. Laser device.
請求項1に記載の窒化物半導体レーザ素子。2. The nitride semiconductor laser device according to claim 1, wherein the stripe width is 50 μm or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31784695A JP2921746B2 (en) | 1995-01-31 | 1995-12-06 | Nitride semiconductor laser device |
JP33542598A JP3529286B2 (en) | 1995-12-06 | 1998-11-26 | Method of manufacturing nitride semiconductor laser device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1322695 | 1995-01-31 | ||
JP7-13226 | 1995-01-31 | ||
JP31784695A JP2921746B2 (en) | 1995-01-31 | 1995-12-06 | Nitride semiconductor laser device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33542598A Division JP3529286B2 (en) | 1995-12-06 | 1998-11-26 | Method of manufacturing nitride semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08274414A true JPH08274414A (en) | 1996-10-18 |
JP2921746B2 JP2921746B2 (en) | 1999-07-19 |
Family
ID=26348998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31784695A Expired - Fee Related JP2921746B2 (en) | 1995-01-31 | 1995-12-06 | Nitride semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2921746B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998019375A1 (en) * | 1996-10-30 | 1998-05-07 | Hitachi, Ltd. | Optical information processor and semiconductor light emitting device suitable for the same |
JPH1174563A (en) * | 1997-06-16 | 1999-03-16 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor, semiconductor device and semiconductor substrate |
US6281524B1 (en) | 1997-02-21 | 2001-08-28 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting device |
US6958497B2 (en) | 2001-05-30 | 2005-10-25 | Cree, Inc. | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
KR100845385B1 (en) * | 2000-11-02 | 2008-07-09 | 타카시 카토다 | Process for fabricating an electronic device or an optical device |
US7692182B2 (en) | 2001-05-30 | 2010-04-06 | Cree, Inc. | Group III nitride based quantum well light emitting device structures with an indium containing capping structure |
US8344398B2 (en) | 2007-01-19 | 2013-01-01 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US8507924B2 (en) | 2004-07-02 | 2013-08-13 | Cree, Inc. | Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming |
US8519437B2 (en) | 2007-09-14 | 2013-08-27 | Cree, Inc. | Polarization doping in nitride based diodes |
US8575592B2 (en) | 2010-02-03 | 2013-11-05 | Cree, Inc. | Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses |
US8679876B2 (en) | 2006-11-15 | 2014-03-25 | Cree, Inc. | Laser diode and method for fabricating same |
US9012937B2 (en) | 2007-10-10 | 2015-04-21 | Cree, Inc. | Multiple conversion material light emitting diode package and method of fabricating same |
CN113644176A (en) * | 2021-07-29 | 2021-11-12 | 厦门三安光电有限公司 | LED chip |
-
1995
- 1995-12-06 JP JP31784695A patent/JP2921746B2/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6542526B1 (en) * | 1996-10-30 | 2003-04-01 | Hitachi, Ltd. | Optical information processor and semiconductor light emitting device suitable for the same |
US6639925B2 (en) | 1996-10-30 | 2003-10-28 | Hitachi, Inc. | Optical information processing equipment and semiconductor light emitting device suitable therefor |
WO1998019375A1 (en) * | 1996-10-30 | 1998-05-07 | Hitachi, Ltd. | Optical information processor and semiconductor light emitting device suitable for the same |
US6281524B1 (en) | 1997-02-21 | 2001-08-28 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting device |
US6404792B2 (en) | 1997-02-21 | 2002-06-11 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting device |
JPH1174563A (en) * | 1997-06-16 | 1999-03-16 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor, semiconductor device and semiconductor substrate |
KR100845385B1 (en) * | 2000-11-02 | 2008-07-09 | 타카시 카토다 | Process for fabricating an electronic device or an optical device |
US8044384B2 (en) | 2001-05-30 | 2011-10-25 | Cree, Inc. | Group III nitride based quantum well light emitting device structures with an indium containing capping structure |
US7312474B2 (en) | 2001-05-30 | 2007-12-25 | Cree, Inc. | Group III nitride based superlattice structures |
US7692182B2 (en) | 2001-05-30 | 2010-04-06 | Cree, Inc. | Group III nitride based quantum well light emitting device structures with an indium containing capping structure |
US6958497B2 (en) | 2001-05-30 | 2005-10-25 | Cree, Inc. | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
US8227268B2 (en) | 2001-05-30 | 2012-07-24 | Cree, Inc. | Methods of fabricating group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
US9112083B2 (en) | 2001-05-30 | 2015-08-18 | Cree, Inc. | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
US9054253B2 (en) | 2001-05-30 | 2015-06-09 | Cree, Inc. | Group III nitride based quantum well light emitting device structures with an indium containing capping structure |
US8546787B2 (en) | 2001-05-30 | 2013-10-01 | Cree, Inc. | Group III nitride based quantum well light emitting device structures with an indium containing capping structure |
US8507924B2 (en) | 2004-07-02 | 2013-08-13 | Cree, Inc. | Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming |
US8679876B2 (en) | 2006-11-15 | 2014-03-25 | Cree, Inc. | Laser diode and method for fabricating same |
US9041139B2 (en) | 2007-01-19 | 2015-05-26 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US8344398B2 (en) | 2007-01-19 | 2013-01-01 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US8519437B2 (en) | 2007-09-14 | 2013-08-27 | Cree, Inc. | Polarization doping in nitride based diodes |
US9012937B2 (en) | 2007-10-10 | 2015-04-21 | Cree, Inc. | Multiple conversion material light emitting diode package and method of fabricating same |
US8575592B2 (en) | 2010-02-03 | 2013-11-05 | Cree, Inc. | Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses |
CN113644176A (en) * | 2021-07-29 | 2021-11-12 | 厦门三安光电有限公司 | LED chip |
Also Published As
Publication number | Publication date |
---|---|
JP2921746B2 (en) | 1999-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3374737B2 (en) | Nitride semiconductor device | |
JP3468082B2 (en) | Nitride semiconductor device | |
JP4441563B2 (en) | Nitride semiconductor laser device | |
EP1453160A1 (en) | Semiconductor element | |
JPH11298090A (en) | Nitride semiconductor element | |
JP2921746B2 (en) | Nitride semiconductor laser device | |
JP3424465B2 (en) | Nitride semiconductor device and method of growing nitride semiconductor | |
JP2003204122A (en) | Nitride semiconductor element | |
JP2001210915A (en) | Semiconductor light-emitting device | |
JP3651260B2 (en) | Nitride semiconductor device | |
JP3224020B2 (en) | Nitride semiconductor light emitting device and method of manufacturing the same | |
JP3314641B2 (en) | Nitride semiconductor laser device | |
KR20000069995A (en) | Nitride Semiconductor Device | |
JPH07176826A (en) | Gallium nitride compound semiconductor laser element | |
JP4342134B2 (en) | Nitride semiconductor laser device | |
JPH1146038A (en) | Nitride semiconductor laser element and manufacture of the same | |
JP3464890B2 (en) | Semiconductor light emitting device | |
JP3502527B2 (en) | Nitride semiconductor laser device | |
KR100511530B1 (en) | The nitride semiconductor device | |
JPH10294533A (en) | Nitride compound semiconductor laser and its manufacture | |
JPH09266351A (en) | Alingan semiconductor light emitting element | |
JPH1093186A (en) | Nitride semiconductor laser element | |
JP3888170B2 (en) | Nitride semiconductor laser device | |
JP3129384B2 (en) | Nitride semiconductor laser device | |
JP3529286B2 (en) | Method of manufacturing nitride semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080430 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100430 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100430 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110430 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110430 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120430 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120430 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |