JP4243711B2 - Crucible furnace - Google Patents

Crucible furnace Download PDF

Info

Publication number
JP4243711B2
JP4243711B2 JP2002322873A JP2002322873A JP4243711B2 JP 4243711 B2 JP4243711 B2 JP 4243711B2 JP 2002322873 A JP2002322873 A JP 2002322873A JP 2002322873 A JP2002322873 A JP 2002322873A JP 4243711 B2 JP4243711 B2 JP 4243711B2
Authority
JP
Japan
Prior art keywords
molten metal
crucible
melting
gas
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002322873A
Other languages
Japanese (ja)
Other versions
JP2004154822A (en
Inventor
民雄 岡田
忠男 佐々木
智弘 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Crucible Co Ltd
Original Assignee
Nippon Crucible Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co Ltd filed Critical Nippon Crucible Co Ltd
Priority to JP2002322873A priority Critical patent/JP4243711B2/en
Publication of JP2004154822A publication Critical patent/JP2004154822A/en
Application granted granted Critical
Publication of JP4243711B2 publication Critical patent/JP4243711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、坩堝炉に関する。
【0002】
【従来の技術】
溶湯処理方法としては、アルゴン、窒素などの不活性ガスをランスパイプを通じて溶湯中に吹き込むことにより、水素ガスを拡散させると共に溶湯介在物を浮上分離させて除去する方法がある。また、不活性ガスを高速回転するインペラ(回転翼)から噴出させ、不活性ガスの気泡を微細化させて溶湯中に吹き込んで除去する回転脱ガス処理法がある。更に、ハロゲン化物など(主として六塩化エタン)、溶湯中で塩素ガスを放出する脱ガス用フラックスや、NaCl、KCl,NaF等を主成分とし少量のNaSiF6、NaSO4等が加えられた脱滓用フラックスを用いて除去する方法等が行われている。
【0003】
そして、かかる溶湯処理は、溶解後の溶湯を受けて保持する溶解保持部で溶湯中に不活性ガスを吹き込んだり、溶解と保持を兼ねる黒鉛坩堝炉内で数時間毎に断続的にフラックス処理を行ったり、回転脱ガス装置をセットして脱ガス処理を加えることにより行われている(例えば、特許公報1参照。)。
【0004】
なお、処理された溶湯は必要に応じて成分調整、鎮静、温度調整等の工程を経て鋳造される。
【0005】
【特許文献1】
特開平6−91350号公報(全頁、全図)
【0006】
【発明が解決しようとする課題】
しかし、ランスパイプを用いてガスを吹き込む方法では、微細化した溶湯処理ガスを広く均一に分散させる必要があるので、処理に時間がかかるという問題があった。また、回転脱ガス処理法では、インペラの高速回転により短時間で処理可能になるが、インペラを一方向に回転させることによる旋回流によっていわゆる溶湯の共回り現象が発生し、その結果、溶湯の回転流によって酸化物等の溶湯介在物の懸濁や容器の耐火壁の侵食を引き起こす等の問題があった。更に、フラックス処理による方法では、粒状フラックスを溶湯表面に散布した後、溶湯を攪拌具で攪拌して滓(ノロ)を分離させる必要があるので、高温下で有毒性の塩素ガスの発生を伴う好ましくない環境での作業が強いられるという問題があった。
【0007】
本発明は、微細化した処理ガスを溶湯中に短時間で均一に分散させることができ、しかも、溶湯の回転流を発生させず、フラックスも不要になって、処理の効率化を図ることができる坩堝炉を提供する。
【0008】
【課題を解決するための手段】
前記課題を解決するために、本発明の坩堝炉は、以下のような特徴を有する。
【0009】
溶解用坩堝と保持用坩堝とを備えた坩堝炉において、前記保持用坩堝内を仕切り壁で仕切ることにより、溶湯流路と溶湯汲み出し部とを形成し、前記溶湯流路は、前記溶解用坩堝で生成された溶湯を、上方から受湯して、下方に形成された連通口を介して前記溶湯汲み出し部に移流させるように構成されており、処理ガスの気泡を溶湯流に導入する処理ガス導入部を前記溶湯流路内の下流側に設けると共に、前記溶湯流路を流れる溶湯を濾過するフィルターを設け、前記フィルターは、前記処理ガス導入部の下方に設けられていることを特徴とする。
【0010】
前記フィルターは、筒状の成形体の下端側開口部にネットを張設して構成されており、係止鍔を前記保持用坩堝及び仕切り壁に係止させることにより、前記溶湯流路に取り付けられていることが好ましい。
【0011】
或いは、前記フィルターは、板状の成形体の下端側開口部にネットを張設して構成されており、前記仕切り壁に設けられたガイドによって上下動自在に配設されていることが好ましい。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
<実施形態1>
図1は溶湯処理装置Aを備えた坩堝炉(溶解保持炉)を示し、該坩堝炉は、アルミニウムインゴット、返り材等の溶解材料aの予熱タワー1と、該予熱タワー1の直下に設置された溶解用坩堝炉(黒鉛坩堝炉)2と、該溶解用坩堝炉2に並置した保持用坩堝炉(黒鉛坩堝炉)3とを主構成要素として備え、溶解用坩堝炉2から保持用坩堝炉3内への配湯を連続的に行い溶湯の汲み出しを保持用堝炉3側から行う構成になっている。
【0015】
また、溶湯処理装置Aは、後述のように溶湯流路と処理ガス導入部とを備えている。
【0016】
溶解用坩堝炉2は第1炉本体4と該炉本体4内に第1坩堝台5を介し設置された溶解用坩堝6を備え、該坩堝6の周囲には、第1炉本体4との間に第1周隙7が形成され、該周隙7は上記炉本体4の側壁下部に設置の燃焼ガス供給部(図示省略)から供給される燃焼ガスの上昇通路となる。
【0017】
保持用坩堝炉3は第2炉本体8と該炉本体内8に第2坩堝台9を介し設置された保持用坩堝10とを備え、該坩堝10の周囲には、第2周隙11が形成され、該周隙11は第2炉本体8の側壁下部に設置の燃焼ガス供給部(図示省略)から供給される燃焼ガスの上昇通路となり、その上端側は黒鉛坩堝10の押さえ蓋12により閉じられ、外気から遮断されている。坩堝台5,9は坩堝6,10の底部からの加熱を可能にするために、筒状にして側部に燃焼ガスの流通口5a,9aを備えていることが好ましい。
【0018】
炉本体8,9は断熱材、例えばセラミック系の断熱材で内張りが施されており、その境界部の側壁は共用され、共用側壁13に、第1と第2の周隙7,11を連通させるための連通部14が形成されている。
【0019】
溶解用坩堝6と保持用坩堝10とは、前者坩堝6の胴部に設けた溢流タイプの排出口15並びに該排出口15に接続する、例えば樋形の移送部16を介し接続され、溶湯17を前者坩堝6内から排出口15を溢流させながら移送部16を経て後者坩堝10内に連続的に移送できる構成になっている。溶湯17の連続的移送は、坩堝6,10内の液面のヘッド差を利用して行われる。溶解用坩堝6の胴部に対する排出口15の形成位置は、該坩堝6内に常時滞留させる溶湯17の液量ひいては液面高さを考慮し、選択決定すればよい。また、溶解用坩堝6では材料が底部に滞留した溶湯17によって連続的に溶かされるので、材料の融点に近い温度、一般的には600〜650℃の低温に維持できることになり、水素ガスの吸収を抑制することができ、また、燃焼ガスが直接地金に当たるのが回避されて酸化物の生成を抑制でき、更に、黒鉛坩堝の材質がアルミニウム溶湯と反応しないことにより溶湯介在物の混入を抑制できる等溶湯の品質向上が図れる。
【0020】
移送部16は保持用坩堝10の液面上方位置まで延設されている。移送部16は連通部14内を流通する燃焼排ガス中に晒され、燃焼排ガスによる加熱を受け、移送中に於ける溶湯の温度降下を防止できる構成になっている。
【0021】
保持用坩堝10内は耐火仕切り壁18で仕切られて溶湯流路19と汲み出し部20とが形成され、耐火仕切り壁18の下端と保持用坩堝10の底部との間には連通口21が形成されている。溶湯流路19は、溶解坩堝6からの溶湯17を受湯し、該溶湯17を上から下に向けて流して連通口21を通して汲み出し部20に移流させる構成になっている。
【0022】
溶湯流路19には処理ガス供給部(図示省略)に接続された処理ガス管32が配管され、処理ガス管32の下端(溶湯流路19の下流側)には処理ガス導入部33が設けられている。該処理ガス導入部33は、先端が閉塞した円筒形のガス導入体33aの開口側(基端側)を処理ガス管32の下端に接続して形成され、ガス導入体33aは溶湯流に逆らって気泡を吹き出させるために通気量が0,10l/min以上のポーラスプラグ等の多孔質セラミックス材で成形されている。
【0023】
処理ガスとしては、アルゴン、窒素ガス等の不活性ガスの他に、塩素ガス等の活性ガスや、活性ガスと不活性ガスとの混合ガスを採用することができる。
【0024】
溶湯流路19内の受湯溶湯及び溶湯流路19内で各種の溶湯処理を経て、連通孔21を通じて汲み出し部20に移湯した保持用坩堝10内の溶湯は、保持用坩堝炉3に設置された燃焼ガスによる加熱を受けて所定の鋳造温度まで上昇し、鋳造に使用される。
【0025】
坩堝6,10からは亀裂等を通じ溶湯が漏れることがあり、漏出溶湯を炉外に排出するために、例えば共用側壁13の下端部と第2炉本体8の側壁下端部とに、ドレン排出口22,23が形成されている。
【0026】
溶解用坩堝2の炉本体4は無蓋有底筒形であり、その上端には筒形の予熱タワー1が2段重ね状態且つ同心状に設置され、該タワー1の下端は溶解用坩堝6の上端の上方で、該坩堝6内に向けて開口し、該タワー1を通じアルミニウムインゴット、返り材等の溶解材料aを坩堝6内に投入できる構成になっている。
【0027】
第1炉本体4内の第1周隙7の上端側は予熱タワー1内に、溶解用坩堝6の上端と予熱タワー1の下端との間の環状空隙24を介し連通され、燃焼排ガスを予熱タワー1内に予熱源として供給できる構成になっている。
【0028】
予熱タワー1には、胴部と上端とに溶解材料aの投入口25,26があり、該投入口25,26にはそれぞれ開閉蓋27,28が備えられ、上端の開閉蓋28には、燃焼排ガスの排気口29が設けられている。排出口29の形成は、燃焼排ガスをドラフト効果により周隙7内から環状空隙24を経て予熱タワー1内に上昇気流として導くために必要である。開閉蓋25,26の開閉は駆動装置を備えた自動開閉機構(図示省略)により行うことができる。
【0029】
溶解用坩堝6の取り替えや該坩堝6内の残湯汲み出し等を行うために予熱タワー1は、円筒形の鉄皮ケースの内側を断熱耐火材で内張りして形成され、図1に示す2段重ねの位置より適宜移動させることができる構成になっている。予熱タワー1は台車30で支持され、該台車30は第1炉本体4に支持固定されたガイドレール31上を走行可能であり、該レール31上での台車30の走行により、予熱タワー1を第1炉本体4との2段重ねの位置から2段重ねが解かれる位置まで、移動できる構成になっている。
【0030】
溶解保持炉の平常運転時は、第1炉本体4の底部からその内部に供給された燃焼ガスは溶解用坩堝6を加熱しつつ第1周隙7内を上昇し燃焼排ガスとなって第1周隙7上端から環状空隙24を経て予熱タワー1内に入り、予熱タワー1内の溶解材料aと熱交換し予熱源として有効利用され、上端開閉蓋28の排気口29を経て炉外に排出される。
【0031】
一方、第2炉本体8の底部からその内部に供給された燃焼ガスは保持用坩堝10を加熱しつつ第2周隙内を上昇し燃焼排ガスとなって第2周隙11の上端部から連通部14を経て第1周隙7内に入り先の燃焼排ガスと合流し、この燃焼排ガスもまた予熱タワー1内の溶解材料aの予熱源として有効利用される。また上記燃焼排ガスは連通部14の通過中に移送部16ひいては移送途中の溶湯を加熱し、該溶湯の温度降下を防止するための加熱源としても有効利用される。
【0032】
溶解材料aは、溶解用坩堝6の溶湯17内に浸漬されている下端部のものから順に溶解され、溶解が進むにつれて自重降下し溶湯内に浸漬して行き、溶湯内には溶解材料aの一部が固体アルミとして常に存在する。
【0033】
溶解用坩堝6内の溶湯17は、溶解材料aの溶解量に見合う量がヘッド差によって排出口15を溢流しつつ移送部16を経て保持用坩堝10の溶湯流路19内に連続的に移送され、連続的配湯が可能になる。また溢流による連続的配湯であるので溶解用坩堝6内は、常に一定量の溶湯17で満たされる。
【0034】
上述のように溶湯流路19と処理ガス導入部33とを備えた溶湯処理装置Aでは、以下のようにして溶湯処理が行われる。
【0035】
溶解用坩堝6から移送部16を通って溶湯流路19に流入する溶湯17は、溶湯流路19を上から下方に向けて流れた後、連通口21を通って汲み出し部20に流入する。一方、溶湯流路19の下流側に位置する処理ガス導入部33のガス導入体33aから噴出する処理ガスの気泡は、自身の浮力によって溶湯流路19の溶湯の流れに逆らって上昇し、溶湯流の衝撃を受けながら微細化されることによって溶湯と処理ガスとのミキシングが行われ、処理ガスの微細気泡と溶湯とが均一に混ざり合うことによって水素ガスが拡散して除去され、溶湯介在物を浮上分離させる。また、かかる溶湯処理は連続して流れる溶湯流の中で行われるので、溶湯の連続処理が可能となって処理効率を向上させることができると共に、後記するように処理ガスで処理された清浄な溶湯を、汲み出し部20に連続供給するので、次の鋳造作業を中断することなく連続操業を行うことができる。また、溶解用及び保持用坩堝6,10は黒鉛坩堝であるので、低温溶解によって含有水素量を低値にでき、溶湯処理効率が更に向上する。なお、処理ガスで処理された清浄な溶湯は、連通口21を通って汲み出し部20に流れ込む。
【0036】
溶湯処理効果は、溶湯流路への溶湯供給速度、処理ガスの供給量等によって変化するが、処理ガス管32にガス圧力計を取り付け、ガス圧力調整器やガス流量調節器で調整できる。また、溶湯流路での溶湯流の流速は、例えば溶湯流路の横断面積や連通口の開口面積を変更することにより調整できる。
【0037】
なお、溶湯流路での溶湯の流れが止まった場合でも、ガス導入体33aから処理ガスを常に吹き出すようにしてガス導入体33aの目詰まりを防止する。
【0038】
また、図2(b)のように、溶湯処理装置Aの溶湯流路19のうち処理ガス導入部33の下方には、溶湯を濾過するための網状のフィルターFを設けるようにしても良い。
【0039】
溶解後の溶湯の中に酸化物等の介在物が多い場合、水素ガスは溶湯処理ガスにより十分に除去されるものの、酸化物等の溶湯介在物は溶湯処理ガスのみでは十分に除去できないことがあるので、かかる場合にはフィルターFを設けるのは有効である。
【0040】
溶湯介在物は被溶解材の表面状態、大きさ、汚れや油の付き具合、返り材、溶解時の酸化度合いにより大きく異なり、溶湯介在物量の簡易的評価法としてはKモールド法が用いられるが、K値(K10値)が10以上もあるような溶湯介在物量が多い場合、フィルターで溶湯を濾過することにより溶湯処理ガスでは処理しきれない溶湯介在物を除去でき、K値を大幅に低下させることができる。
【0041】
該フィルターFは耐火繊維で形成された筒状の成形体F1の下端側の開口部にネットF2を張設して成る笊タイプのものであり、ネット材としては、ガラス質、シリカ質、炭化珪素質、ジルコン質、ジルコニア質等を採用でき、網目開口の一辺のサイズは1〜5mmが好ましい。フィルターFには係止鍔F3が形成され、該係止鍔F3を保持用坩堝10及び耐火仕切り壁18の係止してフィルターFが溶湯流路19に取り付けられる。なお、フィルターFのネットF2の位置は、処理ガス導入部33の上方であっても良い。
【0042】
図3は、移送部16から保持用坩堝10内に流入する溶湯の受湯区域を囲むように耐火仕切り壁18を配設した例を示している。
【0043】
図4は笊タイプのフィルターFを他の形態の保持用坩堝10に配設した例を示している。
【0044】
図5は耐火繊維で形成された板状の成形体F1の下端側の開口部にネットF2を張設したラケットタイプのフィルターFを示し、該フィルターFは耐火仕切り壁18に設けられたガイド18aによって上下動自在に配設され、上方に引き抜いて交換可能できてフィルターFの維持管理が容易になっている。
<実施形態2>
図6のように反射タイプの直火焚式溶解兼保持炉では溶湯の溶解と保持を行う溶解保持室10Aを備え、該溶解保持兼用室10Aに溶湯処理装置Aが設けられている。溶解した溶湯は斜めの炉床34を流れて溶解保持室10Aに流入するようになっている。溶解保持室の底面からは耐火仕切り壁18が立設されて溶解保持室10A内に溶湯流路19が形成され、耐火垂れ壁35によって汲み出し部20が形成されている。溶湯流路19の下流側には処理ガス導入部33が設けられている。
【0045】
なお、図中の符号36は材料投入溶解室であって、バーナー37の炎が材料に直接当たって加熱し、また、溶解保持室10Aの上部に設けられたバーナー38の炎を溶解保持室10A内の溶湯の湯面に直接当てて該溶湯を必要温度にまで上昇させる。
【0046】
そして、溶解した溶湯は耐火仕切り壁18をオーバフローして溶湯流路19に入った後、耐火垂れ壁35の下方の連通口21を通って汲み出し部20に流入し、上述のように溶湯流路19での溶湯の流れと処理ガスの気泡の浮力を利用して溶湯処理が行われる。
【0047】
なお、耐火仕切り壁18は、溶解保持室17の維持管理を考慮して溶解保持室17に着脱自在に設けるのが好ましい。
【0048】
以上のように本発明の溶湯処理装置Aは、清浄化された溶湯を速やかに鋳造工程に移すための汲み出し部20を有する保持用坩堝炉10や溶解保持室10Aの一部に設けるのが望ましい。また、本発明の溶湯処理方法及びその装置は、種々の溶解保持炉に適用することができる。
【0049】
次に、図1及び図2に示す溶湯処理装置Aを備えた坩堝炉による溶湯処理(実施例)と、上述したフラックス処理と回転脱ガス処理の両方を実施した坩堝炉による溶湯処理(比較例)とを比較した。
(1)実施例の概要は、次の通りである。
【0050】

Figure 0004243711
(2)比較例の概要は、次の通りである。
【0051】
可傾式坩堝で溶解し、定置式坩堝で保持して溶湯処理を行った。
【0052】
保持坩堝の容量 350kg/ch
保持温度 740℃
処理 NaCl系の脱滓用フラックスを添加して溶湯を約2分間充分に攪拌して除滓した後、回転脱ガス装置をセットしてアルゴンガスを約5分間吹き込み処理した。
(3)処理の結果を表1に示す。図7に示すように含有水素量は溶解温度が高くなるに従って多くなるが、実施例では黒鉛坩堝炉での低温溶解によって含有水素量は低値となり、更に溶湯処理装置Aで処理することにより比較例(従来法)に較べて同等若しくはそれ以上の効果があることが判明した。すなわち、水素ガス量(ml/100g)および溶湯介在物量(K10値)を溶湯処理の前後で比較すると、実施例によれば、水素ガス量は0.23から0.13に低減し、溶湯介在物量は1.4から0.4に低減し、従来の回転脱ガス装置による溶湯処理と同等又はそれ以上の効果があることが判明した。
【0053】
【表1】
Figure 0004243711
【0054】
【発明の効果】
本発明によれば、溶湯の自然な流れと処理ガスの浮力とを利用して溶湯処理を行うので、強制的に溶湯の回転流を発生させなくても短時間で効率的な処理ができ、また、連続的な処理が可能になる。更に、インペラ回転部等の駆動部が不要であるので、取扱が容易になる。
【図面の簡単な説明】
【図1】本発明の坩堝炉の実施形態を示す断面図である。
【図2】(a)は本発明の溶湯処理装置の実施形態の斜視図、(b)はフィルターを有する溶湯処理装置の実施形態の断面図である。
【図3】(a)は本発明の溶湯処理装置の実施形態を示す断面図、(b)は同実施形態の平面図である。
【図4】(a)は本発明の溶湯処理装置の実施形態を示す断面図、(b)は同実施形態の平面図である。
【図5】本発明の溶湯処理装置の実施形態を示す断面図である。
【図6】本発明の溶解保持室を備えた坩堝炉の実施形態を示す断面図である。
【図7】水素溶解量と溶解温度との関係を示す図である。
【符号の説明】
10 保持用坩堝
17 溶湯
18 耐火仕切り壁
19 溶湯流路
21 連通口
33 処理ガス導入部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crucible furnace.
[0002]
[Prior art]
As a molten metal treatment method, there is a method in which an inert gas such as argon or nitrogen is blown into a molten metal through a lance pipe to diffuse hydrogen gas and float and separate molten inclusions. Further, there is a rotary degassing method in which an inert gas is ejected from an impeller (rotary blade) that rotates at high speed, and bubbles of the inert gas are refined and blown into a molten metal to be removed. Furthermore, halides (mainly ethane hexachloride), degassing fluxes that release chlorine gas in the molten metal, and denitrification with a small amount of NaSiF 6 , NaSO 4, etc. mainly containing NaCl, KCl, NaF, etc. For example, a method of removing using a magnetic flux is performed.
[0003]
Such molten metal treatment is performed by injecting an inert gas into the molten metal at the melting and holding unit that receives and holds the molten metal after melting, or intermittently performs flux treatment every few hours in a graphite crucible furnace that also serves as melting and holding. Or by setting a rotary degassing device and applying degassing treatment (see, for example, Patent Publication 1).
[0004]
In addition, the processed molten metal is cast through processes such as component adjustment, sedation, and temperature adjustment as necessary.
[0005]
[Patent Document 1]
JP-A-6-91350 (all pages, all figures)
[0006]
[Problems to be solved by the invention]
However, in the method of blowing gas using a lance pipe, it is necessary to disperse the refined molten metal processing gas widely and uniformly. In addition, in the rotary degassing method, the impeller can be processed in a short time due to the high-speed rotation of the impeller, but a so-called co-rotation phenomenon of the molten metal occurs due to the swirling flow caused by rotating the impeller in one direction. Rotating flow has problems such as suspension of molten inclusions such as oxides and erosion of the fire wall of the container. Furthermore, in the method using the flux treatment, it is necessary to separate the particulate flux on the surface of the molten metal, and then to stir the molten metal with a stirrer to separate the residue, which is accompanied by generation of toxic chlorine gas at high temperatures. There was a problem that work in an unfavorable environment was forced.
[0007]
The present invention can uniformly disperse the refined processing gas in the molten metal in a short time, and does not generate a rotating flow of the molten metal. A crucible furnace is provided.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the crucible furnace of the present invention has the following characteristics.
[0009]
In a crucible furnace provided with a melting crucible and a holding crucible, a molten metal flow path and a molten metal pumping portion are formed by partitioning the holding crucible with a partition wall, and the molten metal flow path is formed by the melting crucible The processing gas is configured to receive the molten metal generated from above and transfer it to the molten metal pumping section through a communication port formed at the bottom, and introduce bubbles of the processing gas into the molten metal flow. An introduction part is provided on the downstream side in the molten metal flow path, and a filter for filtering the molten metal flowing through the molten metal flow path is provided, and the filter is provided below the processing gas introduction part. .
[0010]
The filter is configured by stretching a net at a lower end opening of a cylindrical molded body, and is attached to the molten metal flow path by locking a locking rod to the holding crucible and the partition wall. It is preferable that
[0011]
Alternatively, it is preferable that the filter is configured by stretching a net at a lower end side opening of a plate-shaped molded body, and is arranged so as to be movable up and down by a guide provided on the partition wall.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<Embodiment 1>
FIG. 1 shows a crucible furnace (melting and holding furnace) equipped with a molten metal processing apparatus A. The crucible furnace is installed immediately below the preheating tower 1 of a melting material a such as an aluminum ingot and a return material, and the preheating tower 1. A melting crucible furnace (graphite crucible furnace) 2 and a holding crucible furnace (graphite crucible furnace) 3 juxtaposed to the melting crucible furnace 2 are provided as main components, and the melting crucible furnace 2 is held from the melting crucible furnace 2. In this configuration, the hot water is continuously distributed into the interior 3 and the molten metal is pumped out from the holding crucible furnace 3 side.
[0015]
Moreover, the molten metal processing apparatus A is provided with the molten metal flow path and the process gas introducing | transducing part so that it may mention later.
[0016]
The melting crucible furnace 2 includes a first furnace body 4 and a melting crucible 6 installed in the furnace body 4 via a first crucible base 5, and around the crucible 6, A first circumferential space 7 is formed therebetween, and the circumferential space 7 serves as a rising passage for the combustion gas supplied from a combustion gas supply unit (not shown) installed in the lower portion of the side wall of the furnace body 4.
[0017]
The holding crucible furnace 3 includes a second furnace body 8 and a holding crucible 10 installed in the furnace body 8 via a second crucible base 9, and a second circumferential space 11 is formed around the crucible 10. The peripheral space 11 is formed as a combustion gas ascending passage supplied from a combustion gas supply unit (not shown) installed in the lower portion of the side wall of the second furnace body 8, and the upper end side thereof is formed by a holding lid 12 of the graphite crucible 10. Closed and blocked from outside air. In order to enable heating from the bottom of the crucibles 6, 10, the crucible bases 5, 9 are preferably cylindrical and provided with combustion gas circulation ports 5 a, 9 a on the sides.
[0018]
The furnace bodies 8 and 9 are lined with a heat insulating material, for example, a ceramic heat insulating material, and the side wall of the boundary portion is shared, and the first and second peripheral spaces 7 and 11 are communicated with the common side wall 13. The communication part 14 for making it form is formed.
[0019]
The melting crucible 6 and the holding crucible 10 are connected via an overflow-type discharge port 15 provided in the body of the former crucible 6 and, for example, a bowl-shaped transfer unit 16 connected to the discharge port 15. 17 can be continuously transferred from the former crucible 6 into the latter crucible 10 through the transfer section 16 while overflowing the discharge port 15. The continuous transfer of the molten metal 17 is performed by utilizing the head difference between the liquid levels in the crucibles 6 and 10. The formation position of the discharge port 15 with respect to the body portion of the melting crucible 6 may be selected and determined in consideration of the amount of the molten metal 17 that stays in the crucible 6 and the liquid level. Further, in the melting crucible 6, since the material is continuously melted by the molten metal 17 staying at the bottom, it can be maintained at a temperature close to the melting point of the material, generally 600 to 650 ° C., and absorption of hydrogen gas In addition, it is possible to prevent the combustion gas from hitting the metal directly, and to suppress the formation of oxides. Furthermore, the material of the graphite crucible does not react with the molten aluminum, thereby suppressing the inclusion of molten inclusions. It is possible to improve the quality of the melt that can be made.
[0020]
The transfer unit 16 extends to a position above the liquid level of the holding crucible 10. The transfer unit 16 is exposed to the combustion exhaust gas flowing through the communication unit 14, is heated by the combustion exhaust gas, and can prevent a temperature drop of the molten metal during the transfer.
[0021]
The holding crucible 10 is partitioned by a refractory partition wall 18 to form a molten metal flow path 19 and a pumping portion 20, and a communication port 21 is formed between the lower end of the refractory partition wall 18 and the bottom of the holding crucible 10. Has been. The molten metal channel 19 is configured to receive the molten metal 17 from the melting crucible 6, flow the molten metal 17 from top to bottom, and transfer the molten metal 17 to the pumping unit 20 through the communication port 21.
[0022]
A processing gas pipe 32 connected to a processing gas supply section (not shown) is connected to the molten metal flow path 19, and a processing gas introduction section 33 is provided at the lower end of the processing gas pipe 32 (downstream of the molten metal flow path 19). It has been. The processing gas introduction part 33 is formed by connecting the opening side (base end side) of a cylindrical gas introduction body 33a whose tip is closed to the lower end of the processing gas pipe 32, and the gas introduction body 33a is against the molten metal flow. In order to blow out the bubbles, it is formed of a porous ceramic material such as a porous plug having an air flow rate of 0, 10 l / min or more.
[0023]
As the processing gas, in addition to an inert gas such as argon or nitrogen gas, an active gas such as chlorine gas or a mixed gas of an active gas and an inert gas can be employed.
