JPH08176647A - Production of highly cleaned steel with less inclusion - Google Patents

Production of highly cleaned steel with less inclusion

Info

Publication number
JPH08176647A
JPH08176647A JP6319689A JP31968994A JPH08176647A JP H08176647 A JPH08176647 A JP H08176647A JP 6319689 A JP6319689 A JP 6319689A JP 31968994 A JP31968994 A JP 31968994A JP H08176647 A JPH08176647 A JP H08176647A
Authority
JP
Japan
Prior art keywords
molten steel
steel
fine bubbles
porous brick
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6319689A
Other languages
Japanese (ja)
Inventor
Uei Rin
ウェイ リン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6319689A priority Critical patent/JPH08176647A/en
Publication of JPH08176647A publication Critical patent/JPH08176647A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a manufacturing method of a highly cleaned steel by fine bubbles. CONSTITUTION: A fine bubble generating device is provided on the bottom part of a ladle 4 corresponding to the intermediate position between a rising tube 1 and a descending tube 11 of an RH device to blow an inert gas in a circulating molten steel 3. It is preferable to use the fine bubble generating device in which one ends of a plurality of ceramics nozzles 8 whose outer diameters are each <=2mm are embedded in a porous brick 5 and the other end is projected in the molten steel, and refractory coating is applied to the surface of the porous brick 5 in contact with the molten steel. The impurities in the molten steel are efficiently and rapidly removed to manufacture the highly cleaned steel at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、介在物の少ない高清浄
鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing highly clean steel with few inclusions.

【0002】[0002]

【従来の技術】近年、品質要求レベルの厳格化や他の素
材との競合激化により鋼に求められる高清浄化、特に鋼
中非金属介在物の低減が年々厳しくなっている。従来か
ら鋼中介在物を除去するために、介在物同士間の凝集、
浮上を促進させることに着目するマクロバブリング法、
電磁撹拌法および真空脱ガス法等の方法が使用されてい
る。しかしながら、これらの方法で溶鋼中に存在する数
十μm以下の大きさの微小介在物を十分に除去すること
は困難である。
2. Description of the Related Art In recent years, due to stricter quality requirement levels and intensifying competition with other materials, the high cleanliness required for steel, particularly the reduction of non-metallic inclusions in steel, has become stricter year by year. Conventionally, in order to remove inclusions in steel, agglomeration between inclusions,
Macro bubbling method focusing on promoting levitation,
Methods such as electromagnetic stirring and vacuum degassing are used. However, it is difficult to sufficiently remove fine inclusions having a size of several tens of μm or less existing in the molten steel by these methods.

【0003】最近、微細気泡の持つ捕捉効果により微小
介在物を分離する介在物の除去方法が注目されている。
特公平2−197515号公報には「取鍋等の減圧容器
外の低部に設けたポーラスプラグを介して発生させた不
活性ガスの微細気泡を溶鋼中へ吹込む工程と、溶鋼を減
圧下の容器へ循環させる工程とを有して成る高清浄度極
低炭素鋼の溶製方法」が提案されている。この方法で
は、微細気泡9を溶鋼3に効果的に含ませるために、図
9に示すようにポーラス煉瓦5を溶鋼流の激しい上昇管
1および/または下降管11の直下に設けた方が、微細
気泡9を溶鋼3中に分散させるのに効果的であるとして
いる。
Recently, attention has been focused on a method of removing inclusions which separates the inclusions by the trapping effect of the fine bubbles.
Japanese Patent Publication No. 2-197515 discloses "a step of blowing fine bubbles of inert gas into molten steel through a porous plug provided at a lower portion outside a decompression container such as a ladle, and decompressing the molten steel. The method for smelting a high cleanliness ultra-low carbon steel, which comprises a step of circulating the steel into a container. In this method, in order to effectively contain the fine bubbles 9 in the molten steel 3, it is better to provide the porous brick 5 directly below the rising pipe 1 and / or the descending pipe 11 in which the molten steel flow is violent as shown in FIG. It is said that it is effective in dispersing the fine bubbles 9 in the molten steel 3.

【0004】しかし、図9のように微細気泡を取鍋底部
の広域から多く発生させる場合は、循環している溶鋼中
において、発生した微細気泡が互いに衝突、凝集して大
きな気泡になる確率が高い。
However, when a large number of fine bubbles are generated from a wide area at the bottom of the ladle as shown in FIG. 9, there is a possibility that the fine bubbles generated in the circulating molten steel collide with each other and agglomerate into large bubbles. high.

【0005】また、上昇管入り口の近くにおける上昇流
中の介在物は、上昇流に乗って迅速に上方へ移動するの
で気泡に捕捉されることが困難である。さらに、下降管
出口の近くにおける下降流中の気泡は下降流の流動の影
響を受けて浮上速度が遅くなるので、この現象によって
も介在物の捕捉が難しくなる。
Further, the inclusions in the ascending flow near the inlet of the ascending pipe move quickly upward along with the ascending flow, so it is difficult to be trapped by the bubbles. Further, since the bubbles in the downflow near the outlet of the downcomer are affected by the flow of the downflow and the floating speed becomes slow, this phenomenon also makes it difficult to capture inclusions.

【0006】なお、後述するように、ポーラス煉瓦と溶
鋼との間では濡れ性が非常に悪いので、ポーラス煉瓦に
より溶鋼中へ微細気泡を安定的に発生させることは不可
能である。
As will be described later, since the wettability between the porous brick and the molten steel is extremely poor, it is impossible to stably generate fine bubbles in the molten steel with the porous brick.

【0007】したがって上記の方法では、介在物の除去
効果が良好ではない上に処理時間も長く、また多量の不
活性ガスが必要となる。
Therefore, in the above method, the effect of removing inclusions is not good, the treatment time is long, and a large amount of inert gas is required.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の問題点を解決して微細気泡により介在物を効
果的に除去し、介在物の少ない高清浄鋼を製造する方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for solving the above problems of the prior art and effectively removing inclusions by fine bubbles to produce a highly clean steel containing few inclusions. To do.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、次の
(1)および(2)の高清浄鋼の製造方法にある。
The gist of the present invention resides in the following methods (1) and (2) for producing highly clean steel.

【0010】(1)真空脱ガス装置(RH)の上昇管と
下降管との中間位置に対応する取鍋の底部に、微細気泡
の発生装置を設け、この装置から循環中の溶鋼へ不活性
ガスを吹込むことを特徴とする介在物の少ない高清浄鋼
の製造方法。
(1) A device for generating fine bubbles is provided at the bottom of the ladle corresponding to the intermediate position between the ascending pipe and the descending pipe of the vacuum degassing device (RH), and this device is inert to molten steel in circulation. A method for producing highly clean steel with few inclusions, characterized by blowing gas.

【0011】(2)上記の微細気泡の発生装置として、
外径が2mm以下の複数のセラミックスノズルの一端を
ポーラス煉瓦の中に埋め込み、他端を溶鋼の中へ突出さ
せ、かつ溶鋼に接触するポーラス煉瓦の表面に耐火物塗
料が塗布されている装置を用いて、循環中の溶鋼へ不活
性ガスを吹込むことを特徴とする介在物の少ない高清浄
鋼の製造方法。
(2) As the above-mentioned fine bubble generator,
A device in which one end of a plurality of ceramics nozzles having an outer diameter of 2 mm or less is embedded in a porous brick, the other end is projected into molten steel, and a refractory paint is applied to the surface of the porous brick in contact with the molten steel. A method for producing highly clean steel with few inclusions, which comprises blowing an inert gas into molten steel during circulation by using the method.

【0012】本発明でいう微細気泡とは、その直径が5
mm以下の大きさのものを指す。
The fine bubbles referred to in the present invention have a diameter of 5
Indicates a size of mm or less.

【0013】[0013]

【作用】本発明方法を適用する装置例を図1および図2
により説明する。
1 and 2 show an example of an apparatus to which the method of the present invention is applied.
This will be described below.

【0014】図1はRH真空脱ガス装置(以下、RHと
記す)を示す縦断面図である。この装置は、還流用Ar
ガス2の吹き込み羽口を有する上昇管1と下降管11を
備えた真空槽12、取鍋4およびその底部の耐火物13
に設けた微細気泡9の発生装置を備えているものであ
る。図1において、符号3は溶鋼、10および10′は
スラグである。
FIG. 1 is a vertical sectional view showing an RH vacuum degassing apparatus (hereinafter referred to as RH). This equipment uses Ar for reflux
A vacuum chamber 12 having an ascending pipe 1 having a tuyere for blowing gas 2 and a descending pipe 11, a ladle 4, and a refractory material 13 at the bottom thereof.
It is provided with a device for generating fine bubbles 9 provided in the above. In FIG. 1, reference numeral 3 is molten steel, and 10 and 10 'are slags.

【0015】図2は微細気泡9の発生装置の構成例を示
す縦断面図である。この発生装置は、取鍋4の底部の耐
火物13に埋め込まれたポーラス煉瓦5、このポーラス
煉瓦5に図示するように一端を埋め込み、他端を溶鋼3
内に突出させた複数個のノズル8およびポーラス煉瓦5
の溶鋼3と接する表面に塗布された耐火物塗料7からな
る。
FIG. 2 is a vertical cross-sectional view showing a structural example of a device for generating fine bubbles 9. This generator comprises a porous brick 5 embedded in a refractory 13 at the bottom of a ladle 4, one end of which is embedded in the porous brick 5 as shown in the drawing, and the other end of the molten steel 3
A plurality of nozzles 8 and porous bricks 5 that protrude inside
The refractory paint 7 is applied to the surface of the molten steel 3 in contact with the molten steel 3.

【0016】図1に示すように、取鍋4内の溶鋼3に上
昇管1と下降管11を浸漬し、真空槽12内を真空に
し、還流用Arガス2を上昇管1側から吹き込み、溶鋼
3を図示する矢印のように循環させ、脱ガスなどの精錬
を行う。このとき、さらに微細気泡発生用Arガス6を
ポーラス煉瓦5から供給してノズル8から微細気泡9を
発生させ、この気泡9の捕捉効果により溶鋼3中の微小
介在物を分離し、高清浄鋼を製造する。
As shown in FIG. 1, the ascending pipe 1 and the descending pipe 11 are immersed in the molten steel 3 in the ladle 4, the vacuum chamber 12 is evacuated, and the reflux Ar gas 2 is blown from the ascending pipe 1 side. The molten steel 3 is circulated as shown by an arrow to perform refining such as degassing. At this time, the Ar gas 6 for generating fine bubbles is further supplied from the porous brick 5 to generate fine bubbles 9 from the nozzle 8, and the fine inclusions in the molten steel 3 are separated by the trapping effect of the bubbles 9 to obtain a high-clean steel. To manufacture.

【0017】本発明方法では、微細気泡9は、上昇管1
と下降管11の中間位置が取鍋4の底部の耐火物13に
対応する位置に設けた微細気泡発生装置から発生させ
る。すなわち、図2に示す微細気泡の発生装置の中心
が、上昇管1と下降管11の中間位置にくるように取鍋
4の底部の耐火物13に微細気泡の発生装置を設置す
る。
In the method of the present invention, the fine bubbles 9 are generated in the rising pipe 1.
It is generated from a fine bubble generator provided at a position corresponding to the refractory material 13 at the bottom of the ladle 4 at an intermediate position of the downcomer pipe 11. That is, the fine bubble generator is installed in the refractory 13 at the bottom of the ladle 4 so that the center of the fine bubble generator shown in FIG. 2 is located at the intermediate position between the ascending pipe 1 and the descending pipe 11.

【0018】この設置位置は実際には、略々取鍋底部の
中心部になり、実操業において発生する多少のずれは許
容される。
In practice, this installation position is almost at the center of the bottom of the ladle, and some deviations that occur during actual operation are allowed.

【0019】ノズル8には、材質がセラミックス(具体
的には例えば、アルミナ、マグネシア、シリカなど)製
の細管を用いる。ノズルの望ましい大きさの範囲は、外
径で0.6〜2mm、内径で0.4〜1mmである。溶
鋼内への突出長さの望ましい範囲は5〜10mmであ
り、各ノズルのガス出口端のレベルはできるだけ均一に
なるように取りつけるのが望ましい。ノズルの望ましい
分布密度の範囲は0.5〜1個/cm2 である。ノズル
とノズルと間隔(間隙)はノズル出口から生成する微細
気泡の直径よりも大きくし、その望ましい範囲は微細気
泡の直径の1.5〜3倍程度である。ノズルのポーラス
煉瓦への埋込深さの望ましい範囲は、5〜10mmであ
る。ノズルのポーラス煉瓦への埋込みは、ポーラス煉瓦
の穿孔、耐火性接着剤などにより、通常の方法で行えば
よい。
A thin tube made of ceramics (specifically, alumina, magnesia, silica, etc.) is used for the nozzle 8. The desirable size range of the nozzle is 0.6 to 2 mm in outer diameter and 0.4 to 1 mm in inner diameter. The desirable range of the protruding length into the molten steel is 5 to 10 mm, and it is desirable to mount the nozzles so that the level at the gas outlet end is as uniform as possible. The desirable distribution density range of the nozzles is 0.5 to 1 nozzle / cm 2 . The nozzle-to-nozzle spacing (gap) is made larger than the diameter of the fine bubbles generated from the nozzle outlet, and its desirable range is about 1.5 to 3 times the diameter of the fine bubbles. A desirable range of the embedded depth of the nozzle in the porous brick is 5 to 10 mm. The embedding of the nozzle into the porous brick may be carried out by a usual method by perforating the porous brick, a fire resistant adhesive, or the like.

【0020】ポーラス煉瓦の材質にはアルミナ、アルミ
ナグラファイトなどを用い、気孔率の範囲は20〜60
%とするのが望ましい。耐火物塗料の材質はSiO2−Al2O
3 などを用いることができ、望ましい塗布厚さの範囲は
2〜5mmである。
Alumina, alumina graphite and the like are used as the material of the porous brick, and the porosity range is 20 to 60.
It is desirable to set it as%. The refractory paint material is SiO 2 -Al 2 O
3 or the like can be used, and a desirable coating thickness range is 2 to 5 mm.

【0021】微細気泡発生用Arガス全流量の望ましい
範囲は2〜5Nm3 /min、還流用Arガス流量は同
じく1〜1.5Nm3 /minである。これらのガスに
は、Ar以外にN2 などの不活性ガスを用いることがで
きる。
A desirable range of the total flow rate of Ar gas for generating fine bubbles is 2 to 5 Nm 3 / min, and a flow rate of Ar gas for reflux is also 1 to 1.5 Nm 3 / min. In addition to Ar, an inert gas such as N 2 can be used as these gases.

【0022】本発明方法における微細気泡の発生機構を
図2により説明する。ポーラス煉瓦5から微細気泡発生
用Arガス6を吹き込むと、ポーラス煉瓦5の溶鋼3と
接する表面には耐火物塗料7が塗布されているため、こ
のガスはノズル8の出口のみから溶鋼3内に出てくる。
ノズル8の材質はセラミックスであるので、溶鋼との間
の濡れ性が良好である。このため、ノズル8により溶鋼
3中へ微細気泡9を安定的に発生させることができる。
しかし、ノズル8の外径が2mmを超えると、直径が5
mm以下の微細気泡を得るのが困難である。すなわち、
溶鋼とノズルとの濡れ性が悪いのでノズル外径の増加に
従って発生する気泡径が大きくなる。また、ノズルとノ
ズルとの間隙がノズル出口から生成した微細気泡の直径
以下になると、隣接して発生する気泡が合体して望まし
い大きさの微細気泡が得られなくなる。
The generation mechanism of fine bubbles in the method of the present invention will be described with reference to FIG. When Ar gas 6 for generating fine bubbles is blown from the porous brick 5, since the refractory paint 7 is applied to the surface of the porous brick 5 which is in contact with the molten steel 3, this gas enters the molten steel 3 only from the outlet of the nozzle 8. Come out.
Since the nozzle 8 is made of ceramics, it has good wettability with molten steel. Therefore, the fine bubbles 9 can be stably generated in the molten steel 3 by the nozzle 8.
However, when the outer diameter of the nozzle 8 exceeds 2 mm, the diameter becomes 5
It is difficult to obtain fine bubbles of mm or less. That is,
Since the wettability between the molten steel and the nozzle is poor, the bubble diameter generated increases as the nozzle outer diameter increases. Further, when the gap between the nozzles becomes equal to or smaller than the diameter of the fine bubbles generated from the nozzle outlet, the bubbles generated adjacent to each other coalesce, and it becomes impossible to obtain the fine bubbles of a desired size.

【0023】そして、この発生装置の位置は、前述のよ
うに上昇管と下降管との位置を考慮した上で取鍋底部に
設けるので、微細気泡は溶鋼内の広い範囲に拡散せず、
循環流によって乱されることが少なくなるから、発生し
た気泡が互いに衝突、凝集して大きな気泡になる確率が
低くなる。この結果、微細気泡の微小介在物捕捉と分離
の効果を高く維持することができるのである。
Since the position of this generator is provided at the bottom of the ladle in consideration of the positions of the ascending pipe and the descending pipe as described above, the fine bubbles do not diffuse into a wide range in the molten steel,
Since it is less likely to be disturbed by the circulation flow, it is less likely that the generated bubbles will collide with each other and aggregate to form a large bubble. As a result, the effect of capturing and separating fine inclusions of fine bubbles can be maintained high.

【0024】本発明者は、RHにおける溶鋼中介在物の
除去効果に及ぼす微細気泡発生装置の設置位置の影響を
明らかにするために、RHの水モデル装置とポーラス煉
瓦のみからなる微細気泡発生装置とを用いて実験を行っ
た。
In order to clarify the influence of the installation position of the fine bubble generator on the removal effect of inclusions in molten steel in RH, the inventor of the present invention has a fine bubble generator including only a water model device of RH and a porous brick. Experiments were performed using and.

【0025】図3、図4および図5(a) は、この水モデ
ル装置の構成を示す縦断面図であり、基本的な構成は図
1に示す装置と同じである。図5(b) は図5(a) の線A
Aにおける水平断面図および平面図である。図3〜図
5において、符号14は水15の容器、16はモデル真
空槽、17は上昇管、18は下降管、19は還流用Ar
ガス、20はポリスチレン粒子、21はパラフィン液
体、22および22′はポーラス煉瓦、23は微細気泡
および24は微細気泡発生用Arガスである。
FIGS. 3, 4 and 5 (a) are longitudinal sectional views showing the structure of this water model device, and the basic structure is the same as that of the device shown in FIG. Figure 5 (b) is line A in Figure 5 (a).
It is a horizontal sectional view and a top view in A. 3 to 5, reference numeral 14 is a container for water 15, 16 is a model vacuum tank, 17 is an ascending tube, 18 is a descending tube, and 19 is Ar for reflux.
Gas is 20, polystyrene particles, 21 is paraffin liquid, 22 and 22 'are porous bricks, 23 is fine bubbles and 24 is Ar gas for generating fine bubbles.

【0026】水の容器14の内径は300mm、高さは
400mmである。微細気泡発生には気孔率が30%の
ポーラス煉瓦22および22′を介して気泡発生用Ar
ガス24を吹込み、代替介在物として平均直径が10μ
mのポリスチレン粒子20を用いた。
The water container 14 has an inner diameter of 300 mm and a height of 400 mm. For generating fine bubbles, Ar for bubble generation is generated through porous bricks 22 and 22 'having a porosity of 30%.
Gas 24 is blown in and the average diameter is 10μ as an alternative inclusion.
m polystyrene particles 20 were used.

【0027】モデル真空槽16内を真空にして、水15
の一部を容器14から槽内まで吸い上げてから、上昇管
17側から環流用Arガス19を吹込んで水15を循環
させた。このとき、モデル真空槽16中の水表面にパラ
フィン液体21を添加し、浮上したポリスチレン粒子2
0を代替スラグとしてのパラフィン液体21の中に吸収
させた。
The model vacuum tank 16 is evacuated and water 15
After sucking a part of the above from the container 14 into the tank, the circulating Ar gas 19 was blown from the side of the rising pipe 17 to circulate the water 15. At this time, the paraffin liquid 21 was added to the water surface in the model vacuum tank 16 to float the polystyrene particles 2
0 was absorbed in paraffin liquid 21 as an alternative slag.

【0028】図3に示す条件(ケース1)は、微細気泡
発生装置を設けない場合、図4に示す条件(ケース2)
は、二つの円形ポ−ラス煉瓦22をそれぞれモデル真空
槽16の上昇管17と下降管18の直下に対応する容器
14の底部に設け、ポーラス煉瓦22の直径を10〜8
0mmの範囲で変化させた場合、図5に示す条件(ケー
ス3)は、長方形のポーラス煉瓦22′を図示するよう
に上昇管17と下降管18の中間位置に対応する容器1
4の底部に設けた場合である。図5に示す長方形のポー
ラス煉瓦22′の長さは容器14の内径の2/3、幅は
ポーラス煉瓦22′の面積がケース2の二つの円形ポー
ラス煉瓦22の合計ガス発生面積に等しくなるように変
化させた。
The condition (case 1) shown in FIG. 3 is the condition (case 2) shown in FIG. 4 when the fine bubble generator is not provided.
Is provided with two circular porous bricks 22 at the bottom of the container 14 corresponding directly below the ascending pipe 17 and the descending pipe 18 of the model vacuum tank 16, and the diameter of the porous brick 22 is 10-8.
When changed in the range of 0 mm, the condition (case 3) shown in FIG. 5 is that the container 1 corresponding to the intermediate position between the ascending pipe 17 and the descending pipe 18 as shown in FIG.
This is the case where it is provided at the bottom of No. 4. The length of the rectangular porous brick 22 'shown in FIG. 5 is 2/3 of the inner diameter of the container 14, and the width is such that the area of the porous brick 22' is equal to the total gas generation area of the two circular porous bricks 22 of the case 2. Changed to.

【0029】微細気泡発生用Arガスの流量は0.01
〜0.1Nm3 /minの範囲で、ポ−ラス煉瓦のガス
発生面積は78〜5026mm2 の範囲で、それぞれ変
化させた。
The flow rate of Ar gas for generating fine bubbles is 0.01
The gas generation area of the porous brick was changed in the range of ˜0.1 Nm 3 / min in the range of 78 to 5026 mm 2 .

【0030】一定時間の間隔で容器14内から試料を採
取し、単位時間当たりのポリスチレン粒子の個数を数え
て個数濃度を計算し、試料採取時間での粒子の個数濃度
と初期の個数濃度との比を用いて、ポリスチレン粒子の
除去効果を評価した。この結果の例を図6に示す。
A sample is taken from the container 14 at regular time intervals, the number concentration is calculated by counting the number of polystyrene particles per unit time, and the number concentration of the particles at the sampling time and the initial number concentration are calculated. The ratio was used to evaluate the effect of removing polystyrene particles. An example of this result is shown in FIG.

【0031】図6は、水モデル実験における上記個数濃
度比と処理時間との関係の例を示す図である。これは、
ポ−ラス煉瓦のガス発生面積が1000m2 、微細気泡
発生用Arガス流量が0.05Nm3 /minの場合で
ある。図示するように、粒子の除去効果は、ケ−ス3の
場合が最も良く、次いでケ−ス2、ケ−ス1の順に悪化
し、この傾向は図示しない、いずれの実験条件でも認め
られた。これは、ケース3の場合では発生した微細気泡
間の凝集が少なく、微細気泡による介在物の捕捉効率が
高いためである。
FIG. 6 is a diagram showing an example of the relationship between the number concentration ratio and the treatment time in the water model experiment. this is,
This is the case where the gas generation area of the porous brick is 1000 m 2 and the flow rate of the Ar gas for generating fine bubbles is 0.05 Nm 3 / min. As shown in the figure, the effect of removing particles is best in case 3, then worse in order of case 2 and case 1, and this tendency was observed under any experimental condition not shown. . This is because in case 3, there is less agglomeration between the generated fine bubbles and the efficiency of trapping inclusions by the fine bubbles is high.

【0032】以上の結果から溶鋼の場合でも、微細気泡
の発生装置を上昇管と下降管の中間位置に対応する取鍋
底部に設けることが最も良いことになる。
From the above results, even in the case of molten steel, it is best to provide the device for generating fine bubbles at the bottom of the ladle corresponding to the intermediate position between the ascending pipe and the descending pipe.

【0033】しかし本発明者は、溶鋼を対象とする場合
に微細気泡の発生装置としてポーラス煉瓦を用いると、
ポーラス煉瓦の表面の気孔から生成した気泡が互いに合
体して大気泡になりやすく、微細気泡を溶鋼中で維持す
ることができないことを見い出した。図7はこの現象を
模式的に説明する図である。
However, when the present inventor uses a porous brick as a device for generating fine bubbles when targeting molten steel,
It was found that bubbles generated from the pores on the surface of porous bricks tend to coalesce with each other to form large bubbles, and it is impossible to maintain fine bubbles in molten steel. FIG. 7 is a diagram schematically illustrating this phenomenon.

【0034】これは、ポーラス煉瓦と溶鋼との間の濡れ
性が非常に悪いため、図7に示すように、ポーラス煉瓦
5の表面の気孔23から生成した気泡24は先ず表面に
沿って成長し、互いに合体して大気泡25になりやすい
からである。
Since the wettability between the porous brick and the molten steel is very poor, the bubbles 24 generated from the pores 23 on the surface of the porous brick 5 first grow along the surface as shown in FIG. This is because the large bubbles 25 tend to coalesce with each other.

【0035】一方、本発明方法に用いる図1および図2
に示した微細気泡の発生装置では、ガスは溶鋼内に突出
したセラミック細管のノズル出口からのみ発生し、セラ
ミックノズルと溶鋼の濡れ性が良好であるために、気泡
は横方向に拡がることなくノズル出口から溶鋼内に離れ
る。さらに、複数個のノズルを設置しても、ノズルとノ
ズルとの間隔がノズル出口から生成した微細気泡の直径
よりも大きいので、図7に示すポーラス煉瓦を使う場合
のような気泡間の合体が生じず、発生する気泡が安定し
て微細になるのである。
On the other hand, FIGS. 1 and 2 used in the method of the present invention.
In the device for generating fine bubbles shown in Fig. 3, gas is generated only from the nozzle outlet of the ceramic thin tube protruding into the molten steel, and because the wettability between the ceramic nozzle and molten steel is good, the bubbles do not spread in the lateral direction. Leave the molten steel from the outlet. Furthermore, even if a plurality of nozzles are installed, the distance between the nozzles is larger than the diameter of the fine bubbles generated from the nozzle outlets, so that the coalescence of bubbles as in the case of using the porous brick shown in FIG. It does not occur, and the generated bubbles are stable and fine.

【0036】微細気泡を発生させる目的のみからはノズ
ルだけを用いてもよいが、本発明方法に用いる微細気泡
発生装置のようにポーラス煉瓦と組み合わせることによ
り、ノズルからの溶鋼の漏れを防止するための吹込みガ
ス圧や流量の制御などに要する複雑な装置類を備える必
要がなくなる。
Although only the nozzle may be used only for the purpose of generating fine bubbles, in order to prevent molten steel from leaking from the nozzle by combining with a porous brick like the fine bubble generator used in the method of the present invention. It is not necessary to provide complicated devices required for controlling the gas pressure and flow rate of the gas.

【0037】[0037]

【実施例】 (本発明例)図1および図2に示す装置構成の100ト
ンRHを用いて、下記条件で高清浄鋼を製造する試験を
実施した。
EXAMPLES (Invention Example) Using 100 ton RH having the apparatus configuration shown in FIGS. 1 and 2, a test for producing highly clean steel was conducted under the following conditions.

【0038】鋼種:Alキルド鋼 溶鋼温度:1650〜1700℃ ポーラス煉瓦:長さ2000mm、幅50mm ポーラス煉瓦材質:ハイアルミナ(気孔率:40%) ノズル材質:アルミナ(外径1.5mm、内径1mm) ノズル分布密度:1個/cm2 ノズルの溶鋼内への突出高さ:20mm ノズルのポーラス煉瓦への埋込深さ:8mm 浸漬槽内圧力:100〜1Torr 微細気泡発生用Arガス全流量:1Nm3 /min 還流用Arガス流量:1.2Nm3 /min 耐火物塗料材質:30%SiO2−70%Al2O3 耐火物塗料塗布厚さ:3mm (比較例1)ノズルおよび耐火物塗料を使用せず、その
他の条件は、本発明例1と同じとした。
Steel type: Al killed steel Molten steel temperature: 1650 to 1700 ° C. Porous brick: length 2000 mm, width 50 mm Porous brick material: high alumina (porosity: 40%) Nozzle material: alumina (outer diameter 1.5 mm, inner diameter 1 mm) ) Nozzle distribution density: 1 nozzle / cm 2 Projection height of molten steel into nozzle: 20 mm Nozzle embedded in porous brick: 8 mm Immersion tank pressure: 100 to 1 Torr Ar gas flow rate for fine bubble generation: 1 Nm 3 / min Refluxing Ar gas flow rate: 1.2 Nm 3 / min Refractory paint material: 30% SiO 2 -70% Al 2 O 3 refractory paint coating thickness: 3 mm (Comparative Example 1) Nozzle and refractory paint Was used, and the other conditions were the same as those of Example 1 of the present invention.

【0039】(比較例2)図9に示す従来の装置を使用
した。2個の円形のポーラスブラグの直径は、いずれも
360mmとし、微細気泡発生用Arガス全流量は本発
明例1および比較例1と同じである。
Comparative Example 2 The conventional apparatus shown in FIG. 9 was used. The diameter of each of the two circular porous plugs was 360 mm, and the total flow rate of the Ar gas for generating fine bubbles was the same as that of Example 1 of the present invention and Comparative Example 1.

【0040】前述のモデル実験と同様の評価方法で、上
記3種類の方法における介在物の除去速度を比較した。
結果を図8に示す。
The removal rates of inclusions in the above three types of methods were compared by the same evaluation method as in the model experiment described above.
The results are shown in Fig. 8.

【0041】図8に示すように、介在物の除去速度は本
発明例の場合が最も優れていることがわかる。
As shown in FIG. 8, it is understood that the removal rate of inclusions is most excellent in the case of the present invention.

【0042】[0042]

【発明の効果】本発明方法によれば、溶鋼中の介在物を
効率よく迅速に除去し、低コストで高清浄鋼を製造する
ことができる。
According to the method of the present invention, inclusions in molten steel can be efficiently and quickly removed, and highly clean steel can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための装置例(RH)を
示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing an apparatus example (RH) for carrying out the method of the present invention.

【図2】本発明方法を実施するための微細気泡発生装置
の縦断面図である。
FIG. 2 is a vertical cross-sectional view of a fine bubble generator for carrying out the method of the present invention.

【図3】水モデル実験(ケース1)に用いたRHの縦断
面図である。
FIG. 3 is a vertical cross-sectional view of RH used in a water model experiment (case 1).

【図4】水モデル実験(ケース2)に用いたRHの縦断
面図である。
FIG. 4 is a vertical cross-sectional view of RH used in a water model experiment (case 2).

【図5】水モデル実験(ケース3)に用いたRHを示す
図である。(a) は縦断面図、(b) は(a) の線A−Aにお
ける水平断面図および平面図である。
FIG. 5 is a diagram showing RH used in a water model experiment (case 3). (a) is a vertical sectional view, (b) is a horizontal sectional view and a plan view taken along line AA of (a).

【図6】水モデル実験の結果を示す図である。FIG. 6 is a diagram showing the results of a water model experiment.

【図7】微細気泡発生装置がポーラス煉瓦である場合
の、溶鋼中の大気泡の発生機構を説明する模式図であ
る。
FIG. 7 is a schematic diagram illustrating a mechanism of generating large bubbles in molten steel when the fine bubble generator is a porous brick.

【図8】実施例の介在物除去速度の比較を示す図であ
る。
FIG. 8 is a diagram showing a comparison of inclusion removal rates in Examples.

【図9】従来方法を示すRHの縦断面図である。FIG. 9 is a vertical cross-sectional view of RH showing a conventional method.

【符号の説明】[Explanation of symbols]

1,17 :上昇管、 2,19 :還流用Arガス、 3:溶
鋼、 4:取鍋、5, 22, 22′:ポーラス煉瓦、
6,24 :微細気泡発生用Arガス、7:耐火物塗料、
8:ノズル、9,23 :微細気泡、 10,10′:スラ
グ、11,18 :下降管、 12:真空槽、 13:取鍋
底部耐火物、14:容器、15:水、 16:モデル
真空槽、 20:ポリスチレン粒子、21:パラフィン液
体、 23:気孔、 24:気泡、 25:大気泡
1,17: Ascending pipe, 2,19: Ar gas for reflux, 3: Molten steel, 4: Ladle, 5, 22, 22 ': Porous brick,
6,24: Ar gas for generating fine bubbles, 7: Refractory paint,
8: Nozzle, 9,23: Micro bubbles, 10,10 ': Slag, 11,18: Downcomer, 12: Vacuum tank, 13: Ladle bottom refractory, 14: Container, 15: Water, 16: Model vacuum Tank, 20: polystyrene particles, 21: paraffin liquid, 23: pores, 24: bubbles, 25: large bubbles

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空脱ガス装置(RH)の上昇管と下降管
との中間位置に対応する取鍋の底部に、微細気泡の発生
装置を設け、この装置から循環中の溶鋼へ不活性ガスを
吹込むことを特徴とする介在物の少ない高清浄鋼の製造
方法。
1. A vacuum bubble degasser (RH) is provided with a device for generating fine bubbles at the bottom of a ladle corresponding to an intermediate position between an ascending pipe and a descending pipe, and an inert gas is supplied from this device to molten steel in circulation. A method for producing high-cleanliness steel with few inclusions, which comprises blowing air.
【請求項2】請求項1の微細気泡の発生装置として、外
径が2mm以下の複数のセラミックスノズルの一端をポ
ーラス煉瓦の中に埋め込み、他端を溶鋼の中へ突出さ
せ、かつ溶鋼に接触するポーラス煉瓦の表面に耐火物塗
料が塗布されている装置を用いて、循環中の溶鋼へ不活
性ガスを吹込むことを特徴とする介在物の少ない高清浄
鋼の製造方法。
2. A device for generating fine bubbles according to claim 1, wherein one end of a plurality of ceramics nozzles having an outer diameter of 2 mm or less is embedded in a porous brick, the other end is projected into molten steel and is in contact with molten steel. A method for producing highly clean steel with few inclusions, characterized in that an inert gas is blown into the circulating molten steel using an apparatus in which a refractory paint is applied to the surface of a porous brick.
JP6319689A 1994-12-22 1994-12-22 Production of highly cleaned steel with less inclusion Pending JPH08176647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6319689A JPH08176647A (en) 1994-12-22 1994-12-22 Production of highly cleaned steel with less inclusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6319689A JPH08176647A (en) 1994-12-22 1994-12-22 Production of highly cleaned steel with less inclusion

Publications (1)

Publication Number Publication Date
JPH08176647A true JPH08176647A (en) 1996-07-09

Family

ID=18113091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6319689A Pending JPH08176647A (en) 1994-12-22 1994-12-22 Production of highly cleaned steel with less inclusion

Country Status (1)

Country Link
JP (1) JPH08176647A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125785A1 (en) * 2006-04-25 2007-11-08 Enikolopov Institute Of Synthetic Polymeric Materials (Ispm) Of The Russian Academy Of Sciences Curable resin composition
CN107419064A (en) * 2017-08-08 2017-12-01 华北理工大学 Immersion jet dam ladle device and the method for improving RH molten steel internal circulating loads

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125785A1 (en) * 2006-04-25 2007-11-08 Enikolopov Institute Of Synthetic Polymeric Materials (Ispm) Of The Russian Academy Of Sciences Curable resin composition
CN107419064A (en) * 2017-08-08 2017-12-01 华北理工大学 Immersion jet dam ladle device and the method for improving RH molten steel internal circulating loads

Similar Documents

Publication Publication Date Title
JPH06341777A (en) Cooling method of high-temperature process gas
JP5630265B2 (en) Defoaming equipment for molten glass
JP2006035272A (en) Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
SE425257B (en) SET AND DEVICE FOR DEGRADING OF MOLD METAL
JPH08176647A (en) Production of highly cleaned steel with less inclusion
JPH0910900A (en) Method for highly purifying molten steel in tundish
JP5552838B2 (en) Manufacturing method of high clean steel
JP3654181B2 (en) Method for refining molten metal
JPH11171554A (en) Furnace material for reduced pressure defoaming device of molten glass and reduced pressure defoaming device
JP4048646B2 (en) Vacuum degassing method for molten glass and glass manufacturing apparatus by vacuum degassing
WO2023210201A1 (en) Tundish and continuous casting method using same
JP2915631B2 (en) Vacuum refining of molten steel in ladle
JP2003082411A (en) Device and method for refining molten metal, and small bubble generator
WO2023185874A1 (en) Method and apparatus for reducing fine inclusions in molten steel
JP4243711B2 (en) Crucible furnace
JP2003002629A (en) Method and apparatus for purifying fused silicon
JP3821109B2 (en) Method for refining molten metal
WO2024053290A1 (en) Tundish for continuous casting, continuous casting method for steel, and weir
JP2002205150A (en) Method for continuously casting steel
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
JPH0217733Y2 (en)
JP4000808B2 (en) Method for refining molten metal
JP2648769B2 (en) Vacuum refining method for molten steel
JPH08100210A (en) Generator of fine air bubble into molten steel
JP2022147875A (en) Gas injection jig for molten metal processing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080718

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090718