[0024]
The molten metal in the holding crucible 10 that has been subjected to various types of molten metal treatment in the molten metal channel 19 and transferred to the pumping unit 20 through the communication hole 21 is installed in the holding crucible furnace 3. When heated by the generated combustion gas, the temperature rises to a predetermined casting temperature and is used for casting.
[0025]
In order to discharge the molten metal from the crucibles 6 and 10 through cracks or the like, for example, a drain outlet is provided at the lower end of the shared side wall 13 and the lower end of the side wall of the second furnace body 8 in order to discharge the leaked molten metal to the outside of the furnace. 22 and 23 are formed.
[0026]
The furnace body 4 of the melting crucible 2 has a closed bottomed cylindrical shape, and a cylindrical preheating tower 1 is installed in a two-tiered and concentric manner at the upper end, and the lower end of the tower 1 is the melting crucible 6 The upper end is opened toward the inside of the crucible 6, and a melting material a such as an aluminum ingot or a return material can be put into the crucible 6 through the tower 1.
[0027]
The upper end side of the first gap 7 in the first furnace body 4 is communicated with the preheating tower 1 through an annular gap 24 between the upper end of the melting crucible 6 and the lower end of the preheating tower 1 to preheat the combustion exhaust gas. The tower 1 can be supplied as a preheating source.
[0028]
The preheating tower 1 has inlets 25 and 26 for the melted material a at the body and the upper end. The inlets 25 and 26 are provided with opening and closing lids 27 and 28, respectively. An exhaust port 29 for combustion exhaust gas is provided. The formation of the discharge port 29 is necessary in order to guide the combustion exhaust gas as an updraft from the circumference 7 through the annular gap 24 into the preheating tower 1 by the draft effect. The opening / closing lids 25 and 26 can be opened and closed by an automatic opening / closing mechanism (not shown) provided with a driving device.
[0029]
In order to replace the melting crucible 6 or pump out the remaining hot water in the crucible 6, the preheating tower 1 is formed by lining the inside of a cylindrical iron case with a heat-insulating refractory material. The structure can be appropriately moved from the overlapping position. The preheating tower 1 is supported by a carriage 30, and the carriage 30 can travel on a guide rail 31 supported and fixed to the first furnace body 4. The traveling of the carriage 30 on the rail 31 causes the preheating tower 1 to move. The structure is movable from the position of the two-stage stacking with the first furnace body 4 to the position where the two-stage stacking is unraveled.
[0030]
During normal operation of the melting and holding furnace, the combustion gas supplied from the bottom of the first furnace body 4 rises in the first circumferential space 7 while heating the melting crucible 6 and becomes the combustion exhaust gas. It enters into the preheating tower 1 through the annular gap 24 from the upper end of the circumferential space 7, exchanges heat with the molten material a in the preheating tower 1 and is effectively used as a preheating source, and is discharged out of the furnace through the exhaust port 29 of the upper end opening / closing lid 28. Is done.
[0031]
On the other hand, the combustion gas supplied from the bottom of the second furnace body 8 to the inside of the second furnace body 8 rises in the second circumferential space while heating the holding crucible 10 to become combustion exhaust gas and communicates from the upper end of the second circumferential space 11. It enters the first space 7 through the part 14 and merges with the combustion exhaust gas ahead, and this combustion exhaust gas is also effectively used as a preheating source for the melted material a in the preheating tower 1. The combustion exhaust gas is also effectively used as a heating source for heating the transfer unit 16 and thus the molten metal during transfer while passing through the communication unit 14 and preventing the temperature of the molten metal from dropping.
[0032]
The melted material a is melted in order from the lower end portion immersed in the molten metal 17 of the melting crucible 6 and descends by its own weight as the melting proceeds, and is immersed in the molten metal. Some are always present as solid aluminum.
[0033]
The molten metal 17 in the melting crucible 6 is continuously transferred into the molten metal channel 19 of the holding crucible 10 through the transfer unit 16 while the amount corresponding to the dissolved amount of the molten material a overflows the discharge port 15 due to the head difference. This enables continuous hot water distribution. Further, since the molten metal is continuously distributed due to overflow, the melting crucible 6 is always filled with a certain amount of molten metal 17.
[0034]
In the molten metal processing apparatus A provided with the molten metal flow path 19 and the processing gas introduction part 33 as described above, the molten metal processing is performed as follows.
[0035]
The molten metal 17 flowing from the melting crucible 6 through the transfer section 16 into the molten metal flow path 19 flows from the top to the bottom of the molten metal flow path 19 and then flows into the pumping section 20 through the communication port 21. On the other hand, bubbles of the processing gas ejected from the gas introduction body 33a of the processing gas introduction part 33 located downstream of the molten metal flow path 19 rise against the flow of the molten metal in the molten metal flow path 19 due to their own buoyancy. The molten gas and the processing gas are mixed by being refined while receiving the impact of the flow, and the hydrogen gas is diffused and removed by uniformly mixing the fine bubbles of the processing gas and the molten metal. Levitate and separate. In addition, since the molten metal treatment is performed in a continuously flowing molten metal flow, the molten metal can be continuously processed to improve the treatment efficiency, and the clean gas treated with the treatment gas as described later can be used. Since the molten metal is continuously supplied to the pumping unit 20, the continuous operation can be performed without interrupting the next casting operation. Further, since the melting and holding crucibles 6 and 10 are graphite crucibles, the amount of hydrogen contained can be lowered by low-temperature melting, and the molten metal processing efficiency is further improved. The clean molten metal treated with the treatment gas flows into the pumping unit 20 through the communication port 21.
[0036]
Although the molten metal treatment effect varies depending on the molten metal supply speed to the molten metal flow path, the supply amount of the processing gas, etc., a gas pressure gauge can be attached to the processing gas pipe 32 and can be adjusted by a gas pressure regulator or a gas flow rate regulator. Moreover, the flow velocity of the molten metal flow in the molten metal channel can be adjusted, for example, by changing the cross-sectional area of the molten metal channel or the opening area of the communication port.
[0037]
Even when the flow of the molten metal in the molten metal flow path stops, the processing gas is always blown out from the gas introducing body 33a to prevent the gas introducing body 33a from being clogged.
[0038]
Further, as shown in FIG. 2B, a net-like filter F for filtering the molten metal may be provided below the processing gas introducing portion 33 in the molten metal flow path 19 of the molten metal processing apparatus A.
[0039]
When there are many oxides and other inclusions in the melt after melting, hydrogen gas is sufficiently removed by the melt treatment gas, but melt inclusions such as oxides may not be sufficiently removed only by the melt treatment gas. Therefore, in such a case, it is effective to provide the filter F.
[0040]
Molten inclusions vary greatly depending on the surface condition of the material to be melted, the size, the degree of dirt and oil, the return material, and the degree of oxidation during melting, and the K mold method is used as a simple method for evaluating the amount of molten inclusions. When there is a large amount of molten inclusions with a K value (K10 value) of 10 or more, it is possible to remove molten inclusions that cannot be treated with the molten gas by filtering the molten metal with a filter, greatly reducing the K value. Can be made.
[0041]
The filter F is of a saddle type in which a net F2 is stretched at the opening on the lower end side of a cylindrical molded body F1 formed of fireproof fiber. The net material is glassy, siliceous, carbonized. Silicone, zircon, zirconia and the like can be employed, and the size of one side of the mesh opening is preferably 1 to 5 mm. The filter F is formed with a locking rod F 3, and the filter F is attached to the molten metal flow path 19 by locking the locking rod F 3 with the holding crucible 10 and the fireproof partition wall 18. The position of the net F <b> 2 of the filter F may be above the processing gas introduction part 33.
[0042]
FIG. 3 shows an example in which the refractory partition wall 18 is disposed so as to surround the hot water receiving area of the molten metal flowing into the holding crucible 10 from the transfer unit 16.
[0043]
FIG. 4 shows an example in which a bowl-type filter F is arranged in another holding crucible 10.
[0044]
FIG. 5 shows a racket-type filter F in which a net F2 is stretched at an opening on the lower end side of a plate-like molded body F1 formed of fireproof fiber. The filter F is a guide 18a provided on a fireproof partition wall 18. The filter F can be moved up and down and can be exchanged by being pulled out upward, so that the filter F can be easily maintained.
<Embodiment 2>
As shown in FIG. 6, the reflection type direct flame type melting / holding furnace includes a melting / holding chamber 10A for melting and holding a molten metal, and the molten metal processing apparatus A is provided in the melting / holding chamber 10A. The molten metal flows through the inclined hearth 34 and flows into the melting holding chamber 10A. A refractory partition wall 18 is erected from the bottom surface of the melting and holding chamber, a molten metal flow path 19 is formed in the melting and holding chamber 10A, and a pumping portion 20 is formed by the fire-resistant dripping wall 35. A processing gas introduction portion 33 is provided on the downstream side of the molten metal passage 19.
[0045]
Reference numeral 36 in the figure denotes a material charging and melting chamber, in which the flame of the burner 37 directly hits the material and heats it, and the flame of the burner 38 provided at the upper part of the melting and holding chamber 10A The molten metal is directly applied to the surface of the molten metal to raise the molten metal to the required temperature.
[0046]
Then, after the molten melt overflows the fireproof partition wall 18 and enters the melt flow path 19, it flows into the pumping section 20 through the communication port 21 below the fireproof dripping wall 35, and as described above. The molten metal treatment is performed using the flow of the molten metal at 19 and the buoyancy of bubbles of the processing gas.
[0047]
The fireproof partition wall 18 is preferably detachably provided in the melting and holding chamber 17 in consideration of the maintenance and management of the melting and holding chamber 17.
[0048]
As described above, the molten metal processing apparatus A of the present invention is desirably provided in a part of the holding crucible furnace 10 or the melting holding chamber 10A having the pumping part 20 for quickly transferring the cleaned molten metal to the casting process. . Moreover, the molten metal processing method and apparatus of the present invention can be applied to various melting and holding furnaces.
[0049]
Next, the molten metal process (Example) by the crucible furnace provided with the molten metal processing apparatus A shown in FIG.1 and FIG.2 and the molten metal process (comparative example) by the crucible furnace which implemented both the above-mentioned flux process and rotary degassing process. ).
(1) The outline of the embodiment is as follows.
[0050]
Figure 0004243711
(2) The outline of the comparative example is as follows.
[0051]
It melt | dissolved with the tilting-type crucible and hold | maintained with the stationary crucible, and performed the molten metal process.
[0052]
Holding crucible capacity 350kg / ch
Holding temperature 740 ° C
Treatment After adding a NaCl-based degassing flux and thoroughly stirring and removing the molten metal for about 2 minutes, a rotary degasser was set and argon gas was blown in for about 5 minutes.
(3) The results of the processing are shown in Table 1. As shown in FIG. 7, the hydrogen content increases as the melting temperature increases, but in the examples, the hydrogen content decreases due to low-temperature melting in the graphite crucible furnace and is further compared by processing with the molten metal processing apparatus A. It was found that there was an effect equivalent to or better than the example (conventional method). That is, when the amount of hydrogen gas (ml / 100 g) and the amount of molten inclusions (K10 value) are compared before and after the molten metal treatment, according to the example, the amount of hydrogen gas is reduced from 0.23 to 0.13, The quantity was reduced from 1.4 to 0.4, and it was found that there was an effect equivalent to or better than the molten metal treatment by the conventional rotary degassing apparatus.
[0053]
[Table 1]
Figure 0004243711
[0054]
【The invention's effect】
According to the present invention, since the molten metal treatment is performed using the natural flow of the molten metal and the buoyancy of the processing gas, an efficient treatment can be performed in a short time without forcibly generating a rotating flow of the molten metal, In addition, continuous processing is possible. Furthermore, since a driving unit such as an impeller rotating unit is unnecessary, handling becomes easy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a crucible furnace of the present invention.
2A is a perspective view of an embodiment of a molten metal treatment apparatus of the present invention, and FIG. 2B is a cross-sectional view of an embodiment of a molten metal treatment apparatus having a filter.
3A is a cross-sectional view showing an embodiment of a molten metal treatment apparatus of the present invention, and FIG. 3B is a plan view of the embodiment.
4A is a cross-sectional view showing an embodiment of the molten metal treatment apparatus of the present invention, and FIG. 4B is a plan view of the embodiment.
FIG. 5 is a cross-sectional view showing an embodiment of the molten metal treatment apparatus of the present invention.
FIG. 6 is a cross-sectional view showing an embodiment of a crucible furnace provided with a melting holding chamber of the present invention.
FIG. 7 is a graph showing the relationship between the amount of dissolved hydrogen and the dissolution temperature.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Holding crucible 17 Molten metal 18 Refractory partition wall 19 Molten flow path 21 Communication port 33 Process gas introduction part

Claims (3)

溶解用坩堝と保持用坩堝とを備えた坩堝炉において、In a crucible furnace equipped with a melting crucible and a holding crucible,
前記保持用坩堝内を仕切り壁で仕切ることにより、溶湯流路と溶湯汲み出し部とを形成し、  By dividing the inside of the holding crucible with a partition wall, a molten metal flow path and a molten metal pumping portion are formed,
前記溶湯流路は、前記溶解用坩堝で生成された溶湯を、上方から受湯して、下方に形成された連通口を介して前記溶湯汲み出し部に移流させるように構成されており、  The molten metal flow path is configured to receive the molten metal generated in the melting crucible from above and transfer the molten metal to the molten metal pumping portion through a communication port formed at the bottom.
処理ガスの気泡を溶湯流に導入する処理ガス導入部を前記溶湯流路内の下流側に設けると共に、前記溶湯流路を流れる溶湯を濾過するフィルターを設け、  A processing gas introduction part for introducing process gas bubbles into the molten metal flow is provided on the downstream side of the molten metal flow path, and a filter for filtering the molten metal flowing through the molten metal flow path is provided.
前記フィルターは、前記処理ガス導入部の下方に設けられている坩堝炉。  The said filter is a crucible furnace provided below the said process gas introduction part.
前記フィルターは、筒状の成形体の下端側開口部にネットを張設して構成されており、係止鍔を前記保持用坩堝及び仕切り壁に係止させることにより、前記溶湯流路に取り付けられている請求項1に記載の坩堝炉。The filter is configured by stretching a net at a lower end opening of a cylindrical molded body, and is attached to the molten metal flow path by locking a locking rod to the holding crucible and the partition wall. The crucible furnace according to claim 1, wherein 前記フィルターは、板状の成形体の下端側開口部にネットを張設して構成されており、前記仕切り壁に設けられたガイドによって上下動自在に配設されている請求項1に記載の坩堝炉。2. The filter according to claim 1, wherein the filter is configured by stretching a net in a lower end side opening of a plate-shaped molded body, and is arranged to be movable up and down by a guide provided on the partition wall. Crucible furnace.
JP2002322873A 2002-11-06 2002-11-06 Crucible furnace Expired - Lifetime JP4243711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322873A JP4243711B2 (en) 2002-11-06 2002-11-06 Crucible furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322873A JP4243711B2 (en) 2002-11-06 2002-11-06 Crucible furnace

Publications (2)

Publication Number Publication Date
JP2004154822A JP2004154822A (en) 2004-06-03
JP4243711B2 true JP4243711B2 (en) 2009-03-25

Family

ID=32802939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322873A Expired - Lifetime JP4243711B2 (en) 2002-11-06 2002-11-06 Crucible furnace

Country Status (1)

Country Link
JP (1) JP4243711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749816B2 (en) * 2005-09-28 2011-08-17 三菱アルミニウム株式会社 Manufacturing method of high purity aluminum slab
JP5631169B2 (en) * 2010-05-20 2014-11-26 日本坩堝株式会社 Valuable metal recovery equipment

Also Published As

Publication number Publication date
JP2004154822A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
KR100439547B1 (en) Melting/retaining furnace for aluminum ingot
US6503292B2 (en) Molten metal treatment furnace with level control and method
US11358217B2 (en) Method for melting solid metal
US4401295A (en) Apparatus for treating molten metal
JPS6325226A (en) Foam control for vacuum clarification of glass material
WO2010032550A1 (en) Melt refiner
KR102449671B1 (en) Scrap Immersion Device
JP3485826B2 (en) Melt holding furnace
JP4243711B2 (en) Crucible furnace
AU2003275923B2 (en) Electromagnetic induction apparatus and method of treatment of molten materials
ZA200410141B (en) Electromagnetic induction apparatus and method of treatment of molten materials
JP2002146447A (en) Degassing apparatus for non-ferrous metal
EP4006471A1 (en) Metal melting device, screen plate for melting metal, and method for melting metal
JP2004257715A (en) Metal melting holding furnace
JP4403452B2 (en) Method of melting the material to be melted
JP4526251B2 (en) Aluminum melting furnace
SU401725A1 (en) DEVICE FOR BLOWING UP OF METAL METAL GAS MOLTS. \\ AND
JPH0343227Y2 (en)
JP2012233241A (en) Furnace body structure of aluminum melting furnace
JP2002153971A (en) Melting and holding furnace
JP3535215B2 (en) Melt holding furnace
JP2016199774A (en) Refining method for cast iron and refining furnace used therefor
JPH1030884A (en) Crucible furnace type aluminum melting equipment
JP2018003071A (en) Method for removing manganese from manganese-containing iron molten metal and manganese removal device
JPH07190639A (en) Molten metal treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4243711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term